
CyBoK: Cryptography Knowledge Area

N.P. Smart

COSIC,
KU Leuven, ESAT,

Kasteelpark Arenberg 10, bus 2452,
B-3001 Leuven-Heverlee,

Belgium.

April 10, 2019

N.P. Smart
CyBoK: Cryptography Knowledge Area Slide 1

Outline

Introduction

Encryption, Signatures and MACs

Security Definitions

Symmetric Key Primitives and Schemes

Public Key Encryption Schemes

Public Key Signature Schemes

Conclusion

N.P. Smart
CyBoK: Cryptography Knowledge Area Slide 2

Copyright

c©Crown Copyright, The National Cyber Security Centre 2019.

This information is licensed under the Open Government Licence v3.0. To view this licence,
visit http://www.nationalarchives.gov.uk/doc/open-government-licence/.

When you use this information under the Open Government Licence, you should include the
following attribution:

CyBOK Cryptography Knowledge Area Issue 1.0 c©Crown Copyright, The National Cyber
Security Centre 2019, licensed under the Open Government Licence
http://www.nationalarchives.gov.uk/doc/open-government-licence/.

The CyBOK project would like to understand how the CyBOK is being used and its uptake.

The project would like organisations using, or intending to use, CyBOK for the purposes of
education, training, course development, professional development etc. to contact it at
contact@cybok.org to let the project know how they are using CyBOK.

N.P. Smart
CyBoK: Cryptography Knowledge Area Slide 3

http://www.nationalarchives.gov.uk/doc/open-government-licence/
http://www.nationalarchives.gov.uk/doc/open-government-licence/
contact@cybok.org

Overview

The aim of the talk is to give a rapid overview of the Cryptography
Knowledge Area

Covering the basic primitives and security definitions.

In this talk we focus on encryption and digital signatures.
I Cryptography covers a lot more than this though

I Key Agreement Protocols
I Authentication Protocols
I Zero-Knowledge Protocols
I Multi-Party Computation
I

N.P. Smart
CyBoK: Cryptography Knowledge Area Slide 4

Encryption, Signatures and MACs

N.P. Smart
CyBoK: Cryptography Knowledge Area Slide 5

Symmetric Key vs Public Key Encryption
Symmetric Key Encryption:
The basic idea of public key encryption is:

Message + Secret Key = Ciphertext
Ciphertext + Secret Key = Message

Both parties need the same secret key to encrypt and decrypt the
message.

Public Key Encryption:
The basic idea of public key encryption is:

Message + Alice’s Public Key = Ciphertext
Ciphertext + Alice’s Private Key = Message

Anyone with Alice’s public key can send Alice a secret message, but
only Alice can decrypt.

N.P. Smart
CyBoK: Cryptography Knowledge Area Slide 6

Notation

Henceforth we denote a public/secret key pair (pk, sk), and a
symmetric key by sk.

A message is denoted m, an encryption algorithm is denoted by
Enc, a decryption algorithm by Dec, and a ciphertext by c.

Encsk(m) = c and Decsk(c) = m.

or (for public key schemes)...

Encpk(m) = c and Decsk(c) = m.

N.P. Smart
CyBoK: Cryptography Knowledge Area Slide 7

Digital Signatures and MACs
Another very important public key primitive is the digital signature,
with the associated secret key primitive being a MAC function.

Digital Signature:

Message + Alice’s Private Key = Signature
Message + Signature + Alice’s Public Key = YES/NO

Alice can sign a message using her private key, and anyone can
verify Alice’s signature, since everyone can obtain her public key.

MAC Functions:

Message + Secret Key = Tag
Message + Tag + Secret Key = YES/NO

Need the secret key to verify the tag.

N.P. Smart
CyBoK: Cryptography Knowledge Area Slide 8

Notation

Henceforth we denote a public/secret key pair (pk, sk).

A message is denoted m, a signing algorithm is denoted Sig, a
verification algorithm is denoted Verify, a signature is denoted s.

Sigsk(m) = s and Verifypk(s,m) = YES/NO.

In the case of MACs we have the tag production algorithm is MAC
and the equations are

MACsk(m) = t and Verifysk(t ,m) = YES/NO.

