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INTRODUCTION

This document provides a broad introduction to the field of cryptography, focusing on ap-
plied aspects of the subject. It complements the Cryptography CyBOK Knowledge Area [1]
which focuses on formal aspects of cryptography (including definitions and proofs) and on
describing the core cryptographic primitives. That said, formal aspects are highly relevant
when considering applied cryptography. As we shall seg, they are increasingly important when
it comes to providing security assurance for real-world deployments of cryptography.

The overall presentation assumes a basic knowledge of either first-year undergraduate mathe-
matics, or that found in a discrete mathematics course of an undergraduate Computer Science
degree. Good cryptography textbooks that cover the required material include [2, 3, 4].

We begin by informally laying out the key themes that we will explore in the remainder of the
document.

Cryptography is a Mongrel

Cryptography draws from a number of fields including mathematics, theoretical computer
science and software and hardware engineering. For example, the security of many public key
algorithms depends on the hardness of mathematical problems which come from number
theory, a venerable branch of mathematics. At the same time, to securely and efficiently
implement such algorithms across a variety of computing platforms requires a solid under-
standing of the engineering aspects. To make these algorithms safely usable by practitioners,
one should also draw on usability and Application Programming Interface (API) design. This
broad base has several consequences. Firstly, almost no-one understands all aspects of the
field perfectly (including the present author). Secondly this creates gaps — between theory
and practice, between design and implementation (typically in the form of a cryptographic
library, a collection of algorithm and protocol implementations in a specific programming
language) and between implementations and their eventual use by potentially non-expert
developers. Thirdly, these gaps lead to security vulnerabilities. In fact, it is rare that standard-
ised, widely-deployed cryptographic algorithms directly fail when they are properly used. It is
more common that cryptography fails for indirect reasons — through unintentional misuse
of a library API by a developer, on account of bad key management, because of improper
combination of basic cryptographic algorithms in a more complex system, or due to some
form of side-channel leakage. All of these topics will be discussed in more detail.

Cryptography # Encryption

In the popular imagination cryptography equates to encryption; a cryptographic mechanism
providing confidentiality services. In reality, cryptography goes far beyond this to provide an
underpinning technology for building security services more broadly. Thus, secure communi-
cations protocols like Transport Layer Security (TLS) rely on both encryption mechanisms
(Authenticated Encryption, AE) and integrity mechanisms (e.qg. digital signature schemes) to
achieve their security goals. In fact, in its most recent incarnation (version 1.3), TLS relies
exclusively on Diffie-Hellman key exchange to establish the keying material that it consumes,
whereas earlier versions allowed the use of public key encryption for this task. We will dis-
cuss TLS more extensively in Section 5; here the point is that, already in the literally classic
application of cryptography, encryption is only one of many techniques used.
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Moreover, since the boom in public research in cryptography starting in the late 1970s, re-
searchers have been incredibly fecund in inventing new types of cryptography to solve seem-
ingly impossible tasks. Whilst many of these new cryptographic gadgets were initially of purely
theoretical interest, the combination of Moore’s law and the growth of technologies such as
cloud computing has made some of them increasingly important in practice. Researchers
have developed some of these primitives to the point where they are efficient enough to be
used in large-scale applications. Some examples include the use of zero-knowledge proofs
in anonymous cryptocurrencies, the use of Multi-Party Computation (MPC) techniques to
enable computations on sensitive data in environments where parties are mutually untrusting,
and the (to date, limited) use of Fully Homomorphic Encryption (FHE) for privacy-preserving
machine learning.

Cryptography is Both Magical and Not Magical

Cryptography can seem magical in what it can achieve. Consider the millionaire’s problem:
two millionaires want to find out who is richer, without either telling the other how much they
are worth. This seems impossible, but it can be done in a reasonably efficient manner and
under mild assumptions. But there is no such thing as cryptographic “fairy dust” that can be
sprinkled on a bad (i.e. insecure) system to make it good (i.e. secure). Rather, at the outset of
a system design activity, cryptography should be thought of as being something that will work
in concert with other security building blocks to build a secure system (or more pessimistically,
a system in which certain risks have been mitigated). In this sense, cryptography makes
systems stronger by making certain attack vectors infeasible or just uneconomic to attack.
Consider again the secure communications protocol TLS. When configured properly, TLS
offers end-to-end security for pairs of communicating devices, providing strong assurances
concerning the confidentiality and integrity of messages (and more). However, it says nothing
about the security of the endpoints where the messages are generated and stored. Moreover,
TLS does not prevent traffic analysis attacks, based on analysing the number, size and direction
of flow of TLS-encrypted messages. So the use of cryptography here reduces the “attack
surface” of the communication system, but does not eliminate all possible attacks on the
system, nor does it aim to do so.

Developing the systemic view further, it is unfortunate that cryptography is generally brittle
and can fail spectacularly rather than gracefully. This can be because of a breakthrough in
cryptanalysis, in the sense of breaking one of the core cryptographic algorithms in use. For
example, there could be an unexpected public advance in algorithms for integer factorisation
that renders our current choices of key-sizes for certain algorithms totally insecure. This
seems unlikely — the last significant advance at an algorithmic level here was in the early 1990s
with the invention of the Number Field Sieve. So more likely this is because the cryptography
is provided in a way that makes it easy for non-experts to make mistakes, or the realisation of
a new attack vector enabling an attacker to bypass the cryptographic mechanism in use.

It is also an unfortunate fact that, in general, cryptography is non-composable, in the sense
that a system composed of cryptographic components that are individually secure (according
to some suitable formal definitions for each component) might itself fail to be secure in the
intended sense. A simple example arises in the context of so-called generic composition
of symmetric encryption and MAC algorithms to build an overall encryption scheme that
offers both confidentiality and integrity. Here, the “E&M” scheme obtained by encrypting the
plaintext and, in parallel, applying a MAC to the plaintext, fails to offer even a basic level of
confidentiality. This is because the MAC algorithm, being deterministic, will leak plaintext

I KA Applied Cryptography Page 5


https://www.cybok.org

I The Cyber Security Body Of Knowledge CVBGK

equality across multiple encryptions. This example, while simple, is not artificial: the SSH
protocol historically used such an E&M scheme and only avoided the security failure due
to the inclusion of a per-message sequence number as part of the plaintext (this sequence
number was also needed to achieve other security properties of the SSH secure channel).
This example generalises, in the sense that even small and seemingly trivial details can have
a large effect on security: in cryptography, every bit matters.

In view of the above observations, applied cryptography is properly concerned with a broader
sweep of topics than just the low-level cryptographic algorithms. Of course these are still
crucial and we will cover them briefly. However, applied cryptography is also about the
integration of cryptography into systems and development processes, the thorny topic of key
management and even the interaction of cryptography with social processes, practices and
relations. We will touch on all of these aspects.

Cryptography is Political

Like many other technologies, cryptography can be used for good or ill. It is used by human
rights campaigners to securely organise their protests using messaging apps like Telegram
and Signal [5]. Itis used by individuals who wish to maintain their privacy against the incursions
of tech companies. It enables whistle-blowers to securely communicate with journalists when
disclosing documents establishing company or governmental wrong-doing (see Privacy &
Online Rights CyBOK Knowledge Area [6]). But it can also be used by terrorists to plan attacks
or by child-abusers to share illegal content. Meanwhile cryptocurrencies can be used by drug
dealers to launder money [7] and as a vehicle for extracting ransom payments.’

These examples are chosen to highlight that cryptography, historically the preserve of govern-
ments and their militaries, is now in everybody’s hands — or more accurately, on everybody'’s
phone. This is despite intensive, expensive efforts over decades on the part of governments
to regulate the use of cryptography and the distribution of cryptographic technology through
export controls. Indeed, such laws continue to exist, and violations of them can produce
severe negative consequences so practitioners should be cautious to research applicable
regulation (see Law & Regulation CyBOK Knowledge Area [9] for further discussion of this
topic).

But the cryptographic genie has escaped the bottle and is not going back in. Indeed, crypto-
graphic software of reasonable quality is now so widespread that attempts to prevent its use
or to introduce government-mandated back-doors are rendered irrelevant for anyone with a
modicum of skill. This is to say nothing as to whether it is even possible to securely engineer
cryptographic systems that support exceptional access for a limited set of authorised parties,
something which experts doubt, see for example [10]. Broadly, these efforts at control and
the reaction to them by individual researchers, as well as companies, are colloquially known
as The Crypto Wars. Sometimes, these are enumerated, though it is arguable that the First
Crypto War never ended, but simply took on another, less-intense, less-visible form, as became
apparent from the Snowden revelations [11].

0n the other hand, a 2019 RAND report [8] concluded there is little evidence for use of cryptocurrencies by
terrorist groups.
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The Cryptographic Triumvirate

A helpful classification of cryptographic applications arises from considering what is happen-
ing to the data. The classical cryptographic applications relate to data in transit, i.e. secure
communications. Cryptography can be applied to build secure data storage systems, in which
case we talk about data at rest. In fact these two application domains are quite close in
terms of the techniques they use. This is because, to a first-order approximation, one can
regard a secure storage system as a kind of communications channel in time. Finally, in
the era of cloud computing, outsourced storage and privacy-preserving computation, we
have seen the emergence of cryptography for data under computation. This refers to a broad
set of techniques enabling computations to be done on data that is encrypted — imagine
outsourcing an entire database to an untrusted server in such a way that database operations
(insert, delete, search queries, etc) can still be carried out without leaking anything about
those operations — or the data itself — to the server. Keeping in mind this triumvirate — data
in transit, data at rest, data under computation — can be useful when understanding what
to expect in terms of the security, performance and maturity of systems using cryptography.
In short, systems providing security for data in transit and data at rest are more mature, are
performant at scale and tend to be standardised. By contrast, systems providing security for
data under computation are largely in an emergent phase.

This classification focuses on data and therefore fails to capture some important applications
of cryptography such as user authentication? and attestation.?

Organisation

Having laid out the landscape of Applied Cryptography, we now turn to a more detailed
consideration of sub-topics. The next section is concerned with cryptographic algorithms
and schemes — the building blocks of cryptography. It also discusses protocols, which
typically combine multiple algorithms into a more complex system. In Section 2 we discuss
implementation aspects of cryptography, addressing what happens when we try to turn a
mathematical description of a cryptographic algorithm into running code. Cryptography simply
translates the problem of securing data into that of securing and managing cryptographic
keys, following Wheeler’'s aphorism that every problem in computer science can be solved by
another level of indirection. We address the topic of key management in Section 3. Section 4
covers a selection of issues that may arise for non-expert consumers of cryptography, while
Section 5 discusses a few core cryptographic applications as a means of showing how the
different cryptographic threads come together in specific cases. Finally, Section 6 looks to
the future of applied cryptography and conveys closing thoughts.

2Here, for example, FIDO is developing open specifications of interfaces for authenticating users to web-
based applications and services using public key cryptography.

3This concept refers to methods by which a hardware platform can provide security guarantees to third
parties about how it will execute code. It is addressed in the Hardware Security CyBOK Knowledge Area [12].
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1 ALGORITHMS, SCHEMES AND PROTOCOLS

[2,3,4]

1.1 Basic Concepts

In this subsection, we provide a brief summary of some basic concepts in cryptography. A
more detailed and formal introduction to this material can be found in Cryptography CyBOK
Knowledge Area [1].

Cryptographic algorithms are at the core of cryptography. There are many different classes of
algorithm and many examples within each class. Moreover, it is common to group algorithms
together to form cryptographic primitives or schemes. For example, a Public Key Encryption
(PKE) scheme consists of a collection of three algorithms: a key generation algorithm, an
encryption algorithm and a corresponding decryption algorithm.

Unfortunately, there is no general agreement on the terminology and the meanings of the terms
algorithm, scheme, primitive and even protocol overlap and are sometimes used interchange-
ably. We will reserve the term algorithm for an individual algorithm (in the computer science
sense — a well-defined procedure with specific inputs and outputs, possibly randomised).
We will use scheme to refer to a collection of algorithms providing some functionality (e.g.
as above, a PKE scheme) and protocol for interactive systems in which two or more parties
exchange messages.* Such protocols are usually built by combining different cryptographic
schemes, themselves composed of multiple algorithms.

Most cryptographic algorithms are keyed (the main exception are hash functions). This means
that they have a special input, called a key, which controls the operation of the algorithm.
The manner in which the keying is performed leads to the fundamental distinction between
symmetric and asymmetric schemes. In a symmetric scheme the same key is used for two
operations (e.g. encryption and decryption) and the confidentiality of this key is paramount
for the security of the data which it protects. In an asymmetric scheme, different keys are
used for different purposes (e.g. in a PKE scheme, a public key is used for encryption and a
corresponding private key is used for decryption, with the key pair of public and private keys
being output by the PKE scheme’s key generation algorithm). The usual requirement is that
the private key remains confidential to the party who runs the key generation algorithm, while
the public key (as the name suggests) can be made public and widely distributed.

We now turn to discussion of the most important (from the perspective of applied cryptog-
raphy) cryptographic primitives and schemes. Our treatment is necessarily informal and
incomplete. Any good textbook will provide missing details. Martin’s book [3] provides an
accessible and mostly non-mathematical treatment of cryptography. Smart’s book [4] is aimed
at Computer Science undergraduates with some background in mathematics. The text by
Boneh and Shoup [2] is more advanced and targets graduate students.

“4Alternatively, a protocol is a distributed algorithm.

I KA Applied Cryptography Page 8


https://www.cybok.org

I The Cyber Security Body Of Knowledge cyBGK

1.2 Hash functions

A hash function is usually an unkeyed function H which takes as input bit-strings of variable
length and produces short outputs of some fixed length, n bits say.

A crucial security property is that it should be hard to find collisions for a hash function, that
is, pairs of inputs (mg, m;) resulting in the same hash value, i.e. such that H(mg) = H(m;)
(such collisions must exist because the output space is much smaller than the input space).
If the output size is n bits, then there is a generic attack based on the birthday paradox that
will find collisions with effort about 27/2 hash function evaluations.®

Other important security properties are pre-image resistance and second pre-image resistance.
Informally, pre-image resistance says that it is hard, given an output from a hash function A,
to find an input m such that H(m) = h. Second pre-image resistance says that, given an m, it
is difficult to find m’ # m such that H(m) = H(m/).

Hash functions are often modelled as random functions in formal security analyses, leading
to the Random Oracle Model. Of course, a given hash function is a fixed function and not
a random one, so this is just a heuristic, albeit a very useful one when performing formal
security analyses of cryptographic schemes making use of hash functions.

SHA-1 with n = 160 is a widely-used hash function. However, collisions for SHA-1 can be
found using much less than 2% effort, so it is now considered unsuitable for applications
requiring collision-resistance. Other common designs include SHA-256 (with n = 256 and still
considered very secure) and SHA-3 (with variable length output and based on different design
principles from the earlier SHA families). The SHA families are defined in a series of NIST
standards [13, 14].

1.3  Block ciphers

A block cipher is a function taking as input a symmetric key K of k bits and a plaintext P
with n bits and producing as output a ciphertext C also of n bits. For each choice of K, the
resulting function, often written E(-), is a permutation mapping n-bit strings to n-bit strings.
Since Ek(-) is a permutation, it has an inverse, which we denote Dy (-). We require that both
Ek(-) and Dk(-) be fast to compute.

Many security properties can be defined for block ciphers, but the most useful one for formal
security analysis demands that the block cipher be a Pseudo-Random Permutation (PRP).
Informally this means, if K is chosen uniformly at random, then no efficient adversary can tell
the difference between outputs of the block cipher and the outputs of a permutation selected
uniformly at random from the set of all permutations of n bits.

It is notable that block cipher designers do not typically target such a goal, but rather resistance
to a range of standard attacks. One such attack is exhaustive key search: given a few known
plaintext/ciphertext pairs for the given key, try each possible K to test if it correctly maps
the plaintexts to the ciphertexts. This generic attack means that a block cipher’s key length &
must be big enough to make the attack infeasible. The Data Encryption Standard (DES) had

SThe birthday paradox is a generalisation of the initially surprising observation that in a group of 23 randomly
selected people there is a 50-50 chance of two people sharing a birthday; more generally, if we make /N selec-
tions uniformly at random from a set of V objects, then there is a constant probability of two of the selections
being the same.
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k = 56 which was considered by experts already too short when the algorithm was introduced
by the US government in the mid 1970s.

The Advanced Encryption Standard (AES) [15] is now the most-widely used block cipher. The
AES was the result of a design competition run by the US government agency NIST. It has a
128-bit block (n = 128) and its key-length £ is either 128, 192, or 256, precluding exhaustive key
search. Fast implementation of AES is supported by hardware instructions on many Central
Processing Unit (CPU) models. Fast and secure implementation of AES is challenging in
environments where an attacker may share memory resources with the victim, for example
a cache. Still, with its widespread support and lack of known security vulnerabilities, it is
rarely the case that any block cipher other than AES is needed. One exception to this rule is
constrained computing environments.

Except in very limited circumstances, block ciphers should not be used directly for encrypting
data. Rather, they are used in modes of operation [16]. Modes are discussed further below
under Authenticated Encryption schemes.

1.4  Stream ciphers

Stream ciphers are algorithms that can encrypt a stream of bits (as opposed to a block of n
bits in the case of block ciphers) under the control of a k-bit key K. Most stream ciphers use
the key to generate a key-stream and then combine it in a bit-by-bit fashion with the plaintext
using an XOR operation, to produce the ciphertext stream.

Keystream reuse is fatal to security, since the XOR of two ciphertexts created using the same
keystream reveals the XOR of the plaintexts, from which recovering the individual plaintexts
becomes possible given enough plaintext redundancy [17]. To avoid this, stream ciphers
usually employ an Initialisation Vector (IV) along with the key; the idea is that each choice of
IV should produce an independent keystream. 1Vs need not be kept secret and so can be sent
along with the ciphertext or derived by sender and receiver from context.

