

Using Malware Analysis to Improve Security Requirements Case
Study

Nancy R. Mead, Carnegie Mellon University
Jose A. Morales, Carnegie Mellon University
Gregory P. Alice, Carnegie Mellon University

April 2021

2

Copyright 2014 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under
Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the
Software Engineering Institute, a federally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of the United States Department of
Defense.

This report was prepared for the
SEI Administrative Agent
AFLCMC/PZM
20 Schilling Circle, Bldg 1305, 3rd floor
Hanscom AFB, MA 01731-2125

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE
ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS.
CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON
UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution except as restricted
below.

Internal use:* Permission to reproduce this material and to prepare derivative works from this
material for internal use is granted, provided the copyright and “No Warranty” statements are
included with all reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely
distributed in written or electronic form without requesting formal permission. Permission is
required for any other external and/or commercial use. Requests for permission should be
directed to the Software Engineering Institute at permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

3

Using Malware Analysis to Improve Security Requirements Case Study
Background
Several approaches for incorporating security into the software development lifecycle (SDLC)
have been documented. Most of these enhancements have focused on defining enforceable
security policies in the requirements gathering phase and defining secure coding practices in the
design phase. Although these practices are helpful, cyberattacks based on core flaws have
persisted.

Major corporations such as Microsoft, Adobe, Oracle, and Google have made their security
lifecycle practices public (Lipner & Howard, 2005; Adobe, 2014; Oracle, 2014; Google, 2012).
Collaborative efforts such as the Software Assurance Forum for Excellence in Code
(SAFECode) (Simpson, 2008) have also documented recommended practices. These practices
have become de facto standards for incorporating security into the SDLC. These security
approaches are limited by their reliance on security policies such as access control, read/write
permissions, and memory protection, and their reliance on standard secure code writing practices
such as bounded memory allocations and buffer overflow avoidance. These processes are helpful
in developing secure software products, but—given the number of successful exploits that
occur—they fall short. For example, techniques such as design reviews, risk analysis, and threat
modeling typically do not incorporate lessons learned from the vast landscape of known
successful cyberattacks and their associated malware.

We propose that current SDLC models can be further enhanced by including misuse cases
derived from malware analysis. Our focus is on the vulnerabilities resulting from design flaws.
We also propose an open research question: Are specific types of systems prone to specific
classes of malware exploits? If this is the case, developers can create future systems that are
more secure, from inception, by including use cases that address previous attacks.
The extensive and well-documented history of known cyberattacks (Beuhring, 2014; Bisiaux,
2014; McMahon, 2014; Sood, 2013; Tankard, 2011) can be used to enhance current SDLC
models. Specifically, a known malware sample can be analyzed to determine if it exploits a
vulnerability. The vulnerability can be studied to determine whether it results from a code flaw
or a design flaw. For design flaws, we can attempt to determine the overlooked requirements that
resulted in the vulnerability. We make this determination by documenting the misuse case that
corresponds to the exploit scenario and creating the corresponding use case. Such use cases
represent overlooked security requirements that should be applied to future development to avoid
similar design flaws that lead to exploitable vulnerabilities. This process of applying malware
analysis to ultimately create new use cases and their corresponding security requirements can
help enhance the security of future systems.

We recommend a process for creating malware-analysis-driven use cases that incorporates
malware analysis into a feedback loop for security requirements engineering on future projects
and not merely into patch development for current systems. Such a process can be implemented
in the following steps and is illustrated in Figure 1.

4

Figure 1. Malware-Analysis-Driven Use-Case Creation

1. A malicious code sample is analyzed both statically and dynamically.
2. Analysis reveals the malware is exploiting a vulnerability that results from either a code

flaw or a design flaw.
3. In the case of a design flaw, the exploitation scenario corresponds to a misuse case that

should be described. The misuse is analyzed to determine the overlooked use case.
4. The overlooked use case corresponds to an overlooked security requirement.
5. The use case and corresponding requirements statement is added to a requirements

database.
6. The requirements database is used in future software development projects.

Steps 1 and 2 include standard approaches to analyzing a malicious code sample. The specific
analysis techniques used in Steps 1 and 2 are beyond the scope of this paper. In Step 2, the
analysis is used to determine whether the exploited vulnerability is the result of a code flaw or a
design flaw. Typically this can be determined by detailed analysis of the exploit code. Of course,
this presumes that the malware is detected, which in itself is a challenge. Step 2 illustrates the
advantage of malware analysis by leveraging the exploit code to determine the flaw type.
Standard vulnerability discovery and analysis without malware analysis excludes exploit code
and may make flaw type identification less straightforward. Step 3 details how the exploit was
carried out in the form of a misuse case, which provides the needed information to determine the
overlooked use case that led to the design flaw.