N.P. Smart
CyBoK: Cryptography Knowledge Area Slide 9

Security Definitions

N.P. Smart
CyBoK: Cryptography Knowledge Area Slide 10

Security Definitions

In much of cryptography security is defined by a game.

The game is between a Challenger and an Adversary.

The Adversary is given
I A goal to achieve (see OW/IND/UF etc)
I Powers it can use (see CPA/CCA/CMA)
I Restrictions on its operations (see ROM)

N.P. Smart
CyBoK: Cryptography Knowledge Area Slide 11

Security Goals for Encryption

There are two main security goals
I OW: One way security. Can you decrypt a message?
I IND: Indistinguishability. Can you learn any information about a

message?

The later is the one we aim for.

The former is what primitives sometimes achieve.

N.P. Smart
CyBoK: Cryptography Knowledge Area Slide 12

OW Security: Symmetric Key Case

Perhaps the most basic notion of security could be defined by the
following game

A

m ∈ P

c∗ = ek (m) -

m′ �

N.P. Smart
CyBoK: Cryptography Knowledge Area Slide 13

IND-Security

This is the preferred security definition

Suppose that the challenger is given an encryption function f
I Defined by some key, i.e. f (m) = ek (m).

The attacker chooses two messages m1 and m2 of equal length.

The challenger gives the attacker given a ciphertext c such that

c = f (m1) or c = f (m2).

The goal is for the adversary to work out which message was
encrypted.

N.P. Smart
CyBoK: Cryptography Knowledge Area Slide 14

IND-Security: Symmetric Key Case

It is simpler to present this in terms of pictures representing a game
played with the adversary A

A

b ∈ {0,1}

m0,m1 �

c∗ = ek (mb) -

b′ �

The ciphertext c∗ is called the target ciphertext.

Remember we must have |m0| = |m1|.

N.P. Smart
CyBoK: Cryptography Knowledge Area Slide 15

IND-Security (Public Key Case)

For the public key case there is one main difference in the picture:

A

b ∈ {0,1}

pk -

m0,m1 �

c∗ = epk (mb) -

b′ �

N.P. Smart
CyBoK: Cryptography Knowledge Area Slide 16

Adversarial Powers
IND and OW are definitions of adversarial goals.

I They say nothing about what powers we give the adversary
We define powers by giving the adversary access to various oracles.

Passive Attack
The adversary is given no oracles (the pictures are as above)

Chosen Plaintext Attack (CPA)
The adversary can encrypt any message of his choosing.

Chosen Ciphertext Attack (CCA)
The adversary can decrypt any message of his choosing, except he
is not allowed to decrypt c∗.

We say a scheme is IND-PASS, IND-CPA, IND-CCA, OW-PASS,
OW-CPA, OW-CCA etc.

N.P. Smart
CyBoK: Cryptography Knowledge Area Slide 17

IND-CPA Symmetric Case

A

b ∈ {0,1}

m0,m1 �

c∗ = ek (mb) -

b′ �

��
�1m OE
���)c = ek (m)

N.P. Smart
CyBoK: Cryptography Knowledge Area Slide 18

IND-CCA Symmetric Case

A

b ∈ {0,1}

m0,m1 �

c∗ = ek (mb) -

b′ �

��
�1m OE
���)c = ek (m)

PPPq
c 6= c∗

ODPP
Pi

m = dk (c)

N.P. Smart
CyBoK: Cryptography Knowledge Area Slide 19

IND-CPA Public Key Case

A

b ∈ {0,1}

pk -

m0,m1 �

c∗ = epk (mb) -

b′ �

N.P. Smart
CyBoK: Cryptography Knowledge Area Slide 20

IND-CCA Public Key Case

A

b ∈ {0,1}

pk -

m0,m1 �

c∗ = epk (mb) -

b′ �
PPPq

c 6= c∗

ODPP
Pi

m = dsk (c)

N.P. Smart
CyBoK: Cryptography Knowledge Area Slide 21

MAC Security Game

One can similarly define a security game for MAC security

A

k ← KeyGen()

m∗, t∗�

Win if Verifyk (t∗,m∗)
= valid and m∗ /∈ L

L ← ∅
m ∈ P -

OMack L ← L ∪ {m}
�

t ← Mack (m)

t ,m ∈ T× P -
OVerifyk

� v ← Verifyk (t ,m)