The main security requirement for a stream cipher is that, for a random choice of key K, and
each choice of 1V, it should be difficult for an adversary to distinguish the resulting keystream
from a truly random bit-string of the same length.

It is easy to build a stream cipher from a block cipher by using a mode of operation; these
are discussed in Section 1.6.4. Dedicated stream ciphers suitable for implementation in
hardware have traditionally relied on combining simpler but insecure components such as
Linear Feedback Shift Registers. The A5/1 and A5/2 stream ciphers once widely used in
mobile telecommunications systems are of this type. The RC4 stream cipher was well-suited
for implementation in software and has a very simple description making it attractive to
developers. RC4 became widely used in IEEE wireless communications systems (WEP, WPA)
and in Secure Socket Layer/Transport Layer Security (SSL/TLS). It is now considered obsolete
because of a variety of security vulnerabilities that it presents in these applications.
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1.5 Message Authentication Code (MAC) schemes

MAC schemes are used to provide authentication and integrity services. They are keyed. A
MAC scheme consists of three algorithms. The first is called KeyGen for key generation. It is
randomised and usually consists of selecting a key K at random from the set of bit-strings of
some fixed length k. The second algorithm is called Tag. Given as input K and a message
m encoded as a bit-string, Tag produces a MAC tag 7, usually a short string of some fixed
length ¢. The third algorithm is called Verify. This algorithm is used to verify the validity of
a message/MAC tag combination (m, 7) under the key K. So Verify takes as input triples
(K, m, 7) and produces a binary output, with “1” indicating validity of the input triple.

The main security property required of a MAC scheme is that it should be hard for an adversary
to come up with a new pair (m, 7) which Verify accepts with key K, even when the adversary
has already seen many pairs (my, 71), (ma, 72), . . . produced by Tag with the same key K for
messages of its choice m;, mo, . ... The formal security notion is called Strong Unforgeability
under Chosen Message Attack (SUF-CMA for short).

SUF-CMA MAC schemes can be used to provide data origin authentication and data integrity
services. Suppose two parties Alice and Bob hold a shared key K; then no party other than
those two can come up with a correct MAC tag 7 for a message m. So if Alice attaches MAC
tags 7 to her messages before sending them to Bob, then Bob, after running Verify and
checking that it accepts, can be sure the messages only came from Alice (or maybe himself,
depending on how restrictive he is in using the key) and were not modified by an attacker.

MAC schemes can be built from hash functions and block ciphers. HMAC [18] is a popular
MAC scheme which, roughly speaking, implements its Tag algorithm by making two passes
of a hash function applied to the message m prefixed with the key K. The security analysis of
HMAC requires quite complex assumptions on the underlying hash function [2, Section 8.7].
MAC schemes can also be built from so-called universal hash functions in combination with a
block cipher. Security then relies only on the assumption that the block cipher is a PRP. Since
universal hash functions can be very fast, this can lead to very efficient MACs. A widely used
MAC of this type is GMAC, though it is usually used only as part of a more complex algorithm
called AES-GCM that is discussed below.

1.6  Authenticated Encryption (AE) schemes

An Authenticated Encryption (AE) scheme [19] is a symmetric scheme which transforms plain-
texts into ciphertexts and which simultaneously offers confidentiality and integrity properties
for the plaintext data. After a long period of debate, AE has emerged as a powerful and broadly
applicable primitive for performing symmetric encryption. In most cases where symmetric
encryption is needed, AE is the right tool for the job.

An AE scheme consists of three algorithms: KeyGen, Enc and Dec. The first of these is
responsible for key generation. It is randomised and usually consists of selecting a key K at
random from the set of bit-strings of some fixed length k. Algorithm Enc performs encryption.
It takes as input a key K and a plaintext M to be encrypted. Practical AE schemes allow
M to be a bit-string of variable length. In the nonce-based setting, Enc has an additional
input called the nonce, denoted N, and usually selected from a set of bit-strings of some
fixed size n. In this setting, Enc is deterministic (i.e. it needs no internal randomness). In the
randomised setting, Enc is a randomised algorithm and does not take a nonce input. The
third algorithm in an AE scheme is the decryption algorithm, Dec. It takes as input a key K, a
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ciphertext string C' and, in the nonce-based setting, a nonce N. It returns either a plaintext
M or an error message indicating that decryption failed. Correctness of a nonce-based AE
scheme demands that, for all keys K, all plaintexts M and all nonces N, if running Enc on
input (K, M, N) results in ciphertext C, then running Dec on input (K, C, N) results in plaintext
M. Informally, correctness means that, for a given key, decryption “undoes” encryption.

1.6.1 AE Security

Security for nonce-based AE is defined in terms of the combination of a confidentiality property
and an integrity property.

Confidentiality for AE says, roughly, that an adversary learns nothing that it does not already
know from encryptions of messages. Slightly more formally, we consider an adversary that
has access to a left-or-right (LoR) encryption oracle. This oracle takes as input a pair of equal-
length plaintexts (M, M;) and a nonce N selected by the adversary; internally the oracle
maintains a randomly generated key K and a randomly sampled bit 4. It selects message
M,, encrypts it using Enc on input (K, M,, N) and returns the resulting ciphertext C' to the
adversary. The adversary’s task is to make an estimate of the bit b, given repeated access
to the oracle while, in tandem, performing any other computations it likes. The adversary is
considered successful if, at the end of its attack, it outputs a bit &’ such that ' = b. An AE
scheme is said to be IND-CPA secure (“indistinguishability under chosen plaintext attack”)
if no adversary, consuming reasonable resources (quantified in terms of the computational
resources it uses, the number of queries it makes and sometimes the bit-length of those
queries) is able to succeed with probability significantly greater than 1/2. An adversary can
always just make a complete guess ¥’ for the bit b and will succeed half of the time; hence
we penalise the adversary by demanding it do significantly better than this trivial guessing
attack. The intuition behind IND-CPA security is that an adversary, even with perfect control
over which pairs of messages get encrypted, cannot tell from the ciphertext which one of the
pair — the left message or the right message — gets encrypted each time. So the ciphertexts
do not leak anything about the messages, except perhaps their lengths.®

The integrity property says, roughly, that an adversary cannot create new ciphertexts that
decrypt to plaintexts, instead of producing decryption failures. Slightly more formally, we give
an adversary an encryption oracle; this oracle internally maintains a randomly generated key K
and on input (M, N) from the adversary, runs Enc on input (K, M, N) and returns the resulting
ciphertext C' to the adversary. We also give the adversary a decryption oracle, to which it can
send inputs (C, N). In response to such inputs, the oracle runs Dec on input (K, C, N) (for
the same key K used in the encryption oracle) and gives the resulting output to the adversary
— this output could be a message or an error message. The adversary against integrity is
considered to be successful if it at some point sends an input (C, N) to its decryption oracle
which results in an output that is a plaintext A/ and not an error message. Here, we require
that (C, V) be such that C'is not a ciphertext output by the encryption oracle when it was given
some input (M, N) during the attack — otherwise the adversary can win trivially. Under this
restriction, for the adversary to win, the pair (C, N) must be something new that the adversary
could not have trivially obtained from its encryption oracle. In this sense, C'is a ciphertext
forgery for some valid plaintext, which the adversary may not even know before it sends (C, N)
for decryption. An AE scheme is said to be INT-CTXT secure (it has “integrity of ciphertexts”)

6But note that hiding the length of data can be a more complicated task than hiding the data itself. Moreover,
just knowing the length of data can lead to significant attacks. Such attacks, more broadly covered under side-
channel attacks, are discussed in Section 2.3.
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if no adversary, consuming reasonable resources (quantified as before) is able to succeed
with probability significantly greater than 0.

Similar security notions can be developed for the randomised setting.

An AE scheme is said to be secure (or AE secure) if it is both IND-CPA and INT-CTXT secure.
This combination of security properties is very strong. It implies, for example, IND-CCA
security, a traditional security notion which extends IND-CPA security by also equipping the
adversary with a decryption capability, capturing the capabilities that a practical attacker may
have. It also implies a weaker “integrity of plaintexts” notion, which roughly states that it
should be hard for the adversary to create a ciphertext that encrypts a new plaintext.

1.6.2 Nonces in AE

It is a requirement in the IND-CPA security definition that the nonces used by the adversary
be unique across all calls to its LoR encryption oracle. Such an adversary is called a nonce
respecting adversary. In practice, it is usually the responsibility of the application using an AE
scheme to ensure that this condition is met across all invocations of the Enc algorithm for a
given key K. Note that the nonces do not need to be random. Indeed choosing them randomly
may result in nonce collisions, depending on the quality of the random bit source used, the size
of the nonce space and the number of encryptions performed. For example, the nonces could
be invoked using a stateful counter. The core motivation behind the nonce-based setting
for AE is that it is easier for a cryptographic implementation to maintain state across all
uses of a single key than it is to securely generate the random bits needed to ensure security
in the randomised setting. This is debatable and nonce repetitions have been observed in
practice [20]. For some AE schemes such as the widely deployed AES-GCM scheme, the
security consequences of accidental nonce repetition are severe, e.g. total loss of integrity
and/or partial loss of confidentiality. For this reason, misuse-resistant AE schemes have
been developed. These are designed to fail more gracefully under nonce repetitions, revealing
less information in this situation than a standard AE scheme might. They are generally more
computationally expensive than standard AE schemes. AES-GCM-SIV [21] is an example of
such a scheme.

1.6.3 AE Variants

Many variants of the basic AE formulation and corresponding security notions have been devel-
oped. As an important example, Authenticated Encryption with Associated Data (AEAD) [22]
refers to an AE extension in which an additional data field, the Associated Data (AD), is crypto-
graphically bound to the ciphertext and is integrity protected (but not made confidential). This
reflects common use cases. For example, we have a packet header that we wish to integrity
protect but which is needed in the clear to deliver data, and a packet body that we wish to both
integrity protect and make confidential. Even the basic AE security notion can be strengthened
by requiring that ciphertexts be indistinguishable from random bits or by considering security
in the multi-user setting, where the adversary interacts with multiple AE instantiations under
different, random keys and tries to break any one of them. The latter notion is important when
considering large-scale deployments of AE schemes. The two separate notions, IND-CPA and
INT-CTXT, can also be combined into a single notion [23].
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1.6.4 Constructing AE Schemes

Secure AE (and AEAD) schemes can be constructed generically from simpler encryption
schemes offering only IND-CPA security and SUF-CMA secure MAC schemes. There are
three basic approaches: Encrypt-then-MAC (EtM), Encrypt-and-MAC (E&M) and MAC-then-
Encrypt (MtE). Of these, the security of EtM is the easiest to analyse and provides the most
robust combination, because it runs into fewest problems in implementations. Both MtE
and E&M have been heavily used in widely-deployed secure communications protocols such
as SSL/TLS and Secure Shell (SSH) with occasionally disastrous consequences [24, 25, 26].
Broad discussions of generic composition can be found in [27] (in the randomised setting)
and [28] (more generally).

This generic approach then leaves the question of how to obtain an encryption scheme
offering IND-CPA security. This is easily achieved by using a block cipher in a suitable mode
of operation [16], for example, counter (CTR) mode or CBC mode. Such a mode takes a block
cipher and turns it into a more general encryption algorithm capable of encrypting messages
of variable length, whereas a block cipher can only encrypt messages of length n bits for some
fixed n. The IND-CPA security of the mode can then be proved based on the assumption that
the used block cipher is a PRP. Indeed, the nonce-based AEAD scheme AES-GCM [16] can be
seen as resulting from a generic EtM construction applied using AES in a specific nonce-based
version of CTR mode and an SUF-CMA MAC constructed from a universal hash function based
on finite field arithmetic. AES-GCM is currently used in about 90% of all TLS connections on
the web. It has excellent performance on commodity CPUs) from Intel and AMD because of
their hardware support for the AES operations and for the finite field operations required by
the MAC. A second popular AEAD scheme, ChaCha20-Poly1305 [29], arises in a similar way
from different underlying building blocks. The CAESAR competition’ was a multi-year effort to
produce a portfolio of AEAD schemes for three different use cases: lightweight applications,
high-performance applications and defence in depth (essentially, misuse-resistant AE).

1.7 Public Key Encryption Schemes and Key Encapsulation Mechanisms

A Public Key Encryption (PKE) scheme consists of three algorithms: KeyGen, Enc and Dec.
The first of these is responsible for key generation. It is randomised and outputs key pairs
(sk, pk) where sk denotes a private key (often called the secret key) and pk denotes a public
key. The algorithm Enc performs encryption. It takes as input the public key pk and a plaintext
M to be encrypted and returns a ciphertext C. In order to attain desirable security notions
(introduced shortly), Enc is usually randomised. The plaintext M comes from some set of
possible plaintexts that the scheme can handle. Usually this set is limited and dictated by
the mathematics from which the PKE scheme is constructed. This limitation is circumvented
using hybrid encryption, which combines PKE and symmetric encryption to allow a more
flexible set of plaintexts. The third algorithm in a PKE scheme is the decryption algorithm,
Dec. It takes as input the private key sk and a ciphertext C. It returns either a plaintext M or
an error message indicating that decryption failed. Correctness of a PKE scheme requires
that, for all key pairs (sk, pk) and all plaintexts M, if running Enc on input (pk, M) results in
ciphertext C, then running Dec on input (sk, C) results in plaintext M. Informally, correctness
means that, for a given key, decryption “undoes” encryption. Notice here the fundamental
asymmetry in the use of keys in a PKE scheme: pk is used during encryption and sk during
decryption.

’See https://competitions.cr.yp.to/caesar-submissions.html.
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1.7.1 PKE Security

There are many flavours of security for PKE. We focus on just one, which is sufficient for many
applications, and provide a brief discussion of some others.

Recall the definition of IND-CPA and IND-CCA security for AE schemes from Section 1.6.
Analogous notions can be defined for PKE. In the IND-CPA setting for PKE, we generate a key
pair (sk, pk) by running KeyGen and give the public key pk to an adversary (since public keys
are meant to be public!). The adversary then has access to an LoR encryption oracle which, on
input a pair of equal-length messages (M,, M), performs encryption of M, under the public
key pk, i.e. runs the randomised algorithm Enc on input (pk, M,), to get a ciphertext C' which
is then returned to the adversary. The adversary’s task is to make an estimate of the bit o,
given repeated access to the oracle while, in tandem, performing any other computations it
likes. The adversary is considered successful if, at the end of its attack, it outputs a bit ¥’ such
that v = b. A PKE scheme is said to be IND-CPA secure (“indistinguishability under chosen
plaintext attack”) if no adversary, consuming reasonable resources (quantified in terms of the
computational resources it uses and the number of queries it makes) is able to succeed with
probability significantly greater than 1/2. The intuition behind IND-CPA security for PKE is the
same as that for AE: even with perfect control over which pairs of messages get encrypted,
an adversary cannot tell from the ciphertext which one of the pairs is encrypted each time.

Note that in order to be IND-CPA secure, a PKE scheme must have a randomised encryption
algorithm (if Enc was deterministic, then an adversary that first makes an encryption query on
the pair (M,, M;) with M, # M, and then an encryption query on (M,, M,) could easily break
the IND-CPA notion). If a PKE scheme is IND-CPA secure, then it must be computationally
difficult to recover pk from sk, since, if this were possible, then an adversary could first recover
sk and then decrypt one of the returned ciphertexts C' and thereby find the bit b.

IND-CCA security for PKE is defined by extending the IND-CPA notion to also equip the adver-
sary with a decryption oracle. The adversary can submit (almost) arbitrary bit-strings to this
oracle. The oracle responds by running the decryption algorithm and returning the resulting
plaintext or error message to the adversary. To prevent trivial wins for the adversary and
therefore avoid a vacuous security definition, we have to restrict the adversary to not make
decryption oracle queries for any of the outputs obtained from its encryption oracle queries.

We do not generally consider integrity notions for PKE schemes. This is because, given the
public key pk, an adversary can easily create ciphertexts of its own, so no simple concept of
“ciphertext integrity” would make sense for PKE. Integrity in the public key setting, if required,
usually comes from the application of digital signatures, as discussed in Section 1.9. Digital
signatures and PKE can be combined in a cryptographic primitive called signcryption. This
can be a useful primitive in some use-cases, e.g. secure messaging (see Section 5.2).

In some applications, such as anonymous communications or anonymous cryptocurrencies,
anonymity of PKE plays a role. Roughly speaking, this says that a PKE ciphertext should not
leak anything about the public key pk that was used to create it. This is an orthogonal property
to IND-CPA/IND-CCA security. A related concept is robustness for PKE, which informally
says that a ciphertext generated under one public key pk should not decrypt correctly under
the private key sk’ corresponding to a second public key pk’. Such a property, and stronger
variants of it, are needed to ensure that trial decryption of anonymous ciphertexts does not
produce unexpected results [30].
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1.7.2 Key Encapsulation Mechanisms

A Key Encapsulation Mechanism (KEM) is a cryptographic scheme that simplifies the design
and use of PKE. Whereas a PKE scheme can encrypt arbitrary messages, a KEM is limited to
encrypting symmetric keys. One can then build a PKE scheme from a KEM and an AE scheme
(called a Data Encapsulation Mechanism, DEM, in this context): first use the KEM to encrypt a
symmetric key K, then use K in the AE scheme to encrypt the desired message; ciphertexts
now consist of two components: the encrypted key and the encrypted message.