In Step 4, the overlooked use case is the basis for deciding what may have been the overlooked
requirement(s) at the time the software system was created that led to the design flaw. These are
the requirements that should have been included in the original SDLC of the software system,
which would have prevented creation of the design flaw that led to the exploited vulnerability.
Steps 5 and 6 record the overlooked use case and corresponding requirement(s) for use in future
SDLC cycles. This process is meant to enhance future SDLC cycles in a simplified manner by
providing known overlooked requirements that led to exploited vulnerabilities. Including these
requirements in future SDLC cycles helps avoid the creation of exploitable vulnerabilities,
resulting in software systems that are more secure.

It should be noted that the new security requirement(s) may conflict with or render null other
requirements that either already appear in an existing software product or are under consideration
for a new software product. This means that the specification needs to be revisited and tradeoff
analysis may be needed to determine which requirements to add/delete/modify.

5

Case Study Overview
This case study explores the proposed process of analyzing a malware sample. Using a sample of
malware that steals data from Android mobile devices, we determine the exploitation scenario
used by the malware exploit. Our investigation into the consequences of this malware exploit
reveals a design flaw in a mobile application that could compromise user data. We scrutinize the
design flaw to determine the applicable misuse cases and use those misuse cases to ascertain the
missing security requirements to be used on future mobile applications for the Android platform.
We explored the proposed malware-analysis-driven use-case creation method by studying
impacts of a variation of malware for Android and its potential exploit of an open source
Android email client called K-9 Mail. The steps outlined in Figure 2 resulted in the following
activities and findings:

Step 1: A malicious code sample is analyzed both statically and dynamically.
To identify malware that can target the K-9 Mail application, a survey of Android malware was
conducted using publicly available exploit databases from major computing security firms. The
databases were examined for Android malware which compromises the security model of the
application layer for a viable candidate. The malicious code sample selected for this case study is
DroidCleaner, which is a Trojan variety of malware. Since application security practitioners may
not be experts in malware analysis, literature from industry experts who conduct static and
dynamic analysis of malicious code was studied to determine the impacts of the malware on the
application’s security posture.

Security researchers at Kaspersky Lab analyzed this malware and found that, while it
masquerades as a utility to free memory on Android devices, it secretly sends premium-rate SMS
messages and carries the capability to infect PCs when the Android device is connected. One of
the key features of DroidCleaner is its capability to upload all of the contents of the device
external storage directories to a remote server under the control of the malware designers (Paoli,
2013). Dynamic analysis of the malware conducted by FortiGuard’s Threat Research and
Response shows the commands issued by DroidCleaner to the Android OS, including a request
to send a directory listing of the External Storage area of the device to a remote server followed
by a repeated transfer requests for each file in External Storage to the remote server (Fortinet,
2013). The capability to upload the device external storage to a hacker’s server has significant
ramifications for mobile application developers.

Step 2: Analysis reveals the malware is exploiting a vulnerability that results from either a
code flaw or a design flaw.
Though DroidCleaner was not designed to directly target the K-9 Mail application, it is a data-
stealing application. What the malware designers did with the contents of the uploaded data is
unknown, but the data was likely examined for valuable private information. Future attacks using
a similar attack vector for stealing and extracting value from data are likely.

Android is derived from the Linux kernel and inherits many security features from Linux.
Application sandboxing in Android is achieved by running each application as a separate user in
the underlying Linux kernel (Google, 2014). This design choice leverages Linux’s ability to
separate application data, provide secure inter-process communications, and perform process

6

isolation. Because most Android OS functions operate at application level permissions (Google,
2014), cracking OS libraries does not give an attacker a foothold into other applications.
Android provides each application with a data storage area called internal storage, which is
controlled by the application’s ID (Google, 2014) much in the way a user in UNIX has control
over his/her personal Home directory. Android also has a general storage area called external
storage, which may be in the form of removable media or an emulated storage area in the
device’s file system. In contrast to the stringent controls for internal storage, the external storage
area is granted permissions at the top level (Ahmad, Musa, Nadarajah, Hassan, & Othman,
2013). That is, if read access is required for a single directory in external storage, read access
must be granted to the entire storage area.

At installation time, applications are assigned the permissions requested during the install
process. As a result of this permissions mechanism, software is easier to implement, as the
application will never have a permission-denied error; however, this mechanism has the
disadvantage of forcing users to fully trust the software in order to do an installation (La Polla,
Martinelli, & D. Sgandurra, 2013). Users are more likely to grant access to quickly install the
application rather than scrutinize the requested permissions, thereby granting malware the
permissions it needs to wreak havoc.