Figure : Security game for MAC security EUF-CMA

N.P. Smart
CyBoK: Cryptography Knowledge Area Slide 22

Signature Security Game

And for signature security

A

(pk, sk)← KeyGen()
pk -

m∗, s∗�

Win if Verifypk(s∗,m∗)
= valid and m∗ /∈ L

L ← ∅

m ∈ P -
OSigsk L ← L ∪ {m}

�
t ← Sigsk(m)

Figure : Security game for signature security EUF-CMA

N.P. Smart
CyBoK: Cryptography Knowledge Area Slide 23

Symmetric Key Primitives and Schemes

N.P. Smart
CyBoK: Cryptography Knowledge Area Slide 24

Block Ciphers
The basic building block of modern symmetric primitives is a block
cipher

This is a keyed function which maps a block of bits to another block
of bits

ek : {0,1}b −→ {0,1}b

The “standard” block cipher is the AES (Advanced Encryption
Standard).

I Has a block length of b = 128.
I Has a key length of 128, 192 or 256 bits.

On its own a block cipher is useless, it needs to be combined into a
mode of operation

N.P. Smart
CyBoK: Cryptography Knowledge Area Slide 25

Security of Symmetric Modes of Operation: ECB

m1

?

ek

?c1

m2

?

ek

?c2

m3

?

ek

?c3

ECB Mode is OW-PASS and OW-CPA.

ECB Mode is not OW-CCA, IND-PASS, IND-CPA, IND-CCA.

N.P. Smart
CyBoK: Cryptography Knowledge Area Slide 26

Security of Symmetric Modes of Operation: CBC

IV-

m1

?⊕
?

ek

?c1

-

m2

?⊕
?

ek

?c2

-

m3

?⊕
?

ek

?c3

CBC Mode is OW-CPA and IND-CPA.
I With all zero IV it is only IND-PASS.

CBC Mode is not OW-CCA or IND-CCA.

So CBC is better than ECB at least!

N.P. Smart
CyBoK: Cryptography Knowledge Area Slide 27

Security of Symmetric Modes of Operation: CTR

IV + 1

?

ek

?m1-⊕
?

c1

IV + 2

?

ek

?m2-⊕
?

c2

IV + 3

?

ek

?m3-⊕
?

c3

CTR Mode is OW-CPA and IND-CPA.
I With all zero IV it is only IND-PASS.

CTR Mode is not OW-CCA or IND-CCA.

N.P. Smart
CyBoK: Cryptography Knowledge Area Slide 28

Producing an IND-CCA Mode of Operation

CBC and CTR Mode were only IND-CPA.
I Problem was the adversary could write down a valid ciphertext

which was related to the target one
I He then calls his decryption oracle on this valid ciphertext

Idea is to stop the adversary writing down a valid ciphertext.

To construct an IND-CCA secure scheme we take
I An IND-CPA secure symmetric cipher E and
I An EUF-PASS secure MAC function MAC.
I The key for our new scheme E∗ consists of a key k0 for E and a

key k1 for MAC.

N.P. Smart
CyBoK: Cryptography Knowledge Area Slide 29

IND-CCA Symmetric Encryption
The function Ek

∗(m) is then constructed as follows.
I Split k into k0 and k1.
I c0 = Ek0(m).
I c1 = MACk1(c0).
I Return c = (c0, c1).

Decryption, defined as Dk
∗(c), is then constructed as follows.

I Split k into k0 and k1.
I Split c into c0 and c1.
I m = Dk0(c0).
I c′1 = MACk1(c0).
I If c′1 6= c1 then return ⊥.
I Return m.

N.P. Smart
CyBoK: Cryptography Knowledge Area Slide 30

Public Key Encryption Schemes

N.P. Smart
CyBoK: Cryptography Knowledge Area Slide 31

RSA - Key Generation

Key generation:
I Generate two large primes p and q of at least 1024 bits.
I Compute N = p · q and φ(N) = (p − 1)(q − 1).
I Select a random integer e, 1 < e < φ(N), such that

gcd(e, (p − 1)(q − 1)) = 1.

I Using the XGCD compute the unique integer d , 1 < d < φ(N)
with

e · d ≡ 1 (mod φ(N)).