We can define IND-CPA and IND-CCA security notions for KEMs. These are simpler to work with
than the corresponding notions for PKE and this simplifies security analysis (i.e. generating
and checking formal proofs). Moreover, there is a composition theorem for KEMs which says
that if one takes an IND-CCA secure KEM and combines it with an AE-secure DEM (AE scheme)
as above, then one gets an IND-CCA secure PKE scheme. As well as simplifying design and
analysis, this KEM-DEM or hybrid viewpoint on PKE reflects how PKE is used in practice.
Because PKE has generally slow algorithms and has large ciphertext overhead (compared to
symmetric alternatives like AE), we do not use it directly to encrypt messages. Instead, we use
a KEM to encrypt a short symmetric key and then use that key to encrypt our bulk messages.

1.7.3 Some common PKE schemes and KEMs

Perhaps the most famous PKE scheme is the RSA scheme. In its textbook form, the public
key consists of a pair (e, N) where N is a product p - ¢ of two large primes and the private
key consists of a value d such that de = 1 mod (p — 1)(¢ — 1). Encryption of a message M,
seen as a large integer modulo N, sets C' = M*° mod N. On account of the mathematical
relationship between d and ¢, it can be shown that then M = C¢ mod N. So encryption is done
by “raising to the power of e mod N” and decryption is done by “raising to the power of d mod
N". These operations can be carried out efficiently using the square-and-multiply algorithm
and its variants. Decryption can be accelerated by working separately modulo p and ¢ and
then combining the results using the Chinese Remainder Theorem (CRT).

The security of RSA, informally, depends on the hardness of the Integer Factorisation Problem
(IFP): if an adversary can recover p and ¢ from N, then it can recompute d from e, p and ¢
using the extended Euclidean algorithm. But what we really want is a converse result: if an
adversary can break RSA, then it should be possible to use that adversary in a black-box
manner as a subroutine to create an algorithm that factors the modulus N or solves some
other presumed-to-be-hard problem.

This textbook version of RSA is completely insecure and must not be used in practice. Notice,
for example, that it is not randomised, so it certainly cannot be IND-CPA secure. Instead RSA
must be used as the basis for constructing more secure alternatives. This is usually done by
performing a keyless encoding step, represented as a function y(-), on the message before
applying the RSA transform. Thus we have C' = p(M)¢ mod N. Decryption then involves
applying the reverse transform and decoding.

In order to achieve modern security notions, x(-) must be randomised. One popular encoding
scheme, called PKCS#1 v1.5 and specified in [31], became very common in applications due
to its relatively early standardisation and its ease of implementation. Unfortunately, RSA
with PKCS#1 v1.5 encoding does not achieve IND-CCA security, as demonstrated by the
famous Bleichenbacher attack [32]. Despite now being more than 20 years old, variants of the
Bleichenbacher attack still regularly affect cryptographic deployments, see for example [33].
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A better encoding scheme is provided in PKCS#1 v2.1 (also specified in [31]), but it has not
fully displaced the earlier variant. RSA with PKCS#1 v2.1 encoding — also called RSA-OAEP —
can be proven to yield an IND-CCA secure PKE scheme but the best security proof we have [34]
is unsatisfactory in various technical respects: its proof is not tight and requires making a
strong assumption about the hardness of a certain computational problem. Improved variants
with better security analyses do exist in the literature but have not found their way into use.

One can easily build an IND-CCA secure KEM from the RSA primitive, as follows: select M at
random from {0,1,..., N —1},set C = M° mod N (as in textbook RSA) and define K = H (M)
to be the encrypted symmetric key. Here H is a cryptographic hash function (e.g. SHA-256).
This scheme can be proven secure by modelling H as a random oracle, under the assumption
that the RSA inversion problem is hard. The RSA inversion problem is, informally, given e, M
and M¢ mod N for a random M, to recover M. The RSA inversion problem is not harder than
the IFPR, since any algorithm to solve IFP can be used to construct an algorithm that solves the
RSA inversion problem. But the RSA inversion problem could be easier than the IFP and it is
an open problem to fully decide this question.

Note that RSA encryption is gradually being displaced in applications by schemes using Elliptic
Curve Cryptography (ECC) because of its superior performance and smaller key-sizes for a
given target security level. See Section 1.13 for further discussion.

We will discuss another class of PKE schemes, based on the Discrete Logarithm Problem
(DLP) after discussing Diffie-Hellman Key Exchange.

1.8 Diffie-Hellman Key Exchange

Diffie-Hellman Key Exchange (DHKE) is a fundamental tool in cryptography and was introduced
by Diffie and Hellman in their seminal paper on Public Key Cryptography [35]. DHKE allows
two parties to set up a shared key based only on a public exchange of messages. First the
two parties (let us follow convention and call them Alice and Bob) agree on some common
parameters: a group G of prime order ¢ and a generator ¢ of that group. Typically, these are
agreed during the exchange of messages or are pre-agreed; ideally, they are standardised so
that well-vetted parameters of well understood cryptographic strength are used. Alice then
chooses a value z uniformly at random from {0, 1,...,q — 1}, computes ¢ using the group
operation in GG and sends ¢* to Bob. Similarly Bob chooses a value y uniformly at random
from {0,1,...,¢q — 1}, computes ¢¥ and sends it to Alice. Now Bob can compute (¢*)¥ = ¢g*¥
while Alice can compute (¢¥)* = ¢¥* = ¢*¥. Thus the value ¢*¥ is a common value that both
Alice and Bob can compute.

An adversary Eve who eavesdrops on the communications between Alice and Bob can see ¢*
and ¢¥ and can be assumed to know the public parameters g, ¢ and a description of the group
G. This adversary is then faced with the problem of computing ¢*¥ from the triple (g, ¢*, ¢¥).
Informally, this is known as the Computational Diffie-Hellman Problem (CDHP). One way for
Eve to proceed is to try to compute x from ¢* and then follow Alice’s computation. Computing
x from g and ¢® is known as the Discrete Logarithm Problem (DLP). The CHDP is not harder
than the DLP (since an algorithm to solve the latter can be used to solve the former) but the
exact relationship is not known.

The traditional setting for DHKE is to select large primes p and ¢ such that ¢ divides p — 1 and
then take ¢ to be an element of multiplicative order ¢ modulo p; such a g generates a group of
order q. By choosing ¢ and p of an appropriate size, we can make the DLP, and presumably the
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CDHP, hard enough to attain a desired security level (see further discussion in Section 1.13).
An alternative that has largely now displaced this traditional “finite field Diffie-Hellman” setting
in applications is to use as G the group of points on an elliptic curve over a finite field. This
allows more efficient implementation and smaller key sizes at high security levels, but comes
with additional implementation pitfalls.

The raw DHKE protocol as described directly above is rarely used in practice, because it
is vulnerable to active Man-in-the-Middle (MitM) attacks, in which the adversary replaces
the values ¢* and ¢¥ exchanged in the protocol with values for which it knows the discrete
logarithms. However, the core idea of doing “multiplication in the exponent” is used repeatedly
in cryptographic protocols. MitM attacks are generally prevented by adding some form of
authentication (via MACs or digital signatures) to the protocol. This leads to the notion of
Authenticated Key Exchange (AKE) protocols — see [36] for a comprehensive treatment.

It is important also for Alice and Bob to use trusted parameters, or to verify the cryptographic
strength of the parameters that they receive, in DHKE. This can be a complex undertaking even
in the traditional setting, since a robust primality test is needed [37, 38]. In the elliptic curve
setting, it is not reasonable to expect the verification to be done by protocol participants and
we use one of a small number of standardised curves. It is also important for the respective
parties to check that the received values ¢ and ¢* do lie in the expected group, otherwise the
protocol may be subject to attacks such as the small sub-group attack. These checks may be
computationally costly.

1.8.1 From Diffie-Hellman to EIGamal

It is easy to build a KEM from the DHKE primitive. We simply set the KeyGen algorithm to
output a key pair (sk, pk) = (y, g¥) (where y is generated as in DHKE), while Encrypt selects
as in DHKE and then simply outputs the group element ¢* as the ciphertext. Finally, Decrypt
takes as input a group element /1 and outputs KDF(h¥) where KDF(-) denotes a suitable key
derivation function (as covered in Section 3.2). So the symmetric key encapsulated by group
element ¢g” is KDF (¢™V).

From this KEM, using the standard KEM-DEM construction, we obtain a variant of the EIGamal
encryption scheme [39] called the Diffie-Hellman Integrated Encryption Scheme (DHIES) and
analysed in [40]. In the elliptic curve setting, the scheme is known as ECIES. It is a particularly
neat PKE scheme with compact ciphertexts and strong security properties. It avoids many of
implementation issues associated with standardised variants of RSA.

1.9 Digital Signatures

Digital signatures schemes are used to provide authentication, integrity and non-repudiation
services. They are the asymmetric analogue of MACs. A digital signature scheme consists
of three algorithms: KeyGen, Sign and Verify. The first, KeyGen, is responsible for key
generation. It is randomised and outputs key pairs (sk, vk) where sk denotes a private key
(often called the secret key or signing key) and vk denotes a verification key. The second
algorithm Sign takes as input sk and a message m encoded as a bit-string and produces a
signature o, usually a short string of some fixed length ¢. The third algorithm is called Verify.
This algorithm is used to verify the validity of a message/signature combination (m, o) under
the key vk. So Verify takes as input triples (vk, m, o) and produces a binary output, with “1”
indicating validity of the input triple.
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The main security property required of a digital signature scheme is that it should be hard
for an adversary to come up with a new pair (m, o) which Verify accepts with key vk, even
when the adversary has already seen many pairs (my, o1), (ms, 02), . .. produced by Sign with
the matching signing key sk for messages of its choice my, ms, . ... As for MACs, the formal
security notion is called Strong Unforgeability under Chosen Message Attack (SUF-CMA for
short).

SUF-CMA digital signature schemes can be used to provide data origin authentication and
data integrity services as per MACs. In addition, they can offer non-repudiation: if Alice is
known to be associated with a key pair (sk, vk) and provided sk has not been compromised,
then Alice cannot deny having created a valid message/signature pair (m, o) which Verify
accepts. In practice, making this non-repudiation property meaningfully binding (e.g. for it to
have legal force) is difficult. See further discussion in Law & Regulation CyBOK Knowledge
Area [9].

A common pitfall is to assume that a signature o must bind a message m and a verification
key vk; that is, if Verify accepts on input (vk, m, o), then this implies that o must have been
produced using the corresponding signing key sk on message m. In fact, the SUF-CMA security
definition does not imply this, as it only refers to security under a single key pair (sk, vk) but
does not rule out the possibility that, given as input a valid triple (vk, m, o), an adversary can
concoct an alternative key pair (sk’, vk’) such that Verify also accepts on input (vk’, m, o).
This gap leads to Duplicate Signature Key Selection (DSKS) attacks, see [41] for a detailed
treatment. Such attacks can lead to serious vulnerabilities when using digital signatures in
more complex protocols.

Signature schemes can be built from the same kinds of mathematics as PKE schemes.
For example, the textbook RSA signature scheme signs a message M by computing o =
H(m)? mod N where H is a cryptographic hash function. Here d is the signing key and the
verification key is a pair (e, N = pq) such that de = 1 mod (p — 1)(¢ — 1). Then verification of a
purported signature o on a message m involves checking the equality o = H(m) mod N. The
similarity to RSA encryption, wherein signing uses the same operation of “raising to the power
d mod N” as does decryption in textbook RSA, is not coincidental. It is also a source of much
confusion, since in the case of general signature schemes, signing is not related to any PKE
decryption operation. A variation of textbook RSA in which H(m) is replaced by a randomised
encoding of the hashed message according to the PKCS#1 version 1.5 encoding scheme for
signatures [31] is widely used in practice but has significant security shortcomings and lacks
a formal security proof. The RSA-PSS encoding scheme, another randomised variant, is also
specified in [31]; it does permit a formal security proof of security [42].

The DSA scheme [43] works in the finite field Diffie-Hellman setting, while ECDSA translates
DSA to the elliptic curve setting. Notably, despite their standardised form and widespread
use, neither DSA nor ECDSA enjoys a fully satisfactory UF-CMA security proof. The EdDSA
signature scheme [44] is a variant of ECDSA that arguably enjoys better implementation
security than ECDSA. In particular, ECDSA has a randomised signing algorithm and its security
fails spectacularly (allowing recovery of the signing key) if the same random value is used to
sign two different messages; ECDSA is also vulnerable to attacks exploiting partial leakage
of the random values used during signing. By contrast, EDDSA is a deterministic scheme
and avoids the worst of these failure modes. EdDSA, being more closely based on Schnorr
signatures than ECDSA, also enjoys security proofs based on assumptions that are milder
than those needed for proving the security of ECDSA.

Interestingly, signature schemes can be built from symmetric primitives, specifically hash
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functions. The original idea goes back to Lamport [45]: to be able to sign a single bit message,
commit in the verification key to two values hy = H(M,) and hy = H(M;), where M, encodes
a zero-bit and M, encodes a one-bit. So the verification key is (hg, h;) and the signing key is
(Mo, M;). Now to sign a single bit b, the signer simply outputs M, the verification algorithm
checks the relation h, = H(M,), outputting “1” if this holds. The original Lamport scheme
is one-time use only and only signs a single-bit message. But many enhancements have
been made to it over the years bringing it to a practically usable state. A specific hash-based
signature scheme SPHINCS+ is an “alternate candidate” in the NIST PQC process for selecting
post-quantum secure schemes, see Section 1.16 for further discussion.

Many forms of signature scheme with advanced security properties have been researched
and sometimes find their way into use, especially in privacy-oriented applications. For exam-
ple, blind signatures [46] allow a party to obtain signatures on messages without the signer
knowing which message is being signed. Blind signature schemes can be used as a building
block in electronic cash and electronic voting schemes. As a second example, group signa-
tures allow one of many parties to sign messages in such a way that the verifier cannot tell
exactly which party produced the signature; meanwhile a group manager can “break” this
anonymity property. Group signatures have been used in the Trusted Computing Group's Direct
Anonymous Attestation protocol [47] to enable remote authentication of Trusted Platform
Modules whilst preserving privacy. A third example is provided by ring signatures [48], which
have functionality similar to group signatures but without the opening capability possessed by
a group manager. The cryptocurrency Monero has used ring signatures to provide anonymity.

1.10  Cryptographic Diversity

In the preceding subsections we have focused on the main algorithms and schemes that
will be encountered in today’s deployed cryptographic systems. However, a brief glance at
the literature will reveal that this is just the tip of the iceberg in terms of what cryptographic
ideas have been researched. But the vast majority of these ideas are not standardised, or
do not have readily available implementations of production quality, or are not fully fleshed
out in a way that a software engineer could easily implement them. There is a long road
from cryptography as presented in most research papers and cryptography as it needs to be
packaged for easy deployment.

1.11  The Adversary

So far, we have referred to the adversary as an abstract entity. In practice there are adversaries
with different motivations, levels of skill and available computational resources. In applied
cryptography we generally want to design cryptographic components that are usable across
a wide variety of applications, so we should be conservative in how we model the adversary,
assuming it is capable of marshalling significant resources.

At the same time, for the most part, we cannot achieve unconditional security in practical
systems, that is security against adversaries with unbounded computational power. This is
because such systems consume large amounts of key material that cannot be established
using public key methods. So we have to place some limits on the adversary’s computational
capabilities. A typical objective is to make the adversary expend work comparable to an
exhaustive key search for a block cipher like AES with 128-bit keys, in which case we speak
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of a “128-bit security level”.® Such a computational feat seems still well beyond the horizon
of even state security agencies. It's naturally hard to estimate their capabilities but, for
comparison, the number of hash computations carried out in global Bitcoin mining currently
stands at around 2°7 per second and has the electricity consumption of a small sovereign state.
At that rate, and assuming the cost of computing a hash is the same as that of testing an AES
key, an exhaustive key search would still require 2%, or about 10!, years.® If we are even more
conservative, or want a very large security margin over a long period of time (during which
large-scale quantum computers may become available), or are concerned about concrete
security in the context of multi-target attacks, then aiming for 192-bit or 256-bit security may
be attractive.

We should also be conservative in rejecting algorithms and schemes that have known weak-
nesses, even if seemingly minor. It is a truism that attacks in cryptography only get stronger
with time, either due to computational advances or the introduction of new cryptanalytic ideas.
This conservatism is in tension with the fact that replacing one cryptographic scheme with
another can be costly and time-consuming, unless cryptographic agility is built into our system
(see Section 1.14 for further discussion). We are often encumbered with legacy cryptographic
systems that cannot be easily updated, or where the system owners do not see the value in
doing so until a practical break is exhibited.

1.12  The Role of Formal Security Definitions and Proofs

We have described in the preceding subsections, in an informal manner, syntax and security
definitions for the main cryptographic schemes. These informal definitions are backed by
fully formal ones, see for example [1, 2]. The value of such definitions are manifold. Syntax
and correctness definitions enable one to be precise about what behaviour to expect from
a cryptographic scheme and to build schemes out of simpler components in a precise way.
Security definitions allow different schemes to be compared and to check whether application
requirements will be met. Strong security definitions can rule out many classes of practical
attack. A security proof — showing that a given scheme satisfies a given formal security defi-
nition under certain assumptions — then gives assurance as to the soundness of a scheme’s
design and makes it clear what assumptions security rests on.

Indeed, formal security analysis in Applied Cryptography has reached a maturity level where
there should be no need to ever deploy a cryptographic scheme or protocol that does not
come with a clear syntax and have a rigorous security proof under clearly stated assumptions.
Unfortunately, this rule is still often ignored in practice. This does leave opportunities for
post hoc analysis by researchers, either to find flaws or to provide positive security results. In
an ideal world, one would first gather all the requirements for any new scheme or protocol,
then design the system and simultaneously develop security proofs for it. In reality, one is
often trapped in a design-release-break-fix cycle. An intermediate approach of design-break-
fix-release was used for TLS 1.3. Further discussion comparing these different models of
cryptographic development can be found in [49].