Public key = (N,e) which can be published.
Private key = (d ,p,q) which needs to be kept secret.

N.P. Smart
CyBoK: Cryptography Knowledge Area Slide 32

The RSA Function

The two keys define a trapdoor one-way permutation

RSA :

{
(Z/NZ)∗ −→ (Z/NZ)∗

m 7−→ me (mod N)

with trapdoor inverse...

RSA−1 :

{
(Z/NZ)∗ −→ (Z/NZ)∗

c 7−→ cd (mod N)

The RSA-Problem is to invert the RSA function when you are not
given d .

The Text-Book RSA encryption scheme is to encrypt messages
using the RSA function, and decrypt them with the inverse function.

N.P. Smart
CyBoK: Cryptography Knowledge Area Slide 33

Discrete Logarithms

Suppose you are given a finite abelian group G of prime order q
generated by P, so q · P = O.

The Discrete Logarithm Problem (DLP) is to invert the function

DLP :

{
(Z/qZ)∗ −→ G

m 7−→ m · P

This problem is believed to be hard if you select your group correctly
I e.g. certain Elliptic curve groups

N.P. Smart
CyBoK: Cryptography Knowledge Area Slide 34

Diffie–Hellman Problems

The Computational Diffie–Hellman (CDH) problem is given the tuple

(P,Px ,Py) = (P, x · P, y · P)

to find
Pz = (x · y) · P.

The Decision Diffie–Hellman (DDH) problem is given the tuple

(P,Px ,Py ,Pz) = (P, x · P, y · P, z · P)

where z is selected with probability 1/2 to be uniformly random, and
with probability 1/2 to be equal to x · y (mod q). Then determine
which case you are in.

N.P. Smart
CyBoK: Cryptography Knowledge Area Slide 35

ElGamal Encryption

The basic DLP based encryption algorithm is ElGamal

Key Generation:
I Secret Key: x ∈ Z/qZ.
I Public Key: Q ← x · P.

Encryption: To encrypt M ∈ G.
I Generate a random ephemeral key k ∈ Z/qZ.
I Compute C1 ← k · P and C2 ← M + k ·Q.

Decryption:
I −x · C1 + C2 = (−x · k · P) + M + k ·Q = M.

N.P. Smart
CyBoK: Cryptography Knowledge Area Slide 36

ElGamal Encryption

ElGamal is OW-CPA if the CDH problem is hard

ElGamal is IND-CPA if the DDH problem is hard.

Thus neither Text-Book RSA or ElGamal is IND-CCA
I Which is what we want

They also have restricted (small) message spaces

To solve these problems we use a hybrid cipher approach...

N.P. Smart
CyBoK: Cryptography Knowledge Area Slide 37

KEMs and DEMs

Transmitting a key is easier than transmitting a message

As this is the main purpose of public key encryption it is worth just
concentrating on this only

Such a mechanism is called a Key Encapsulation Mechanism

The data is then transmitted using a Data Encapsulation Mechanism

I Think of this as an IND-CCA symmetric cipher

N.P. Smart
CyBoK: Cryptography Knowledge Area Slide 38

Key Encapsulation Mechanisms

Key Encapsulation Mechanism
A KEM is an algorithm which takes as input a public key pk and
outputs a pair (k , c) where

I k ∈ K is a key for a symmetric encryption function
I c is an encapsulation (encryption) of k using pk .

The inverse, decapsulation algorithm takes as input (c, sk) where
I c is an encapsulation under pk of some key k
I sk is the private key corresponding to pk .

It outputs
I either ⊥ if c is an invalid encapsulation, or
I k if c is an encapsulation of the key k .

N.P. Smart
CyBoK: Cryptography Knowledge Area Slide 39

A KEM-DEM Hybrid Cipher
Using the primitives we have been discussing, a KEM-DEM hybrid
encryption scheme can then be created as follows.

Encryption
I (k , c) = KEM(pk)
I e = DEM(m, k)
I Return (c,e)

Decryption
I k = KEM−1(c, sk)
I If k =⊥ then return ⊥
I m = DEM−1(e, k)
I If m =⊥ then return ⊥
I Return m

N.P. Smart
CyBoK: Cryptography Knowledge Area Slide 40

Constructing a KEM

So the only (public key related) thing we have not shown is how to
construct a KEM from a basic primitive.

We will now do this assuming the basic primitive is a trapdoor
permutation like RSA

fpk : X −→ X .

The KEM which we will call FDH-KEM (this is not a standard name)
uses a hash function

H : X −→ K.

When used with RSA this is called RSA-KEM

N.P. Smart
CyBoK: Cryptography Knowledge Area Slide 41

FDH-KEM

Encapsulation
I Generate x ∈ X at random.
I Compute c = fpk (x).
I Compute k = H(x).
I Output (k , c).

Decapsulation
I Given c compute x = f−1

sk (c).
I Output k = H(x).

N.P. Smart
CyBoK: Cryptography Knowledge Area Slide 42

DH-KEM

The following is DH-KEM (or DHIES-KEM), the standard KEM used
with DLP based schemes:

I Private Key: x
I Public Key: Q = x · P
I Encapsulation: C = r · P, for r ∈ Z/qZ.
I Encapsulated Key: k = H(r ·Q)

I Decapsulation: k = H(x · C)

The function H is a hash function which maps elements in the group
to keys of the DEM we aim to use.

N.P. Smart
CyBoK: Cryptography Knowledge Area Slide 43

Public Key Signature Schemes

N.P. Smart
CyBoK: Cryptography Knowledge Area Slide 44

RSA Based Signing

Using a cryptographic hash function H it is possible to create a
signature scheme based on RSA.

Suppose we have an RSA key pair (e,N), (d ,N) such that N has
n-bits.

We use a hash function H : {0,1}∗ → (Z/NZ)∗.

To sign m ∈ {0,1}∗:
I Compute H(m).
I Compute signature by ’decrypting’ H(m), i.e. by computing

s = H(m)d mod N.

N.P. Smart
CyBoK: Cryptography Knowledge Area Slide 45

RSA Based Signing

To verify signature s on message m:

I ’Encrypt’ s to recover h′ = se mod N.
I Compute H(m).
I Check whether h′ = H(m).
I If h′ = H(m), accept the signature. Otherwise reject.

This construct is called RSA-FDH as the codomain of the hash
function is the entire set (Z/NZ)∗.

N.P. Smart
CyBoK: Cryptography Knowledge Area Slide 46

DLP Based Signatures
The Digital Signature Algorithm makes use of a finite abelian group
G of prime order q generated by an element P

Each user generates a secret signing key x ∈ Z/qZ at random and
such that

I 0 < x < q.

Public key is Q where
Q = [x] · P.

We assume a public “conversion” function

f : G −→ Z/qZ.

The exact function depends on the group G being used.

N.P. Smart
CyBoK: Cryptography Knowledge Area Slide 47

DSA : Signing

To sign a message m the signer proceeds as follows.

I Signer computes a hash value e = H(m).
I Signer chooses a random ephemeral key: 0 < k < q.
I Signer computes r = f ([k] · P).
I Finally, signer computes

s = (e + x · r)/k (mod q).

The signature on m is the pair (r , s).

N.P. Smart
CyBoK: Cryptography Knowledge Area Slide 48

DSA : Verification

To verify a signature (r , s) on a message m under public key Q, the
verifier proceeds as follows.

The verifier computes the following.
I e = H(m)

I a = e/s (mod q)
I b = r/s (mod q)

The verifier accepts the signature if and only if v = r where

v = f ([a] · P + [b] ·Q).

N.P. Smart
CyBoK: Cryptography Knowledge Area Slide 49

Conclusion

N.P. Smart
CyBoK: Cryptography Knowledge Area Slide 50

Conclusion

We have covered the basics of cryptography, but there is much more
to be found in the CyBoK Knowledge Area document

I Key Agreement Protocols
I Authentication Protocols
I Zero-Knowledge Protocols
I Multi-Party Computation
I Block Chain Applications
I Private Information Retrieval
I Implementation Aspects
I Fully Homomorphic Encryption
I

N.P. Smart
CyBoK: Cryptography Knowledge Area Slide 51

	Introduction
	Encryption, Signatures and MACs
	Security Definitions
	Symmetric Key Primitives and Schemes
	Public Key Encryption Schemes
	Public Key Signature Schemes
	Conclusion