8]t is difficult to be precise about concrete security levels. Issues arise because of different cost models for
computation, e.g. counting the unit of cost as being an AES operation versus a single CPU) instruction; on some
platforms, an AES round operation can be performed via a single CPU instruction! One also needs to account
for the use of CPUs, GPUs and special purpose hardware for cryptanalysis, such as might be within the reach
of a well-funded security agency.

%It is worth noting that the sun is expected to consume the earth in a super nova in about 10'° years, assuming
it is not swallowed by a black hole first.
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Notice also that such proofs are not unconditional, unlike most proofs in mathematics. A
typical proof shows that a given scheme or protocol satisfies a particular security definition
under some assumptions. Such proofs are often stated in a reductive fashion (i.e. as with
reductions from complexity theory): given any adversary in the form of an arbitrary algorithm
that can break the scheme according to the security definition, the proof shows that the
adversary A can be used as a subroutine in building an algorithm B that can break one of the
components of the scheme (e.g. find a collision in a hash function) or in building a different
algorithm C that can break some underlying hardness assumption (e.g. solve the IFP for
moduli n with distribution given by the KeyGen algorithm of a PKE scheme). For Applied
Cryptography, concrete reductions are to be preferred. In our example, these are ones in
which in which we eschew statements describing B or C' as simply being “polynomial time”
but in which the resources (computation, storage, etc) consumed by the adversary A (and
its advantage in breaking the scheme) are carefully related to those of algorithms B and C.
Furthermore, it is preferable that proofs should be tight. That is, we would like to have proofs
showing a close relationship between the resources consumed by and advantage of adversary
A on the one hand, and the resources consumed by and advantages of algorithms B and
C constructed from A on the other. The result of having a tight proof is that the scheme’s
security can be meaningfully related to that of its underlying components. This is not always
achieved, resulting in proofs that may be technically vacuous.

For complex cryptographic schemes and protocols, the security statements can end up being
difficult to interpret, as they may involve many terms and each term may relate to a different
component in a non-trivial way. Such security statements typically arise from proofs with
many hand-written steps that can hide errors or be difficult for humans to verify. Typically
though, such proofs are modularised in a sequence of steps that can be individually checked
and updated if found to be in error. A popular approach called “game hopping” or “sequences
of games”, as formalised in [50, 51] in two slightly different ways, lends itself to the generation
of such proofs. An alternative approach to taming the complexity of proofs comes from the
use of formal and automated analysis methods, see Formal Methods for Security CyBOK
Knowledge Area [52] for an extensive treatment.

The proofs are usually for mathematically tractable pseudo-code descriptions of the schemes,
not for the schemes as implemented in some high-level programming language and certainly
not for schemes as implemented in a machine language. So there is a significant gap in terms
of what artefacts the proofs actually make statements about. Researchers have had some
success in developing tools that can prove the security of running code and some code of this
type has been deployed in practice; for a good overview, see [53]. Furthermore, a security proof
only gives guarantees concerning the success of attacks that lie within the scope of the model
and says nothing about what happens beyond that. For example, an adversary operating
in the real world may have greater capabilities than are provided to it in the security model
used for proving security. We shall return to these issues in the next section on cryptographic
implementation.

A sustained critique of the provable security approach has been mounted by Koblitz and
Menezes in their “Another look at ...” series of papers, see [54] for a retrospective. This
critique has not always been welcomed by the theoretical cryptography research community,
but any serious field should be able to sustain, reflect on and adapt to such critique. In our view,
the work of Koblitz and Menezes has helped to bridge the gap between theory and practice
in cryptography, since it has helped the community to understand and begin to address the
limitations of its formal foundations.
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1.13  Key Sizes

We have discussed why aiming for the 128-bit security level makes sense — it provides
a sufficient margin of security in almost every conceivable circumstance, at least within
the realm of conventional computing. Another reason is that except in specific application
domains such as constrained environments, it is efficiently achievable. In other words, there
is no good reason not to aim this high.

Algorithms and their keys do have finite lifetimes. Advances in cryptanalysis may render once
secure algorithms or key sizes insecure. Moreover, the longer an individual key is in use, the
more likely it is to become compromised. These issues for individual keys are discussed in
more detail in Section 3. Changing algorithms and key sizes can be inconvenient and costly.
This provides arguments in favour of making conservative choices in the first place.

The target security level of 128 bits brings efficiency considerations into play, especially for
asymmetric algorithms. For example, it is estimated that forcing a direct attack on the IFP to
break RSA cost 2!'2® effort would require the use of a 3072-bit modulus [55, Table 2].° This is
because of the sub-exponential complexity of the best known algorithm for solving the IFP (the
Number Field Sieve). Such a modulus size is large enough to significantly slow down the basic
RSA operations (in the general case, the complexity of modular exponentiation grows with the
cube of the modulus bit length). The same is true for finite-field DLP-based cryptosystems
(e.g. Diffie-Hellman and EIGamal). By contrast, because only square-root speed-ups exist for
the ECDLP, we can escape with much smaller parameters when targeting 128-bit security for
ECC: a curve over a 256-bit prime field suffices. So, for the standard 128-bit security level,
ECC-based schemes become more efficient than IFP-based or finite field DLP-based ones.
The contrast is even more stark if one targets a 256-bit security level: there 15360-bit RSA
public keys are recommended by NIST [55, Table 2], while the required size for ECC only moves
up to 512 bits.

These considerations explain the recent rise in popularity of ECC and may lead to the slow
death of RSA-based cryptosystems. The US National Security Agency (NSA) has recom-
mended organisations who have not already done so to not make a significant expenditure to
transition from RSA to ECC, but to wait for post-quantum algorithms (i.e. algorithms that aim
to be secure against large-scale quantum computers) that should result from the on-going
NIST standardisation effort.™

1.14  Cryptographic Agility

Occasionally it is necessary in some system or protocol to exchange one algorithm for another
in the same class. One reason might be that the original algorithm is broken. The history of
hash functions provides notable examples, with once secure hash functions like MD5 now
being considered trivially insecure. Another reason might be that a more efficient alternative
becomes available — consider the switch from RSA-based algorithms to ECC-based ones
discussed in Section 1.13. A third reason is the introduction of a technology shift — for example,
a precautionary shift to post-quantum algorithms as a hedge against the development of
large-scale quantum computers.

This exchange is made easier if the system or protocol is cryptographically agile — that is,

190ther estimates are available, see summary at https://www.keylength.com/en/, but all estimates are in the
same ballpark.
See https://apps.nsa.gov/iad/programs/iad-initiatives/cnsa-suite.cfm.
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if it has an in-built capability to switch one algorithm for another and/or from one version
to another. This facility is enabled in secure communications protocols like IPsec, SSH and
SSL/TLS through cipher suite and version negotiation: the algorithms that will be used and the
protocol version are negotiated between the participating parties during the protocol execution
itself. Adding this facility to an already complex protocol may introduce security vulnerabilities,
since the negotiation mechanisms themselves may become a point of weakness. An example
of this is downgrade attacks in the context of SSL/TLS, which have exploited the co-existence
of different protocol versions [56] as well as support for deliberately weakened “EXPORT”
cipher suites [57, 58]. Cryptographic agility may also induce software bloat as there is an
incipient temptation to add everyone’s favourite algorithm.

At the opposite end of the spectrum from cryptographic agility lies systems (and their design-
ers) that are cryptographically opinionated, that is, where a single set of algorithms is selected
and hard-coded. WireGuard [59] is an example of such a protocol: it has no facility to change
algorithms and not even a protocol version field.

There is a middle-way: support cryptographic agility where possible, but with tight control
over which algorithms and legacy versions are supported.

For more information on cryptographic agility, especially in the post-quantum setting, we
recommend [60].

1.15 Development of Standardised Cryptography

Standardisation plays an important role in cryptography. Standards provide a suite of carefully
vetted primitives, higher-level protocols and cryptographic best practices that can be used by
non-expert developers. They can also help to ensure interoperability, not only by providing
complete specifications of algorithms but also by helping to identify a smaller set of algorithms
on which implementers can focus.

There are multiple standardisation bodies producing cryptographic standards. Most prominent
are ISO/IEC, the US National Institute for Standards and Technology (NIST) and the Internet
Engineering Task Force (IETF). ISO/IEC and NIST cryptographic standards tend to focus
(though not exclusively) on lower-level primitives, while IETF works more at the protocol level.

The three bodies work in quite different ways.

ISO/IEC uses a closed model, where country representatives come together to produce
standards through a multi-stage drafting and voting process. ISO/IEC working groups can
and do invite external experts to attend their meetings and provide input.

NIST employees directly write some of their standards, with open calls for comment from
the wider community. NIST also runs cryptographic competitions in which external teams of
researchers compete to meet a design specification. The AES and SHA-3 algorithms were
produced in this way. Although NIST is a US federal government body, its standards tend to
become de facto international standards. Its competitions are also entered by teams from all
around the world and the winners are frequently not from the US.

The IETF model is completely open. Anyone can join an IETF mailing list and join a technical
discussion or, given financial resources, attend IETF meetings where its standards are devel-
oped. For a document to become an IETF standard (technically, a “Request for Comments” or
RFC), the key requirement is “rough consensus and running code”. Multiple levels of review
and consensus-building are involved before a draft document becomes an RFC. The Internet
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Research Task Force (IRTF) is a sister-organisation to the IETF and its Crypto Forum Research
Group (CFRG)' acts as a repository of expertise on which the IETF can draw. CFRG also
produces its own RFCs.

Standards bodies are not perfect. Too many bodies — and standards produced by them — can
lead to cryptographic proliferation, which makes inter-operation harder to achieve.They can
also lead to subtle incompatibilities between different versions of the same algorithms. Even
completely open standards bodies may fail to gather input from the right set of stakeholders.
Standards bodies can act prematurely and standardise a version of a scheme that is later
found to be deficient in some way, or where improved options only emerge later. Once the
standard is set, in the absence of serious attacks, there may be little incentive to change it.
The history of PKE schemes based on RSA illustrates this well (see Section 1.7.3): RSA with
PKCS#1 v1.5 encoding has led to many security issues and the introduction of attack-specific
work-arounds; RSA with PKCS#1 v2.1 encoding (RSA-OAEP) has been standardised for many
years but has not become widely used; meanwhile even better ways of turning RSA into a
KEM or a PKE have been discovered but have not become mainstream.

Standards bodies are also subject to “regulatory capture”, whereby groups representing
specific national or commercial interests have the potential to influence the work of a standards
body. For example, NSA had a role in the design of the DES algorithm [61, pp. 232-233], and, on
another occasion, supplied the overall design of the Dual_EC_DBRG pseudorandom generator
that was specified in a NIST standard [62], along with certain critical parameters [63, p. 17]. In
such contexts, transparency as to the role of any national or commercial stakeholders is key.
For instance, NIST have reviewed their cryptographic standardisation process [63] to increase
transparency and decrease reliance on external organisations.

Other standards bodies relevant for cryptography include ETSI (which is active in post-quantum
cryptographic standardisation, as discussed immediately below) and IEEE (which developed
an early series of standards for Public Key Cryptography, IEEE P1363).

1.16  Post-quantum Cryptography

Large-scale quantum computers, if they could be built, would severely threaten RSA-based
and discrete-log-based cryptographic algorithms in both finite field and elliptic curve settings.
This includes almost all of the Public Key Cryptography in use today. This is because of Shor’s
algorithm [64], a quantum algorithm that leads to polynomial-time algorithms for both IFP and
DLP in both finite field and the elliptic curve settings. This stands in strong contrast to the
situation with the best known classical, non-quantum, algorithms for these problems which are
super-polynomial, but sub-exponential for IFP and the DLP in finite fields (and fully exponential
for the DLP in the elliptic curve setting). Quantum computers also have some consequences
for symmetric algorithms due to Grover’s algorithm [65], which in theory provides a quadratic
speed-up for exhaustive key search. However, the impact there is less substantial — as a rule
of thumb, doubling the key size is sufficient to thwart quantum attacks.

Post-quantum cryptography (PQC) refers to the study of cryptographic algorithms and schemes
that are plausibly secure against large-scale quantum algorithms. Such algorithms and
schemes are still classical: they are designed to run on classical computers. We use the term
“plausibly” here, since the field of quantum algorithms is still young and it is hard to anticipate
future developments. Note that PQC is sometimes referred to as quantum-safe, quantum

2See https://irtf.org/cfrg.
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resistant, or quantum-immune cryptography. PQC has been an active but niche research field
for many years.

In late 2016, in response to projected progress in scaling quantum computing and recognising
the long transition times needed for introducing new cryptographic schemes, NIST launched
a process to define a suite of post-quantum schemes.” The focus of the NIST process
is on KEMs and digital signature schemes, since the threat quantum computing poses for
symmetric schemes is relatively weaker than it is for public key schemes. At the time of
writing in mid 2021, the process (actually a competition) has entered its third round and a set
of finalist schemes has been selected, alongside a set of alternate, or back-up schemes. The
NIST process should result in new NIST standards in the mid 2020s.

It will be a significant challenge to integrate the new schemes into widely-used protocols and
systems in a standardised way. This is because the NIST finalists have quite different (and
usually worse) performance profiles, in terms of key sizes, ciphertext or signature size and
computation requirements, from existing public key schemes. Work is underway to address
this challenge in IETF and ETSI and some deployment experiments have been carried out for
the TLS protocol by Google and CloudFlare.™ Itis likely that post-quantum schemes will initially
be deployed in hybrid modes alongside classical public key algorithms, to mitigate against
immaturity of implementation and security analysis. The recent deployment experiments
used hybrid modes.

1.17  Quantum Key Distribution

PQC should be distinguished from quantum cryptography, which attempts to harness quan-
tum effects to build secure cryptographic schemes. The most mature branch of quantum
cryptography is Quantum Key Distribution (QKD). A QKD protocol typically uses polarised
photons to transmit information from one party to another, in such a way that an eavesdropper
trying to intercept the signals will disturb them in a detectable way. The two parties can
engage in a resolution protocol over a classical, authenticated channel that leads to them
agreeing on keying material about which even a computationally unbounded adversary has
minimal information.

QKD is often marketed as offering unconditional security assuming only the correctness of
the known laws of physics. In terms of commercial deployment, QKD faces severe challenges.
The main one is that it does not solve a problem that we cannot solve satisfactorily using
other means. Moreover, those means are already commoditised. Subsidiary issues are: the
need for expensive special-purpose hardware, the need for an authentic channel (if we have
such a channel, then we could use it to distribute public keys instead), limitations on range
that stand in opposition to standard end-to-end security requirements, limitations on the rate
at which secure keys can be established (leading to hybrid QKD/classical systems, thereby
obviating any unconditional security guarantees), and the fact that theoretical guarantees of
unconditional security are hard to translate into practice.

3See https://csrc.nist.gov/projects/post-quantum-cryptography.
4See https://blog.cloudflare.com/the-tls-post-quantum-experiment.
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1.18 From Schemes to Protocols

In this section, we have focused on low-level cryptographic algorithms and schemes. In real
systems, these are combined to build more complex systems. Often, the result is a collection
of interactive algorithms, commonly called a cryptographic protocol. An overall cryptographic
system may use a number of sub-systems and protocols. We will look briefly at a few specific
systems in Section 5. Here, we restrict ourselves to general comments about such systems.

First, to reiterate from Section 1.12, even complex cryptographic protocols and systems, and
their security properties, are amenable to rigorous definitions and analysis. The approach
is to analyse the security of such systems in terms of simpler, easier to analyse security
properties of their components. We have seen a simple example of this in our treatment of
AE Section 1.6 in, where a generic composition approach allows the AE(AD) security of the
EtM composition to be established based on the IND-CPA security of its “E” component and
the SUF-CMA security of its “M” component.

This process could be carried to the next level. Consider, for example, building a unidirectional
secure channel protocol, assuming a suitable symmetric key is already in place at the sender
and receiver. First we need a definition of what functionality and security such a protocol
should provide. For example, we could demand integrity and confidentiality of plaintexts sent
and that an adversary that tries to reorder, drop, or replay ciphertexts can be detected. Suitable
formal definitions capturing these requirements can be found in [66].

Then we can try to realise the unidirectional secure channel protocol from a nonce-based
AEAD scheme and prove that its security follows from (or can be reduced to) the standard
security definition for AEAD security. Here, a candidate construction is to make the sender
stateful, by having it maintain a counter for the number of plaintexts encrypted. That counter
is encoded as the nonce for the AEAD scheme. The receiver maintains an independent copy
of the counter, using it as the nonce when performing decryption. Intuitively, confidentiality
and integrity for individual ciphertexts in the secure channel follows immediately from the
AEAD security definition. Meanwhile, an adversary tampering with the order of ciphertexts will
lead to the receiver using the wrong counter value when decrypting, which leads to an error by
the integrity properties of the AEAD scheme. These ideas can and should be formalised.

We can go even further and build a bidirectional secure channel protocol from a unidirectional
one. Here, additional considerations arise from the possibility of reflection attacks and whether
the channel should preserve the joint ordering of ciphertexts in both directions. We can also
consider secure channel protocols in which the protocol recovers from accidental packet
losses or reordering arising from the underlying network transport, or where such errors are
fatal and lead to termination of the protocol. We can try to remove the assumption of having
pre-established symmetric keys by bringing a key exchange component into play as a separate
or integrated sub-protocol.

Again, all these aspects can be formally defined and analysed. However, the challenges in
dealing with the complexity inherent in such systems should already be apparent, especially
when the models and proofs are all hand-generated. For this reason, it is common to make
some kind of “cryptographic core” of a system the focus of analysis and to abstract away
many details. For example, a typical analysis will completely ignore all key management
aspects, including PKI (which we discuss in Section 3.8). Instead, it is simply assumed that all
keys are authentic and where they need to be, as we did in the example above. However, these
details are relevant to the overall security of the system. So too much abstraction brings the
risk of missing important facets or making assumptions that are not warranted in practice.
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It is then important to be clear about what is — and is not — being formally specified and
analysed.

An alternative approach to taming complexity is to use mechanised tools, letting a computer
do the heavy lifting. However, the currently available tools are quite difficult to use and
require human intervention and, more often than not, input from the tool designer. One of the
more successful approaches here is to use a symbolic model of the cryptographic primitives
rather than a computational one as we have been considering so far. This provides a level of
abstraction that enables more complex protocols to be considered, but which misses some
of the subtleties of the computational approach. Symbolic approaches to formal analysis are
covered in more detail in Formal Methods for Security CyBOK Knowledge Area [52].

2 CRYPTOGRAPHIC IMPLEMENTATION

[25, 67, 68, 69]

So far, we have focused on describing cryptographic algorithms and schemes in terms of
abstract algorithms or in mathematical terms. In research papers, new schemes are usually
presented as pseudo-code. Of course, this all needs to be translated into actual code (or
hardware) for practical use. In this section, we briefly discuss some of the considerations
that arise in this process.

2.1 Cryptographic Libraries

From the perspective of the developer, cryptography is usually consumed via a cryptographic
library, that is, a collection of algorithms and schemes accessed through an API. Many different
cryptographic libraries are available, in many different programming languages, though ‘C’
and Java libraries are most common. Different libraries have different licence restrictions,
though many are available under non-restrictive “open source” licences of various kinds.

Some libraries (e.g. OpenSSL'™ or BouncyCastle'®) are richly featured, supporting many differ-
ent cryptographic schemes and processes and can be used across a wide range of applications.
Others are much more restrictive and designed to support only certain use cases. In part, this
reflects the taste of the libraries’ authors, but also age and available development resources.

Some libraries are better maintained than others. For example, prior to the Heartbleed vulner-
ability (discussed in Section 3.5), OpenSSL had fallen into a state of some ossification and
disrepair. Consequently, Google and OpenBSD separately decided to “fork” OpenSSL, that is
to create entirely separate development branches of the library, resulting in the BoringSSL
and LibreSSL libraries. Heartbleed also resulted in a broader realisation of how important
OpenSSL was to the whole Internet ecosystem. A sequence of reforms of the OpenSSL project
followed and today the project is in much better shape, with a larger team of core developers,
better funding and more active development.

Some cryptographic libraries are developed by professional software engineers with consid-
erable experience in avoiding some of the pitfalls we discuss in this section and elsewhere.
Others are not. In many cases, the developers are working on a volunteer basis; most of

Shttps://www.openssl.org/
®https://www.bouncycastle.org/
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OpenSSls code development is done in this way. As part of its support model, a crypto-
graphic library should have a clear process for notifying its maintainers of bugs and security
vulnerabilities. The library’s developers should commit to address these in a timely manner.

2.2 APl Design for Cryptographic Libraries

The API that a cryptographic library presents to its consumers is critical. There is a delicate
balance to be struck between flexibility (allowing developers to use the library in a wide variety
of ways, thereby making it more useful) and security (restricting the APl in an effort to prevent
developers from using the library in insecure ways). Consider the problem of providing an
API for symmetric encryption. Should the library allow direct access to a raw block cipher
capability? Possibly, since some developers may need that functionality at some point. But
also perhaps not — since it's probable that an inexperienced developer will use the block
cipher in ECB mode to perform bulk encryption, with predictably insecure results.” This simple
example is not an isolated one. It could be replaced, for example, with one involving nonces
in an API for AEAD, or one involving the selection of parameters for a primality test.

Green and Smith [67] present ten principles for API design for cryptographic libraries. Their
principles are derived empirically from their analysis of an ad hoc collection of examples
and from interviews with developers. More systematic approaches, relying on standard
methodologies from social science, have followed, see [70] for an illustrative example of this
line of work.

Green and Smith observe that developers’ mistakes affect many users, so it makes sense to
focus on them and not the actual end users, who are typically the target of usable security
research. They point out that cryptographic libraries appear to be uniquely prone to misuse by
developers, with even subtle misuse leading to catastrophic security failures. They also argue
that as the use of cryptography in applications becomes more common, so cryptographic
libraries are increasingly used by developers without cryptographic expertise.

Green and Smith’s ten principles can be summarised as follows:

1. Integrate cryptographic functionality into standard APIs; that is, hide cryptography from
developers where possible.

2. Make APIs sufficiently powerful to satisfy both security and non-security requirements.
The argument here is that developers ultimately don’t have a security goal in mind
and satisfying their actual requirements, ascertained through interviewing them, will
encourage them to use an API rather than writing their own cryptographic code.

3. Design APIs that are easy to learn without cryptographic expertise.
4. Don't break the developer’s paradigm (or mental model) of what the API should look like.

5. Design APIs that are easy to use even without reading the documentation (since devel-
opers will not read it!).

6. Create APIs that are hard to misuse — visible errors should result from incorrect usage.
7. APls should have safe and unambiguous defaults.

8. APIs should have testing modes, because otherwise developers will hack the API to turn
off security during development to ease testing, but then may fail to properly remove

7See https://blog.filippo.io/the-ech-penguin/ for a vivid illustration of the limitations of ECB mode.
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their hacks. An issue here is that the resulting code could be released with the testing
mode still enabled, but one would hope that regular software assurance would detect
this before release.

9. Code that uses the API should be easy to read and maintain. For example, iteration
counts for password hashing should not be set by a developer via the API, but instead
internally in the library. One issue here is that the internal defaults may be overkill and
hurt performance in some use cases. This relates to the tension between flexibility and
security.

10. The API should assist with or handle end user interaction, rather than leave the entire
burden of this to the developer using the API. Here, error messages are highlighted
as a particular concern by Green and Smith: the API and the library documentation
should help developers understand what failure modes the library has, what the security
consequences of these are and how the resulting errors should be handled by the calling
code.

For additional references and discussion, see Human Factors CyBOK Knowledge Area [71].

2.3 Implementation Challenges

Having discussed libraries and their APls, we now turn to challenges arising in securely
implementing the algorithms and schemes within these libraries.

The main problem is to translate a purely mathematical or pseudo-code description of a
scheme (the typical unit of analysis in formal security proofs arising in research papers) into
running code on a real computer in such a way that the abstraction level involved in the security
analysis is still properly respected by the running code. Put another way, the challenge is to
ensure there are no mechanisms through which sensitive information can leak that are not
already anticipated and eliminated by the security analysis. There are multiple ways in which
such leakage can arise. We consider a representative selection here.

2.3.1 Length Side Channels

As we noted in Section 1.6, the usual security goal of an AEAD scheme does not guarantee that
the length of plaintexts will be hidden. Indeed, AEAD schemes like AES-GCM make it trivial to
read off the plaintext length from the ciphertext length. However, it is clear that length leakage
can be fatal to security. Consider a simplistic secure trading system where a user issues only
two commands, “BUY" or “SELL”", with these commands being encoded in simple ASCII and
sent over a network under the protection of AES-GCM encryption. An adversary sitting on the
network who can intercept the encrypted communications can trivially infer what commands
a user is issuing, just by looking at ciphertext lengths (the ciphertexts for “SELL" will be one
byte longer than those for “BUY"). More generally, attacks based on traffic analysis and on
the analysis of metadata associated with encrypted data can result in significant information
leaking to an adversary.
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2.3.2 Timing Side Channels

The amount of time that it takes to execute the cryptographic code may leak information about
the internal processing steps of the algorithm. This may in turn leak sensitive information,
e.g. information about keys. The first public demonstration of this problem was made by
Kocher [68] with the attacker having direct access to timing information. Later it was shown
that such attacks were even feasible remotely, i.e. could be carried out by an attacker located
at a different network location from the target, with timing information being polluted by
network noise [72].

Consider for example a naive elliptic curve scalar multiplication routine which is optimised
to ignore leading zeros in the most significant bits of the scalar. Here we imagine the scalar
multiplication performing doubling and adding operations on points, with the operations being
determined by the bits of the scalar from most significant to least significant. If the adversary
can somehow time the execution of the scalar multiplication routine, it can detect cases where
the code finishes early and infer which scalars have some number of most significant bits
equal to zero. Depending on how the routine is used, this may provide enough side channel
information to enable a key to be recovered. This is the case, for example, for the ECDSA
scheme, where even partial leakage of random values can be exploited. Recent systematic
studies in this specific setting [73, 74] show that timing attacks are still pertinent today.

2.3.3 Error Side Channels

Errors arising during cryptographic processing can also leak information about internal pro-
cessing steps. Padding oracle attacks on CBC mode encryption, originally introduced in [24],
provide a classic and persistent example of this phenomenon. CBC mode uses a block cipher
to encrypt plaintext data that is a multiple of the block cipher’s block length. But in applications,
we typically want to encrypt data of arbitrary length. This implies that data needs to be padded
to a block boundary of the block cipher before it can be encrypted by CBC mode. Vaudenay
observed that, during decryption, this padding needs to be removed, but the padding may be
invalidly formatted and the decryption code may produce an error message in this case. If the
adversary can somehow observe the error message, then it can infer something about the
padding’s validity. By carefully constructing ciphertexts and observing errors arising during
their decryption, an adversary can mount a plaintext recovery attack via this error side channel.

In practice, the error messages may themselves be encrypted, but then revealed via a sec-
ondary side channel, e.g. a timing side channel (since an implementation might abort further
processing once a padding error is encountered). For examples of this in the context of
SSL/TLS and which illustrate the difficulty of removing this class of side channel, see [75, 25].

2.3.4 Attacks Arising from Shared Resources

The cryptographic code may not be running in perfect isolation from potential adversaries.
In particular, in modern CPUSs), there is a memory cache hierarchy in which the same fast
memory is shared between different processes, with each process potentially overwriting
portions of the cache used by other processes. For example, in a cloud computing scenario,
many different users’ processes may be running in parallel on the same underlying hardware,
even if they are separated by security techniques like virtualisation. So an attacker, running in
a separate process in the CPU, could selectively flush portions of the cache and then, after
the victim process has run some critical code, observe by timing its own cache accesses,
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whether that part of the cache has been accessed by the victim process or not. If the victim
process has a pattern of memory access that is key-dependent, then this may indirectly
leak information about the victim'’s key. This particular attack is known as a Flush-+Reload
attack and was introduced in [76]; several other forms of cache-based attack are known. The
possibility of such attacks was first introduced in [77]; later such attacks were shown to be
problematic for AES in particular [78].”® In the last few years, researchers have had a field
day developing cache-based and related micro-architectural attacks against cryptographic
implementations. These attacks arise in general from designers of modern CPUs making
architectural compromises in search of speed.

2.3.5 Implementation Weaknesses

More prosaically, cryptographic keys may be improperly deleted after use, or accidentally
written to backup media. Plaintext may be improperly released to a calling application before
its integrity has been verified. This can occur in certain constructions where MAC verification
is done after decryption and also in streaming applications where only a limited-size buffer is
available for holding decrypted data.

2.3.6 Attacks Arising from Composition

A system making use of multiple cryptographic components may inadvertently leak sensitive
information through incorrect composition of those components. So we have leakage at a
system level rather than directly from the individual cryptographic components. Consider the
case of Zcash,” an anonymous cryptocurrency. Zcash uses a combination of zero-knowledge
proofs, a PKE scheme and a commitment scheme in its transaction format. The PKE scheme
is used as an outer layer and is anonymous, so the identity of the intended recipient is shielded.
How then should a Zcash client decide if a transaction is intended for it? It has to perform a
trial decryption using its private key; if this fails, no further processing is carried out. Otherwise,
if decryption succeeds, then further cryptographic processing is done (e.g. the commitment
is checked). This creates a potentially observable difference in behaviour that breaks the
intended anonymity properties of Zcash [79]. The PKE scheme used may be IND-CCA secure
and anonymous, but these atomic security properties do not suffice if the overall system’s
behaviour leaks the critical information.

2.3.7 Hardware Side Channels

Cryptography is often implemented directly in hardware. For example, hardware acceleration
of cryptographic functions was once common, both in low-cost environments such as pay-
ment cards and in higher-end applications, such as server-side SSL/TLS operations. Today,
Internet-of-Things (loT) deployments may use hardware components to implement expensive
cryptographic functions. Hardware-based cryptography can also be found in Trusted Platform
Modules (TPMs) as specified by the Trusted Computing Group and in systems like Intel Soft-
ware Guard eXtensions (SGX) and ARM Trustzone. As noted in Section 1.3, modern CPUs)
have instructions to enable high performance implementation of important cryptographic
algorithms like AES.

'8See also https://cr.yp.to/antiforgery/cachetiming-20050414.pdf for contemporaneous but unpublished work.
19See https://z.cash/.
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There are additional sources of leakage in hardware implementations of cryptography. For
example, an attacker against a smartcard might be able to observe how much power the
smartcard draws while carrying out its cryptographic operations at a fine-grained time resolu-
tion and this might reveal the type of operation being carried out at each moment in time. To
give a more specific example, in an implementation of RSA decryption using a basic “square
and multiply” approach, the two possible operations for each private key bit — either square or
square & multiply — could consume different amounts of power and thus the private key can
be read off bit-by-bit from a power trace. The electromagnetic emissions from a hardware
implementation might also leak sensitive information. Even sonic side channels are possible.
For example the first working QKD prototype [80] reportedly had such a side channel, since an
observer could listen to the optical components physically moving and thereby learn which
polarisation was being used for each signal being sent. This highlights just one of the many
challenges in achieving unconditional security according to the laws of physics.

For a fuller discussion of hardware side channels, we refer the reader to Hardware Security
CyBOK Knowledge Area [12].

2.3.8 Fault Attacks

Hardware implementations may also be vulnerable to fault or glitch attacks, where an error
is introduced into cryptographic computations at a precise moment resulting in leakage of
sensitive data (typically keys) via the output of the computation. The first such attack focused
on implementations of RSA using the CRT [81]. A more recent incarnation of this form of
attack called Rowhammer targets the induction of faults in memory locations where keys are
stored by repeatedly writing to adjacent locations [82].

2.4 Defences

General techniques for defending against cryptographic implementation vulnerabilities (as
opposed to weaknesses in the algorithms and schemes themselves) come from the fields
of software and hardware security and are well-summarised in [83, 12]. Indeed, it can be
argued that conventional software security may be more important for cryptographic code
than for other forms of code. For hardware, blinding, masking, threshold techniques and
physical shielding are commonly used protections. For software, common techniques include
formal specification and verification of software and hardware designs, static and dynamic
analysis of code, fuzzing, information flow analysis, the use of domain-specific languages for
generating cryptographic code and the use of strong typing to model and enforce security
properties. Most of the software techniques are currently supported only by experimental
tools and are not at present widely deployed in production environments. Additionally, the
objects they analyse — and therefore the protections they offer — only extend so far, down to
code at Instruction Set Architecture level at best.

Length side channels can be closed by padding plaintexts to one of a set of predetermined
sizes before encryption and by adding cover or dummy traffic. Secure communications
protocols like SSL/TLS and IPsec have features supporting such operations, but these features
are not widely used in practice.

A set of coding practices aim to achieve what is loosely called Constant-Time Cryptography.
The core idea is to remove, through careful programming, any correlation between the values
of sensitive data such as keys or plaintexts, and variables that can be observed by an adversary
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such as execution time. This entails avoiding, amongst other things, key-dependent memory
accesses, key-dependent branching and certain low-level instructions whose running time
is operand-dependent. It may also require writing high-level code in particular ways so as to
prevent the compiler from optimising away constant-time protections.?° Writing constant-time
code for existing algorithms is non-trivial. In some cases, cryptographic designers have taken
it into account from the beginning when designing their algorithms. For example, Bernstein’s
ChaCha20 algorithm?' does so, while using certain coordinate systems makes it easier to
achieve constant-time implementation of elliptic curve algorithms [84].

2.5 Random Bit Generation

Cryptography relies on randomness in a crucial way. Most obviously, random bits are needed
for symmetric keys, and for more complex key generation algorithms in the public key setting.
But to achieve standard security notions such as IND-CPA security, PKE schemes need to have
a randomised encryption algorithm. Fortunately, in the nonce-based AE setting, we can avoid
the need for randomness during encryption. Some signature schemes have a randomised
signing algorithm. This is the case for RSA PSS, DSA and ECDSA, for example.??

A failure to supply suitable randomness to such algorithms can have disastrous consequences.
We already remarked on this in the context of DSA and ECDSA in Section 1.9. We will discuss
examples for asymmetric key pair generation in Section 3.4.

So our cryptographic algorithms need to have access to “strong” random bit sources. To be
generally applicable, such a source should offer a plentiful supply of bits that are independent
and uniformly distributed, such that the adversary has no information about them. Specific
algorithms may reveal their random bits, but general usage requires that they remain hidden.

In an ideal world, every computing device would be equipped with a True Random Bit Generator
(TRBG)?® whose output is hidden from potential adversaries. In practice, this has proven to be
very difficult to achieve. Intel and AMD CPUs) do offer access to the post-processed output of
a TRBG via the RDRAND instruction. However, the designs of these TRBGs are not fully open.

In the absence of a TRBG, common practice is for the operating system to gather data from
weak, local entropy sources such as keyboard timings, disk access times, process IDs and
packet arrival times, to mix this data together in a so-called entropy pool and then to extract
pseudo-random bits from the pool as needed using a suitable cryptographic function (a
Pseudo-Random Number Generator, PRNG, using a seed derived from the entropy pool).
Designs of this type are standardised by NIST in [62]. They are also used in most operating
systems but with a variety of ad hoc and hard-to-analyse constructions. Mature formal security
models and constructions for random bit generators do exist, see [69] for a survey. But this
is yet another instance where practice initially got ahead of theory, then useful theory was
developed, and now practice is yet to fully catch up again.

It is challenging to estimate how much true randomness can be gathered from the aforemen-
tioned weak entropy sources. In some computing environments, such as embedded systems,
some or all of the sources may be absent, leading to slow filling of the entropy pool after a
reboot — leaving a “boot time entropy hole” [86, 87]. A related issue arises in Virtual Machine

20An introduction to the paradigm can be found at https:/www.bearssl.org/constanttime.html.
21See https://cr.yp.to/chacha.html.

22But signature schemes can always be derandomised by using a standard method, see [85].
Z3Also called a True Random Number Generator (TRNG).
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(VM) environments, where repeated random bits may arise if they are extracted from the
Operating System too soon after a VM image is reset [88].

There has been a long-running debate on whether such random bit generators should be
blocking or non-blocking: if the OS keeps a running estimate of how much true entropy remains
in the pool as output is consumed, then should the generator block further output being taken
if the entropy estimate falls below a certain threshold? The short answer is no, if we believe
we are using a cryptographically-secure PRNG to generate the output, provided the entropy
pool is properly initialised with enough entropy after boot. This is because we should trust our
PRNG to do a good job in generating output that is computationally indistinguishable from
random, even if not truly random. Some modern operating systems now offer an interface to
a random bit generator of this “non-blocking-if-properly-seeded” type.

3 KEY MANAGEMENT

[3, 55, 89, 90]

Cryptographic schemes shift the problem of securing data to that of securing and managing
keys. Therefore no treatment of applied cryptography can ignore the topic of key management.
As explained by Martin [3, Chapter 10], cryptographic keys are in the end just data, albeit of a
special and particularly sensitive kind. So key management must necessarily involve all the
usual processes involved in Information Security management, including technical controls,
process controls and environmental controls.

An introductory treatment of key management can be found in the aforementioned [3, Chapter
10]. A more detailed approach can be found in the NIST three part series [55, 89, 90].

3.1 The Key Life-cycle

Keys should be regarded as having a life-cycle, from creation all the way to destruction.

Keys first need to be generated, which may require cryptographically secure sources of
randomness, or even true random sources, in order to ensure keys have sufficient entropy to
prevent enumeration attacks.

Keys may then need to be securely distributed to where they will be used. For example, a
key may be generated as part of a smartcard personalisation process and injected into a
smartcard from the personalisation management system through a physically secure channel;
or a symmetric key for protecting a communication session may be established at a client
and server in a complex cryptographic protocol, perhaps with one party choosing the session
key and then making use of PKE to transport it to the other party.

Keys may also be derived from other keys using suitable cryptographic algorithms known as
Key Derivation Functions.

Keys need to be stored securely until they are needed. We discuss some of the main key
storage options in more detail in the sequel.

Then keys are actually used to protect data in some way. It may be necessary to impose limits
on how much data the keys are used to protect, due to intrinsic limitations of the cryptographic
scheme in which they are being used. Keys may then need to be changed or updated. For
example, the TLS specification in its latest version, TLS 1.3 [91], contains recommendations
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about how much data each AEAD key in the protocol can be used to protect. These are set
by analysing the security bounds for the employed AEAD schemes. TLS also features a key
update sub-protocol enabling new keys to be established within a secure connection.

Keys may need to be revoked if they are discovered to have been compromised. The revocation
status of keys must then be communicated to parties relying on those keys in a timely and
reliable manner.

Keys may also need to be archived — put into long-term, secure storage — enabling the data
they protect to be retrieved when needed. This may involve encrypting the keys under other
keys, which themselves require management. Finally, keys should be securely deleted at the
end of their lifetime. This may involve physical destruction of storage media, or carefully
overwriting keys.

Given the complexity in the key life-cycle, it should be apparent that the key life-cycle and its
attendant processes need to be carefully considered and documented as part of the design
process for any system making use of cryptography.

We have already hinted that keys in general need to remain secret in order to be useful (public
keys are an exception; as we discuss below, the requirement for public keys is that they be
securely bound to identity of the key owner and their function). Keys can leak in many ways —
through the key generation procedure due to poor randomness, whilst being transported to the
place where they will be needed, through compromise of the storage system on which they
reside, through side-channel attacks while in use, or because they are not properly deleted once
exhausted. So it may be profitable for attackers to directly target keys and their management
rather than the algorithms making use of them when trying to break a cryptographic system.

Additionally, it is good practice that keys come with what Martin [3] calls assurance of purpose
— which party (or parties) can use the key, for which purposes and with what limits. Certain
storage formats — for example, digital certificates — encode this information along with the
keys. This relates to the principle of key separation which states that a given key should only
ever be used for one purpose (or in one cryptographic algorithm). This principle is perhaps
more often broken than observed and has led to vulnerabilities in deployed systems, see, for
example [92, 56].

3.2 Key Derivation

Key derivation refers to the process of creating multiple keys from a single key. The main
property required is that exposure of any of the derived keys should not compromise the
security of any of the others, nor the root key from which they are derived. This is impossible
in an information theoretic sense, since given enough derived keys, the root key must be de-
terminable through an exhaustive search. But it can be assured under suitable computational
assumptions. For example, suppose we have a Pseudo-Random Function (PRF) F which takes
as input key K and “message” input m; then outputs F(K, m;) on distinct inputs my, ma, ... will
appear to be random values to an adversary and even giving the adversary many input/output
pairs (m;, F(K, m;)) will not help it in determining K nor any further input/output pairs. Thus
a pseudo-random function can be securely used as a Key Derivation Function (KDF) with root
key K. We refer then to the m; as labels for key derivation.

In many situations, the root key K" may itself not be of a suitable length for use in a PRF or come
from some non-uniform distribution. For example, the key may be a group element resulting
from a Diffie-Hellman key exchange. In this case, one should first apply an entropy extraction
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step to make a suitable key K, then apply a PRF. One may also desire a key derivation function
with variable length output (different functions may require keys of different sizes) or variable
size label inputs. So the general requirements on a KDF go beyond what a simple PRF can
offer. HKDF is one general-purpose KDF that uses the HMAC algorithm as a variable-input
PRF. It is defined in [93]. As well as key and label inputs and variable length output, it features
an optional non-secret salt input which strengthens security across multiple, independent
invocations of the algorithm. In legacy or constrained systems, one can find many ad hoc
constructions for KDFs, using for example block ciphers or hash functions.

Using a KDF allows for key diversification and makes it easier to comply with the principle
of key separation. For example, one can use a single symmetric key to derive separate
encryption and MAC keys to be used in an EtM construction. Modern AE schemes avoid this
need, effectively performing key derivation internally. In the extreme, one might use a KDF
in combination with a specific label to derive a fresh key for each and every application of a
cryptographic algorithm, a process known in the financial cryptography context as unique key
per transaction. One can also choose to derive further keys from a derived key, creating a key
hierarchy or tree of keys of arbitrary (but usually bounded) depth. Such key hierarchies are
commonly seen in banking systems. For example, a bank may have a payment-system-wide
master secret, from which individual card secrets are derived; in turn, per transaction keys are
derived from the card secrets. Of course, in such a system, protection of the master secret —
the key to the kingdom! — is paramount. Generally specialised hardware is used for storing
and operating with such keys.

3.3 Password-Based Key Derivation

A very common practice, arising from the inevitable involvement of humans in cryptographic
systems, is to derive cryptographic keys from passwords (or passphrases). Humans cannot
remember passwords that have the high entropy required to prevent exhaustive searches,
so special-purpose KDFs should be used in such applications, called password-based KDFs
(PBKDFs). The idea of these is to deliberately slow-down the KDF to limit the speed at which
exhaustive searches can be carried out by an attacker (standard KDFs do not need to be slowed
in this way, since they should only operate on high-entropy inputs). Memory-hard PBKDFs
such as scrypt (defined in [94] and analysed in [95]) or Argon2 (the winner of a password
hashing design competition?#), which are designed to force an attacker to expend significant
memory resources when carrying out exhaustive searches, should be used in preference
to older designs. These PBKDFs have adjustable hardness parameters and permit salting,
important for preventing pre-computation attacks on the collections of hashed passwords that
are typically stored in authentication databases. It is worth keeping in mind that commercial
password cracking services exist. These cater for many different formats and make extensive
use of Graphical Processing Units (GPUs). They are impressively fast, rendering human-
memorable passwords on the verge of being obsolete and forcing the adoption of either very
long passwords or entirely different authentication methods.

An alternative to using a password directly to derive a key is to use the password as an
authentication mechanism in a key exchange protocol, leading to the concept of Password
Authenticated Key Exchange (PAKE). When designed well, a PAKE can limit an attacker to
making a single password guess in each execution of the protocol. PAKE has not seen
widespread adoption yet, but is currently undergoing standardisation in the IRTF.?.

24See https://www.password-hashing.net/.
25Details at https://github.com/cfrg/pake- selection.
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3.4 Key Generation

The main requirement for symmetric keys that are being generated from scratch is that they
should be chosen close to uniformly at random from the set of all bit-strings of the appropriate
key length. This requires access to good sources of random bits at the time when the key
is selected. These bits may come from true random sources (e.g. from noise in electronic
circuits or from quantum effects) or from an operating-system supplied source of pseudo-
random bits, which may in turn be seeded and refreshed using random bits gathered from
the local environment. This topic is discussed in more detail in Section 2. An alternative is
to use a Physically Unclonable Function (PUF) to generate keying material from the intrinsic
properties of a piece of hardware. Depending on what properties are measured, significant
post-processing may be needed to correct for errors and to produce output with good ran-
domness properties. An overview of some of the challenges arising for PUFs can be found
in [96].

For asymmetric algorithms there may be additional requirements, for example the key pairs
may require special algebraic structure or need to lie in certain numerical ranges. However,
the KeyGen algorithms for such schemes should handle this internally and themselves only
require access to a standard random bit source.

There are (in)famous cases where key generation processes were not appropriately ran-
domised [86, 97] (see also the Debian incident?®). Another challenge is that in some cases
keys need to be generated in constrained environments, e.g. on smartcards that will be used
as personal identity cards, where generating the keys “off-card” and then injecting them into
the card would not meet the security requirements of the application. There may then be a
temptation to over-optimise the key generation process. This can result in significant security
vulnerabilities [98].

3.5 Key Storage

Once keys are generated, they typically need to be stored. An exception is where the keys can
be generated on the fly from a human-memorable password, as discussed in Section 3.3.)

In general, the storage medium needs to be appropriately secured to prevent the keys be-
coming available to adversaries. In many cases, the only security for stored keys comes
from that provided by the local operating system’s access control mechanisms, coupled with
hardware-enforced memory partitioning for different processes. Such security mechanisms
can be bypassed by local attackers using low-level means that exploit the presence of shared
resources between different executing processes, e.g. a shared memory cache. These are
discussed in Section 2. This is a particular issue in multi-tenant computing environments,
e.g. cloud computing, where a customer has little control over the processes running on the
same CPU) as its own. But it is also an issue in single-tenant computing environments when
one considers the possibility of malicious third-party software. An acute challenge arises
for “crypto in the browser”, where users must rely on the browser to enforce separation and
non-interference between code running in different browser tabs, and where the code running
in one tab may be loaded from a malicious website “evil.example.com” thatis trying to
extract cryptographic secrets from code running another tab “your-bank .example.com”.

The Heartbleed incident [99] was so damaging precisely because it enabled a fully remote
attacker (i.e. one not running on the same machine as the victim process but merely able

26See https://www.debian.org/security/2008/dsa-1571.
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to connect over a network to that machine) to read out portions of a TLS server’'s memory,
potentially including the server’s private key. It shows that any amount of strong cryptography
can easily be undermined thanks to a simple software vulnerability. In the case of Heartbleed,
this was a buffer over-read in the OpenSSL implementation of the TLS/DTLS Heartbeat
protocol.

Developers who store cryptographic keys in memory (or in software) often use software ob-
fuscation techniques to try to make it harder to identify and extract the keys. Correspondingly,
there are de-obfuscation tools which try to reverse this process and there is a long-running
arms race in this domain. The research topic of white-box cryptography [100] attempts to
formalise this game of attack and defence.

The alternative to in memory storage of keys is to rely on special purpose secure storage for
keys. Devices for this exist at all scales and price points. For example, a smartcard may cost a
few cents to manufacture, but can be well-protected against passive and invasive attacks that
attempt to recover the keys that it stores. A well-designed smartcard will have an interface
which carefully limits how an external card reader communicating with the card can interact
with it. In particular, there will not be any commands that a reader can send to the card that
would allow its keys to directly leave the card. Rather, a reader will only be able to send data to
the card and have it cryptographically transformed locally using the stored keys, then receive
the results of the cryptographic computations. Thus, the reader will be able to interact with
the secrets on the card only via a cryptographic API. Smartcards are typically bandwidth- and
computation-limited.

At the other end of the scale are Hardware Security Modules (HSMs), which may cost many
thousands of US dollars, offer much greater capabilities and be tested to a high level of security
using industry-standard evaluation methodologies (e.g. the NIST FIPS 140 series). HSMs are
frequently used in the financial sector, and are also now offered in cloud environments, see
Section 4. As with smartcards, an HSM offers key storage and key usage functions via a
carefully controlled API. The API provided by an HSM can be used to extend the security that
the HSM offers to keys that it directly stores to a larger collection of keys. Consider the simple
case of using the HSM to store a Key Encryption Key (KEK), such that the HSM's API allows
that key to be used internally for authorised encryption and decryption functions. Then the
HSM can be used to wrap and, when needed, unwrap many Data Encryption Keys (DEKs) using
a single KEK that is stored inside the HSM. Here wrapping means encrypting and unwrapping
means decrypting. Assuming the used encryption mechanism is strong, the wrapped DEKs
can be stored in general, unprotected memory. Further details on HSMs can be found in the
Hardware Security CyBOK Knowledge Area [12].

TPMs also provide hardware-backed key storage. Technologies aiming to provide secure
execution environments, such as Intel SGX and ARM Trustzone, enable secure storage of
keys but also possess much more general capabilities. On mobile devices, the Android and
iOS operating systems offer similar key storage features through Android Keystore and iOS
Secure Enclave — both of these are essentially mini-HSMs.
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3.6 Key Transportation

Depending on system design, keys may be generated at one place but need to be transported
to another place where they will subsequently be used. Traditionally, secure couriers were
used to physically transport keys stored on paper tape or magnetic media. Of course, this is
costly and time-consuming. A related method, used often in low-value consumer applications
(e.g. domestic wireless routers), is to simply print the key on the back of the device. Then
security is reduced to that of the physical security of the device.

An alternative approach, widely used in the mobile telecommunications and consumer finance
sector, is to inject symmetric keys into low-cost security modules (e.g. a Subscriber Identity
Module, SIM, card in the case of mobile telephones or a bank card in the case of finance)
and distribute those to customers. At the same time, copies of the symmetric keys may be
kept en masse at a centralised location. In the case of mobile telecommunications, this is
at a logical network component called the Authentication Centre (AuC); the symmetric keys
are then used to perform authentication of SIM cards to the network and as the basis for
deriving session keys for encrypting voice and data on the wireless portion of the network. In
the financial setting, the symmetric keys injected into cards are typically already derived from
master keys using a KDF, with the master keys being held in an HSM.

If a key is already in place, then that key can be used to transport fresh keys. Here, the idea
is to sparingly use an expensive but very secure algorithm to transport the keys. With the
advent of Public Key Cryptography, the problem of key transportation can be reduced to the
problem of establishing an authentic copy of the public key of the receiver at the sender. As
we discuss in Section 3.8, this is still a significant problem. Earlier versions of the TLS protocol
used precisely this mechanism (with RSA encryption using PKCS#1 v1.5 padding) to securely
transport a master key from a client in possession of a server’s public key to that server. In
TLS, various session keys are derived from this master key (using an ad hoc KDF construction
based on iteration of MD5 and SHA-1).

3.7 Refreshing Keys and Forward Security

Consider a scenario where a symmetric key is being used to protect communications between
two parties A and B, e.g. by using the key in an AEAD scheme as was described in Section 1.18.
Suppose that key is compromised by some attack — for example, a side-channel attack on the
AEAD scheme. Then the security of all the data encrypted under that key is potentially lost.
This motivates the idea of regularly refreshing keys. Another reason to do this, beyond key
compromise, is that the formal security analysis of the AEAD scheme will indicate that any
given key can only be used to encrypt a certain amount of data before the security guarantees
are no longer meaningful.

Several mechanisms exist to refresh symmetric keys. A simple technique is to derive, using
a KDF, a new symmetric key from the existing symmetric key at regular intervals, thereby
creating a chain of keys. The idea is that if the key is compromised at some point in time, then
it should still be hard to recover all previous keys (but of course possible to compute forward
using the KDF to find all future keys). This property, where the security of old keys remains
after the compromise of a current key, is somewhat perversely known as forward security.
In our example it follows from standard security properties of a KDF. In practice, hashing is
often improperly used in place of a KDF, leading to the notion of a hash chain. This approach
does not require direct interaction between the different users of a given symmetric key (i.e.
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A and B in our example). But it does need a form of synchronisation so that the two parties
know which version of the key to use.

Another idea is to use a PKE scheme (more properly a KEM) to regularly transport a fresh
symmetric key from one party to the other, e.g. from A to B under the protection of B’s public
key and then use that session key in the AEAD scheme (as discussed above was done in earlier
versions of TLS). This creates fresh session keys whenever needed. Now to fully evaluate
the system under key compromises, we should consider the effect of compromise of B’s
PKE private key too. This takes us back to square one: if the attacker can intercept the PKE
ciphertexts as they are sent, store them and later learn B’s PKE private key by some means
(e.g. by factorising the modulus in the case of RSA, or simply as a result of an order made
by a lawful authority), then it can recover all the session keys that were ever transported and
thereby decrypt all the AEAD ciphertexts. In short, if the capabilities of the adversary include
PKE private key compromise, then the use of PKE does not achieve forward security.

To improve the situation, we can make use of ephemeral Diffie-Hellman key exchange, in
combination with appropriate authentication to prevent active MiTM attacks, to set up fresh
session keys. Here, ephemeral refers to the Diffie-Hellman values used being freshly generated
by both parties in each key exchange instance. We might use digital signatures for the
authentication, as TLS 1.3 does. Now what happens in the event of compromise of the
equivalent of the KEM private key? This is the signing key of the digital signature scheme.
We see, informally, that an active MiTM attacker who knows the signing key could spoof the
authentication and fool the honest protocol participants into agreeing on fresh session keys
with the attacker rather than each other. This cannot be prevented. However, a compromise at
some point in time of the signing key has no effect on the security of previously established,
old session keys. If the authentication was sound at the time of the exchange, so that active
attacks were not possible, then an adversary has to break a Diffie-Hellman key exchange in
order to learn a previously established session key. Moreover breaking one Diffie-Hellman
key exchange does not affect the security of the others.?” In comparison to the use of PKE
to transport session keys, Diffie-Hellman key exchange achieves strictly stronger forward
security properties.

Complementing forward security is the notion of backward security, aka post compromise,
security [101]. This refers to the security of keys established after a key compromise has
occurred. Using Diffie-Hellman key exchange can help here too, to establish fresh session
keys, but only in the event that the adversary is restricted to being passive for at least one run
of the Diffie-Hellman protocol.

2’Except in the case where the discrete logarithm algorithm used allows reuse of computation when solving
multiple DLPs. This is the case for the best known finite field algorithms, see [57] for the significant real-world
security issues this can introduce, but not for the elliptic curve setting.
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3.8 Managing Public Keys and Public Key Infrastructure

The main security requirement for a public key is that it be authentically bound to the identity
of the party who is in legitimate possession of the corresponding private key. Otherwise
impersonation attacks become possible. For example, a party A might encrypt a session key
to what it thinks is the public key of B, but the session key can be recovered by some other
party C. Or a party A might receive a digital signature on some message M purporting to be
generated by B using its private key, but where the signature was actually generated by C;
here A would verify the signature using C’s (public) verification key thinking it was using B’s
key.

A second requirement is that parties who rely on the soundness of the binding between public
key and identity are also able to gain assurance that the binding is still valid (i.e. has not
expired or been revoked).

These two requirements have many implications. Meeting them leads to the introduction
of additional infrastructure and management functions. Conventionally, this collection of
components is called a Public Key Infrastructure (PKI).

3.8.1 Binding Public Keys and Identities via Certificates

A suitable mechanism to bind public keys and identities — and possibly other information —
is needed. In early proposals for deploying Public Key Cryptography, it was proposed that this
could take the form of a trusted bulletin board, where all the public keys and corresponding
identities are simply listed. But this of course requires trust in the provider of the bulletin
board service.

A non-scalable and inflexible solution, but one that is commonly used in mobile applications
and loT deployments, is to hard-code the required public key into the software of the party that
needs to use the public key. Here, security rests on the inability of an adversary to change the
public key by over-writing it in a local copy of the software, substituting it during a software
update, changing it in the code repository of the software provider, or by other means.

Another solution is to use public key digital certificates (or just certificates for short). These
are data objects in which the data includes identity, public key, algorithm type, issuance and
expiry dates, key usage restrictions and potentially other fields. In addition, the certificate
contains a digital signature, over all the other fields, of some Trusted Third Party (TTP) who
attests to the correctness of the information. This TTP is known as a Certification Authority
(CA). The most commonly used format for digital certificates is X.509 version 3 [102].

The use of certificates moves the problem of verifying the binding implied by the digital
signature in the certificate to the authentic distribution of the CA’s public key. In practice, the
problem may be deferred several times via a certificate chain, with each TTP’s public key in
the chain being attested to via a certificate issued by a higher authority. Ultimately, this chain
is terminated at the highest level by a root certificate that is self-signed by a root CA. That is,
the root certificate contains the public verification key of the root CA and a signature that is
created using the matching private signing key. A party wishing to make use of a user-level
public key (called a relying party) must now verify a chain of certificates back to the root and
also have means of assuring that the root public key is valid. This last step is usually solved
by an out of band distribution of the root CA’s public key. Root CAs may also cross-sign each
other’s root certificates.
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As an important and visible example of a PKI, consider the Web PKI. Web browser vendors
embed a list of the public keys of a few hundred different root CAs in their software and update
the list from time to time via their software update mechanisms, which in turn may rely for
its security on a separate PKI. Website owners pay to obtain certificates binding their sites’
URLs to their public keys from subordinate CAs. Then, when running the TLS protocol for
secure communications between a web browser and a website, the website’s server sends
a certificate chain to the web browser client. The chain provides the web browser with a
copy of the server’s public key (in the lowest certificate from the chain, the leaf or end-entity
certificate) as well as a means of verifying the binding between the web site name in the form
of its URL, and that public key. The operations and conventions of the Web PKI are managed
by the CA/Browser Forum.?®

3.8.2 Reliance on Naming, CA Operations and Time

In addition to needing a suitable binding mechanism, there must be a stable, controlled naming
mechanism for parties. Moreover, parties need to have means of proving to CAs that they own
a specific identity and CAs need to check such assertions. Equally, CAs need to be trusted
to only issue certificates to the correct parties. This aspect of PKI intersects heavily with
legal and regulatory aspects of Information Security and is covered in more detail in Law &
Regulation CyBOK Knowledge Area [9].

For the Web PKI, there have been numerous incidents where CAs were found to have mis-
issued certificates, either because they were hacked (e.g. DigiNotar?®), because of poor
control over the issuance process (e.g. TurkTrust®?), or because they were under the control
of governments who wished to gain surveillance capabilities over their citizens. This can lead
to significant commercial impacts for affected CAs: in DigiNotar’s case, the company went
bankrupt. In other cases, CAs were found to not be properly protecting their private signing
keys, leaving them vulnerable to hacking.®! In response to a growing number of such incidents,
Google launched the Certificate Transparency (CT) effort. CT provides an open framework for
monitoring and auditing certificates; it makes use of multiple, independent public logs in an
attempt to record all the certificates issued by browser-trusted CAs. The protocols and data
formats underlying CT are specified in [103].3?

Relying parties (i.e. parties verifying certificates and then using the embedded public keys)
need access to reliable time sources to be sure that the certificate’s lifetime, as encoded in
the certificate, is still valid. Otherwise, an attacker could send an expired certificate for which
it has compromised the corresponding private key to a relying party and get the relying party
to use the certificate’s public key. This requirement can be difficult to fulfill in low-cost or
constrained environments, e.g. IoT applications.

28See https://cabforum.org/.

29See https://en.wikipedia.org/wiki/DigiNotar.

30See https://nakedsecurity.sophos.com/2013/01/08/the-turktrust- ssl-certificate- fiasco-what-happened- and-what-happens-next/.
31See for example the case of CNNIC, https://techcrunch.com/2015/04/01/google-cnnic/.

32See also https://certificate.transparency.dev/ for the project homepage.
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3.8.3 Reliance on Certificate Status Information

Relying parties verifying certificates also need access to reliable, timely sources of information
about the status of certificates — whether the certificate is still valid or has been revoked for
some security or operational reason. This can be done by regularly sending lists of revoked
certificates to relying parties (known as Certificate Revocation Lists, CRLs), or having the
relying parties perform a real-time status check with the issuing CA before using the public
key using the Online Certificate Status Protocol, OCSP [104]. The former approach is more
private for relying parties, since the check can be done locally, but implies the existence of a
window of exposure for relying parties between the time of revocation and the time of CRL
distribution. The latter approach provides more timely information but implies that large CAs
issuing many certificates need to provide significant bandwidth and computation to serve the
online requests.

In the web context, OCSP has become the dominant method for checking revocation status of
certificates. OCSP’s bandwidth issue is ameliorated by the practice of OCSP stapling, wherein
a web server providing a certificate regularly performs its own OCSP check and includes
the certified response from its CA along with its certificate. In an effort to further improve
user privacy, in 2020, Mozilla experimentally deployed®? an approach called CRLite developed
in [105] in their Firefox browser. CRLite uses CT logs and other sources of information to
create timely and compact CRLs for regular distribution to web browsers.

3.8.4 Reliance on Correct Software and Unbroken Cryptography

The software at a relying party that validates certificate chains needs to work properly. This
is non-trivial, given the complexity of the X.509 data structures involved, the use of complex
encoding languages and the need to accurately translate security policy into running code.
There have been numerous failures. A prominent and entirely avoidable example is Apple’s
“goto fail” from 2014. Here a repeated line of code®* for error handling in Apple’s certificate
verification code in its SSL/TLS implementation caused all certificate checking to be bypassed.
This made it trivial to spoof a web server’s public key in a fake certificate to clients running
Apple’s code. This resulted in a total bypass of the server authentication in Apple’s SSL/TLS
implementation, undermining all security guarantees of the protocol.®®

The certificate industry has been slow to react to advances in the cryptanalysis of algorithms
and slow to add support for new signature schemes. The story of SHA-1 and its gradual
removal from the Web PKI is a prime example. This relates to the discussion of cryptographic
agility in Section 1.14. The first cracks in SHA-1 appeared in 2005 [106]. Already at this point,
cryptographers taking their standard conservative approach, recommended that SHA-1 be
deprecated in applications requiring collision resistance. From 2005 onwards, the cryptanaly-
sis of SHA-1 was refined and improved. Finally in 2017, the first public collisions for SHA-1
were exhibited [107]. This was followed in 2019 by a chosen-prefix collision attack that directly
threatened the application of SHA-1 in certificates [108]. However, despite the direction of
travel having been clear for more than a decade, it took until 2017 before the major web
browsers finally stopped accepting SHA-1 in Web PKI certificates. Today, SHA-1 certificates
are still to be found in payment systems and elsewhere. The organisations running these sys-
tems are inherently change-averse because they have to manage complex systems that must

33See https://blog.mozilla.org/security/2020/01/09/ctlite- part-1-all-web- pki-revocations-compressed) .

34The offending line of code was literally “goto fail”.

35See https://dwheeler.com/essays/apple-goto-fail.html for a detailed write-up of the incident and its implications
for Apple’s software development processes.
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continue to work across algorithm and technology changes. In short, these organisations are
not cryptographically agile, as discussed in Section 1.14.

3.8.5 Other Approaches to Managing Public Keys

The web of trust is an alternative to hierarchical PKls in which the users in a system vouch for
the authenticity of one another’s public keys by essentially cross-certifying each other’s keys.
It was once popular in the PGP community but did not catch on elsewhere. Such a system
poses significant usability challenges for ordinary users [109].

Identity-Based Cryptography (IBC) [110] offers a technically appealing alternative to traditional
Public Key Cryptography in which users’ private keys are derived directly from their identities
by a TTP called the Trusted Authority (TA) in possession of a master private key. The benefit
is that there is no need to distribute public keys; a relying party now needs only to know
an identity and have an authentic copy of the TA’'s public key. The down-side for many
application domains is that trust in the TA is paramount, since it has the capability to forge
users’ signatures and decrypt ciphertexts intended for them through holding the master private
key. On the other hand, IBC's built-in key escrow property may be useful in corporate security
applications. Certificateless Cryptography [111] tries to strike a balance between traditional
PKI and IBC. These and other related concepts have sparked a lot of scientific endeavour, but
little deployment to date.

4 CONSUMING CRYPTOGRAPHY

The content of this section is based on the author’s personal experience.

4.1 The Challenges of Consuming Cryptography

Numerous people, including those who are well educated in computer science and math-
ematics, can and do regularly make fundamental errors when attempting to devise novel
cryptographic schemes or to implement existing mechanisms.

Perhaps one reason for this is that many people receive informal exposure to cryptography
through popular culture, where it is often shown in a simplified way, for example using pen
and paper ciphers or watching a password being revealed character-by-character through
some unspecified search process. The subject also has basic psychological appeal — after
all, who does not love receiving secret messages?

The issue shows up in several different ways. Least dangerous, the author has seen that
cryptographic conferences and journals regularly receive submissions from people who are
not aware of the advanced state-of-the-art. A classic trope is papers on encryption algorithms
for digital images, where usually some low-level manipulation of pixel data is involved and
security rests on taking a standard benchmark picture from the image processing community
and showing that it is visually scrambled by the algorithm. (Of course, image data is ultimately
represented by bits and standard cryptographic algorithms operate on those bits.) Other topics
common in such papers are chaos-based cryptography and combining multiple schemes
(RSA, ElGamal, etc) to make a stronger one. The activity of generating such papers is a waste
of time for the authors and reviewers alike, while it misleads students involved in writing the
papers about the true nature of cryptography as a research topic.
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This author has seen multiple examples where complete outsiders to the field have been
persuaded to invest in cryptographic technologies which either defy the laws of information
theory or which fall to the “kitchen sink” fallacy of cryptographic design — push the data
through enough complicated steps and it must be secure. Another classic design error is for
an inventor to fall under the spell of the “large keys" fallacy: if an algorithm has a very large
key space, then surely it must be secure? Certainly a large enough key space is necessary
for security, but it is far from sufficient. A third fallacy is that of “friendly cryptanalysis”: the
inventor has tried to break the new algorithm themselves, so it must be secure. There is no
substitute for independent analysis.

Usually these technologies are invented by outsiders to the field. They may have received
encouragement from someone who is a consumer of cryptography but not themselves an
expert or someone who is too polite to deliver a merciful blow. Significant effort may be
required to dissuade the original inventors and their backers from taking the technology
further. A sometimes useful argument to deploy in such cases is that, while the inventor’s
idea may or may not be secure, we already have available standardised, carefully-vetted,
widely-deployed, low-cost solutions to the problem and so it will be hard to commercialise the
invention in a heavily commoditised area.

Another set of issues arise when software developers, perhaps with the best of intentions and
under release deadline pressure, “roll their own crypto”. Maybe having taken an introductory
course in Information Security or Cryptography at Bachelor’s level, they have accrued enough
knowledge not to try to make their own low-level algorithms and they know they can use
an API to a cryptographic library to get access to basic encryption and signing functions.
However, with today’s cryptographic libraries, it is easy to accidentally misuse the API and
end up with an insecure system. Likely the developer wants to do something more complex
than simply encrypting some plaintext data, but instead needs to plug together a collection of
cryptographic primitives to do something more complex. This can lead to the “kitchen sink”
fallacy at the system level. Then there is the question of how the developer’s code should deal
with key management — recall that cryptographic schemes only shift the problem of securing
data to that of securing keys. Unfortunately, key management is rarely taught to Bachelor’s
students as a first class issue and this author has seen that basic issues like hard-coded keys
are still found on a regular basis in deployed cryptographic software.

4.2 Addressing the Challenges

How can individuals and businesses acting as consumers of cryptography avoid these prob-
lems? Some general advice follows.

There is no free lunch in cryptography. If someone without a track record or proper credentials
comes bearing a new technological breakthrough, or just a new algorithm: beware. Consumers
can look for independent analyses by reputable parties — there are companies and individuals
who can provide meaningful cryptographic review. Any reputable consultant can supply a
list of recent consulting engagements and contact details for references. Consumers can
also check for scientific publications in reputable academic venues that support any new
technology; very few crank ideas survive peer review, and consumers should look for clear
indications of publication quality. Consumers can learn to detect cryptographic snake-oil, for
example, by looking for instances of the kitchen sink, large keys and friendly cryptanalysis
fallacies.3®

36A more extensive list of snake-oil indicators can be found at: http:/www.interhack.net/people/cmcurtin/
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Developers should not roll their own cryptographic algorithms. They should rely on vetted,
standardised algorithms already available in packaged forms through cryptographic libraries.
Ideally, they should not roll their own higher-level cryptographic systems and protocols, but
rely on existing design patterns and standards. As just one example, there is usually no need
to build a new, secure, application-layer communications protocol when SSL/TLS support is
ubiquitous. Developers who are developing cloud-based solutions (an extremely common
use-case) should make use of cryptographic services from cloud providers — an emerg-
ing approach called “Cryptography-as-a-Service” (CaaS). This is a natural extension of the
“Software-as-a-Service” paradigm, but commonly extends it to include key management ser-
vices. A key feature in commercial CaaS offerings is “HSM-as-a-service”, allowing service
users to avoid the cost and expertise needed to maintain on-premise HSMs.*’

When these options are not possible, developers should seek expert advice (and not Crypto
Stack Exchange [112]). Very large organisations should have an in-house cryptography devel-
opment team who vet all uses of cryptography before they go into production, ideally with
involvement from the design stage. There is at least one large software company that today
runs detection tools across its entire codebase to find instances where cryptography is being
misused, and sends email alerts to the cryptography development team.

Smaller organisations for whom cryptography is a core technology should employ applied
cryptographers with proven credentials in the field. Alternatively such medium-sized organisa-
tions — and the smallest companies — should cultivate relationships with trusted external
partners who can provide cryptographic consulting services. The cost of such services is
relatively small compared to the potential damage to reputation and shareholder value in the
event of a major security incident arising from the improper use of cryptography.

4.3 Making Cryptography Invisible

Ultimately, the best kind of cryptography is that which is as invisible as possible to its end
users. Five years ago web browsers displayed locks of different colours to indicate whether
SSL/TLS connections were secure or not, but users could always click-through to reach the
website regardless. Today, web browsers like Google Chrome and Mozilla Firefox are more
aggressive in how they handle SSL/TLS security failures and in some cases simply do not
allow a connection to be made to the website.*® There is a continuous tension here between
protecting users and enabling functionality that users demand. For example, at the time of
writing, users can still freely visit websites that do not offer SSL/TLS connections in both
Chrome and Firefox, receiving a “not secure” warning in the browser bar; this behaviour may
change in the future as more and more websites switch to supporting SSL/TLS.

Meanwhile, for more than 25 years, in most jurisdictions, mobile telephone calls have been
encrypted between the mobile device and the base-station (or beyond) in order to prevent
eavesdropping on the broadcast communications medium. However, even in the latest 5G
systems, the encryption is optional [113, Annex D] and can be switched off by the network
operator. However, very few mobile telephones actually display any information to the user

snake-oil-faq.html.

$7Without wishing to favour any particular vendors, interested readers can learn more about the typ-
ical features of such services at https://aws.amazon.com/cloudhsm/ or https:/www.entrust.com/digital-security/
certificate-solutions/products/pki/managed-services/entrust- cryptography-as-a-service.

38Readers interested in learning more about what different browsers do and do not allow can visit https:/
badssl.com/ or http://example.com.
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about whether encryption is enabled or not, so it is debatable to what extent users are really
protected.

By contrast, secure messaging services like Signal offer end-to-end security by default and
with no possibility of turning these security features off. Signal’s servers are not able to read
users’ messages — as a January 2021 advert for Signal pointedly stated, “we know nothing”.
Cryptographic security and user privacy are core to the company’s business model. So much
so that if a significant cryptographic flaw were to be found in Signal’s design, then, at the very
least, it would lead to a significant loss of customers and possibly even lead to the company’s
downfall. Yet there is very little in-app security messaging — there is no equivalent of a browser
lock that users are asked to interpret, for example.

5 APPLIED CRYPTOGRAPHY IN ACTION

[91, 114, 115]

Having explored the landscape of applied cryptography from the bottom up, we now take a
brief look at three different application areas, using them to draw out some of the key themes
of the KA.

5.1 Transport Layer Security

The Transport Layer Security (TLS) protocol has already been mentioned several times in
passing. The protocol has a long history, arriving at TLS 1.3 [91], completed in 2018. It is
a complex protocol with several interrelated sub-protocols: the TLS Handshake Protocol
uses (usually) asymmetric cryptography to establish session keys; these are then used in the
TLS Record Protocol in conjunction with symmetric techniques to provide confidentiality and
integrity for streams of application data; meanwhile the TLS Alert Protocol can be used to
transport management information and error alerts. TLS is now used to protect roughly 95%
of all HTTP traffic.3 In this application domain, TLS relies heavily on the Web PKI for server
authentication.

TLS 1.3 represents a multi-year effort by a coalition of industry-based engineers and academics
working under the aegis of the IETF to build a general-purpose secure communications
protocol. The main drivers for starting work on TLS 1.3 were, firstly, to improve the security of
the protocol by updating the basic design and removing outdated cryptographic primitives
(e.g. switching the MtE construction for AEAD only; removing RSA key transport in favour of
DHKE to improve forward security) and, secondly, to improve the performance of the protocol
by reducing the number of communication round trips needed to establish a secure channel.
Specifically, in earlier versions of TLS, two round trips were needed, while in TLS 1.3 only one
is needed in most cases and even a zero round trip mode is supported in TLS 1.3 when keys
have been established in a previous session.

The design process for TLS 1.3 is described and contrasted with the process followed for
previous versions in [49]. A key difference is the extensive reliance on formal security analysis
during the design process. This resulted in many research papers being published along
the way, amongst which we highlight [116, 117, 118]. Some of the formal analysis was able
to detect potential security flaws in earlier versions of the protocol, thereby influencing the

39See https://transparencyreport.google.com/https/overview?hl=en for Google data supporting this statistic.
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protocol design in crucial ways — for example, the use of HKDF in a consistent, hierarchical
manner to process keying material from different stages of the protocol. The protocol was
also modified to make it more amenable to formal security analysis. It is an almost complete
success story in how academia and industry can work together. Only a few criticisms can be
levelled at the process and the final design:

* Not all of the security and functionality requirements were elicited at the outset, which
meant many design changes along the way, with attendant challenges for researchers
doing formal analysis. However, such an iterative approach seems to be unavoidable in
a complex protocol designed to serve many use cases.

« The formal analyses missed a few corner cases, especially in the situation where au-
thentication is based on pre-shared symmetric keys. An attack in one such corner case
was subsequently discovered [119].

+ The zero round trip mode of TLS 1.3 has attractive latency properties but achieves these
at the expense of forward security. Defending against replay attacks in this mode is
difficult in general and likely impossible in distributed server settings when interactions
with typical web clients are taken into account. Recent research showing how to add
forward security to the zero round trip mode of TLS 1.3 can be found in [120, 121, 122, 123].

5.2 Secure Messaging

On the surface, secure messaging seems to have a very similar set of requirements to TLS:
we have pairs of communicating parties who wish to securely exchange messages. However,
there are significant differences, leading to different cryptographic solutions. First, secure
messaging systems are asynchronous, meaning that the communicating parties cannot easily
run an equivalent of the TLS Handshake Protocol to establish symmetric keys. Second, there
is no infrastructure analogous to the Web PKI that can be leveraged to provide authentication.
Third, group communication, rather than simply pairwise communication, is an important
use case. Fourth, there is usually a bespoke server that is used to relay messages between
the pairs of communicating parties but which should not have access to the messages
themselves.

We discuss three different secure messaging systems: Apple’s iMessage, Signal (used in
WhatsApp) and Telegram. We focus on the two-party case for brevity.

5.2.1 Apple iMessage

Apple’s iMessage system historically used an ad hoc signcryption scheme that was shown
to have significant vulnerabilities in [124]. This was despite signcryption being a well-known
primitive with well-established models, generic constructions from PKE and digital signatures
and security proofs in the academic literature. Conjecturally, the designers of Apple's scheme
were constrained by the functions available in their cryptographic library. The Apple system
relied fully on trust in Apple’s servers to distribute authentic copies of users’ public keys — a
PKI by fiat. The system was designed to be end-to-end secure, meaning that without active
impersonation via key substitution, Apple could not read users’ messages. It did not enjoy
any forward-security properties, however: once a user’s private decryption key was known, all
messages intended for that user could be read. Note that Apple’'s iMessage implementation
is not open source; the above description is based on the reverse engineering carried out
in [124] and so may no longer be accurate.
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5.2.2 Signal

The Signal design, which is used in both Signal and WhatsApp, takes a slightly different
approach in the two-party case. It uses a kind of asynchronous DHKE approach called
ratcheting. At a high level, every time Alice sends user Bob a new message, she also includes
a Diffie-Hellman (DH) value and updates her symmetric key to one derived from that DH
value and the DH value she most recently received from Bob. On receipt, Bob combines the
incoming DH value with the one he previously sent to make a new symmetric key on his side.
This key is called a chaining key.

For each message that Alice sends to Bob without receiving a reply from Bob, she derives
two new keys from the current chaining key by applying a KDF (based on HKDF) to it; one key
is used as the next chaining key, the other is used to encrypt the current message. This is
also called ratcheting by the Signal designers and the combination of ratcheting applied to
both DH values and symmetric keys is called double ratcheting.*® This mechanism provides
forward security for Signal messages, despite its asynchronous nature. It also provides post
compromise security. The use of ratcheting, however, entails problems with synchronisation:
if a message is lost between Alice and Bob, then their keys will end up in different states. This
is solved by keeping caches of recent chaining keys.

For symmetric encryption, Signal uses a simple generic AE construction based on EtM relying
on CBC mode using AES with 256 bit keys for the “E” component and HMAC with SHA-256 for
the “M” component. This is a conservative and well-understood design.

Authentication in Signal is ultimately the same as in iMessage: it depends on trust in the server.
The idea is that users register a collection of DH values at the server; these are fetched by other
users and used to establish initial chaining keys. However, a malicious server could replace
these values and thereby mount a MitM attack. The use of human-readable key fingerprints
provides mitigation against this attack.

A formal security analysis of the double ratcheting process used by Signal can be found
in [114]. Note that, in order to tame complexity, this analysis does not treat the composition of
the double ratchet with the symmetric encryption component. The Signal design has spurred a
spate of recent research into the question of what is the best possible security one can achieve
in two-party messaging protocols and how that security interacts with the synchronisation
issues.

5.2.3 Telegram

A third design is that used by Telegram.*' It is notable for the way it combines various
cryptographic primitives (RSA, finite field DHKE, a hash-based key derivation function, a hash-
based MAC and a non-standard encryption mode called IGE). Moreover, it does not have proper
key separation: keys used to protect messages from Alice to Bob share many overlapping
bits with keys used in the opposite direction; moreover those key bits are taken directly from
“raw” DHKE values. These features present significant barriers to formal analysis and violate
cryptographic best practices. Furthermore, Telegram does not universally feature end-to-end
encryption; rather it has two modes, one of which is end-to-end secure, the other of which
provides secure communications only from each client to the server. The latter seems to
be much more commonly used in practice, but is of course subject to interception. This

40See https://signal.org/docs/specifications/doubleratchet/ for a concise overview of the process.
41See https://telegram.org/.
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is concerning, given that Telegram is frequently used by higher-risk users in undemocratic
countries.

5.3 Contact Tracing a la DP-3T

The DP-3T project*? was formed by a group of academic researchers in response to the COVID-
19 pandemic, with the core aim of rapidly developing automated contact tracing technology
based on mobile phones and Bluetooth Low Energy beacons. A central objective of DP-3T was
to enable automated contact tracing in a privacy-preserving way, so without using location data
and without storing lists of contacts at a central server. DP-3T’s approach directly influenced
the Google-Apple Exposure Notification (GAEN)*® system that forms the basis for dozens of
national contact tracing apps around the world, including (after a false start) the UK system.
An overview of the DP-3T proposal is provided in [115].

The DP-3T design uses cryptography at its heart. Each phone generates a symmetric key and
uses this as the root of a chain of keys, one key per day. Each day key in the chain is then
used to generate, using a pseudo-random generator built from AES in CTR mode, a sequence
of 96 short pseudo-random strings called beacons. At each 15-minute time interval during the
day, the next beacon from the sequence is selected and broadcast using BLE. Other phones
in the vicinity pick up and record the beacon-carrying BLE signals and store them in a log
along with metadata (time of day, received signal strength). Notice that the beacons are
indistinguishable from random strings, under the assumption that AES is a good block cipher.

When a user of the system receives a positive COVID-19 test, they instruct their phone to upload
the recent day keys to a central server, possibly along with sent signal strength information.**
All phones in the system regularly poll the server for the latest sets of day keys, use them to
regenerate beacons and look in their local logs to test if at some point they came into range of
a phone carried by a person later found to be infected. Using sent and received signal strength
information in combination with the number and closeness (over time) of matching beacons,
the phone can compute a risk score. If the score is above a threshold, then the phone user can
be instructed to get a COVID-19 test themselves. Setting the threshold in practice to balance
false positives against false negatives is a delicate exercise made more difficult by the fact
that BLE permits only inaccurate range estimation.

Notice that the central server in DP-3T stores only day keys released from phones by infected
parties. The central server is not capable of computing which users were in proximity to which
other users, nor even the identity of users who uploaded keys (though this information will
become visible to the health authority because of the issuance of authorisation codes). All
the comparison of beacons and risk computations are carried out on users’ phones. One
can contend that a fully centralised system could provide more detailed epidemiological
information — some epidemiologists unsurprisingly made this argument. On the other hand,
the strict purpose of the DP-3T system was to enable automated contact tracing, not to provide
an epidemiological research tool. A more detailed privacy analysis of DP-3T can be found
in [115].

The DP-3T design was produced, analysed, prototyped and deployed under test conditions all
in the space of a few weeks. After adoption and adaptation by Google and Apple, it made its

42https://github.com/DP-3T/documents

43See https://www.google.com/covid19/exposurenotifications/ and https:/covid19.apple.com/contacttracing.

44To prevent spurious uploads, the day keys can only be uploaded after entering an authorisation code issued
by the local health authority into the app.
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way into national contact tracing apps within a few months. Given the pace of development,
simplicity of the core design was key. Only “off the shelf” cryptographic techniques available
in standard cryptographic libraries could be used. Given the likely scaling properties of the
system (possibly tens of millions of users per country) and the constraints of BLE message
sizes, using Public Key Cryptography was not an option; only symmetric techniques could
be countenanced. Many follow-up research papers have proposed enhanced designs using
more complex cryptographic techniques. The DP-3T team did not have this luxury and instead
stayed resolutely pragmatic in designing a system that balances privacy, functionality and
ease of deployment, and that resists repurposing.

6 THE FUTURE OF APPLIED CRYPTOGRAPHY

The first 2000 years of applied cryptography were mostly about securing data in transit,
starting from the Caesar cipher and ending with today’s mass deployment of TLS, secure
messaging and privacy-preserving contact tracing systems. Today, cryptography is also
heavily used to protect data at rest, the second element in our cryptographic triumvirate from
the KA's introduction. These two application domains will continue to develop and become
more pervasive in our everyday lives — consider for example the rise of the Internet of Things
and its inherent need for communications security.

We anticipate significant developments in the following directions:

+ The debate around lawful access to encrypted data will continue. However, we reiterate
that in the face of determined but not even particularly sophisticated users, this is a
lost battle. For example, it seems unlikely that state security agencies can break the
cryptography that is used in Signal today. Instead, they will have to continue to bypass
cryptographic protections through exploitation of vulnerabilities in end systems. Legal
frameworks to enable this exist in many countries. Of course, governments could pass
legislation requiring developers to include mechanisms to enable lawful access, or could
pressure vendors into removing secure messaging applications from app stores.

+ We expect that the current focus on cryptocurrencies and blockchains will result in a core
set of useful cryptographic technologies. For example, anonymous cryptocurrencies
have already been an important vehicle for forcing innovation in and maturation of
zero-knowledge proofs.

* The third element in our cryptographic triumvirate was cryptography for data under
computation. This area is undergoing rapid technical development and there is a healthy
bloom of start-up companies taking ideas like FHE and MPC to market. A good overview
of the status for “applied MPC” can be found in [125], while [126] provides insights into
deployment challenges specific to FHE. The idea of being able to securely outsource
one’s data to third party providers and allow them to perform computations on it (as
FHE does) is very alluring. However, some 15 years after its invention, FHE still incurs
something like a 10°—10® times overhead compared to computing on plaintext data.
This limits its application to all but the most sensitive data at small scales. Meanwhile,
the core applications become ever more data- and computation-hungry, so remain out
of reach of FHE for now. FHE, MPC and related techniques also face a significant
challenge from trusted execution technologies like SGX. Approaches like SGX still rely
on cryptography for attesting to the correct execution of code in secure enclaves, but can
effectively emulate FHE functionality without such large overheads. On the other hand,
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SGX and related technologies have themselves been the subject of a series of security
vulnerabilities so may offer less protection in practice than cryptographic approaches.

+ One area where computing on encrypted data may have a medium-term commercial
future is in specialised applications such as searching over encrypted data and more
generally, database encryption. Current state-of-the-art solutions here trade efficiency
(in terms of computation and bandwidth overheads) for a certain amount of leakage.
Quantifying the amount of leakage and its impact on security is a challenging research
problem that must be solved before these approaches can become widely adopted.*

+ Another growth area for applied cryptography is in privacy-preserving techniques for data-
mining and data aggregation. Google’s privacy-preserving advertising framework [127]
provides one prominent example. Another is the Prio system [128] that allows privacy-
preserving collection of telemetry data from web browsers. Prio has been experimentally
deployed in Mozilla’s Firefox browser.#®

« Electronic voting (e-voting) has long been touted as an application area for cryptography.
There is a large scientific literature on the problem. However, the use of e-voting in
local and national elections has proved problematic, with confidence-sapping security
vulnerabilities having been found in voting software and hardware. For example, a recent
Swiss attempt to develop e-voting was temporarily abandoned after severe flaws were
found in some of the cryptographic protocols used in the system during a semi-open
system audit [129]. The Estonian experience has been much more positive, with a
system built on Estonia’s electronic identity cards having been in regular use (and having
seen regular upgrades) since 2005. Key aspects of the Estonian success are openness,
usability and the population’s broad acceptance of and comfort with online activity.

+ We may see a shift in how cryptography gets researched, developed and then deployed.
The traditional model is the long road from research to real-world use. Ideas like MPC
have been travelling down this road for decades. Out of sheer necessity, systems
like DP-3T have travelled down the road much more quickly. A second model arises
when practice gets ahead of theory and new theory is eventually developed to analyse
what is being done in practice; often this leads to a situation where the practice could
be improved by following the new theory, but the improvements are slow in coming
because of the drag of legacy code and the difficulty of upgrading systems in operation.
Sometimes a good attack is needed to stimulate change. A third model is represented
by TLS 1.3: academia and industry working together to develop a complex protocol over
a period of years.

+ Cryptography involves a particular style of thinking. It involves quantifying over all
adversaries in security proofs (and not just considering particular adversarial strategies),
being conservative in one’s assumptions, and rejecting systems even if they only have
“certificational flaws”. Such adversarial thinking should be more broadly applied in
security research. Attacks on machine learning systems are a good place where this
cross-over is already bearing fruit.

45But see https://docs.mongodb.com/manual/core/security- client-side-encryption/ for details of MongoDB's use
of deterministic symmetric encryption to enable searchable field-level encryption.
46See https://blog.mozilla.org/security/2019/06/06/next- steps-in-privacy- preserving-telemetry-with-prio/.
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