From the perspective of the K-9 Mail application, there are three primary methods in which
Android’s robust security model will fail to protect the application data:

1. The application mistakenly grants broad access to the application’s data storage area.
2. The application stores data outside of its application storage area (e.g., in external

storage).
3. A process other than the Linux kernel obtains root privileges. This scenario can occur

when a user “roots” their device or when a Trojan contains an attack against the OS.
Malware designed to obtain root privileges typically uses the same code available for
ambitious Android users who wish to root their device.

K-9 Mail does not grant broad access to its application storage area, so it is not vulnerable to the
first issue above. K-9 Mail does allow users to save email data in the external storage area, so it
is vulnerable to the second issue. The third issue occurs when the entire Android security model
has been compromised. There is very little the K-9 Mail application can do when the entire
platform on which it is operating is compromised, much in the way fire-resistant fabric will not
hold up in a house that is on fire.

DroidCleaner is able to defeat K-9 Mail’s security model when the application is configured to
store email in external storage. In order to obtain external storage drive-level permissions,
DroidCleaner asks the user for permission to access the external storage and network at the time
of installation. When permissions are granted, DroidCleaner has access to all the data stored in
this storage area (Ahmad, Musa, Nadarajah, Hassan, & Othman, 2013). Internet permissions
open up network access, granting DroidCleaner a channel for transferring data to the hacker. For
K-9 Mail users configured to use External Storage, the DroidCleaner malware is capable of
uploading the K-9 Mail data stored on the device.

7

Assuming a K-9 Mail user was victimized by DroidCleaner, and the data from his/her External
Storage was uploaded to a hacker’s computer, the hacker would have access to the data stored by
K-9 Mail in external storage. The following section examines the impacts of such an exploit. The
exploit was simulated by changing the settings in the K-9 Mail client for sample email accounts
to use External Storage, and the newly visible directory in <external storage>/Android/data was
observed, copied to a PC, and examined. K-9 Mail stores the following data in External Storage:

Figure 2. K-9 Mail Local Email Storage Files

Though the data in Figure 2 appears to be cryptic when viewed on the phone, the bottom three
files are Sqlite databases corresponding to email accounts. The directories correspond to the
databases. Figure 3 shows the contents of one of the directories.

8

Figure 3. K-9 Mail Local Attachment Files

The directory contains a file with no extension, but examination reveals it corresponds to an
opened attachment.

To assess the damage from malware such as DroidCleaner, we examined the contents of the K-9
data directory using a PC. Figure 4 shows the results of this examination.

Figure 4. K-9 Mail Database Contents

9

The Sqlite database is not encrypted. When the files are transferred to a PC, the contents of the
email account display in clear text. Each row in the “html_content” column is a record in the
Sqlite database containing the HTML contents of the emails synced to the Android device. The
text “This is a secret message” is visible in clear text; the visibility of this test email
demonstrates the security flaw present in this design.

Furthermore, when the extension-less file “1” from the attachment directory is loaded onto a PC
and opened in its native application (Microsoft Word), it displays in clear text (it is also not
encrypted). The ability of K-9 data files to be copied from Android External Storage to another
location by DroidCleaner or other malware and read in plaintext represents a confidentiality
vulnerability. K-9 Mail users who are victims of DroidCleaner or a similar data-stealing Trojan
are at risk of having their email contents exposed.

The storage of the email contents and attachments in the external storage area of Android
without any protective measures is a design flaw since Android does not provide operating
system level enforcement of directory permissions for the external storage area. Trojans can
simply request read access to the external storage area to gain access to all of the locally stored
contents for K-9 Mail.

Step 3: In the case of a design flaw, the exploitation scenario corresponds to a misuse case
that should be described. The misuse is analyzed to determine the overlooked use case.
There are two exploitation scenarios exposed by DroidCleaner. The first exploitation scenario is
the ability of a hacker to upload and view email stored on the Android device. The second
exploitation scenario is the ability of a hacker to upload to their own server and view attachments
stored on the Android device. In both exploitation scenarios, the user sets K-9 Mail to store data
in the external storage area, and a data-stealing Trojan or other attack is conducted against the
device.

Misuse Case 1 – The contents of emails stored on the device are stolen. The misuse case in
Figure 5 was developed based on the exploitation scenario that allows a hacker to view the
contents of emails stored on the Android device.

In this misuse case, the user keeps his/her email on the phone’s storage drive. The hacker gains
access to the phone’s storage by compromising the operating system. A common way for the
hacker to gain access to the phone is by tricking the user into installing a Trojan, which is then
granted access to the drive via the user during the install process. Once the Trojan gains access to
the drive, the Hacker is able to use the Trojan to download files, including the email contents
file.

10

Figure 5. Misuse Case 1

Misuse Case 2 – Attachments stored on the device are stolen. In the misuse case shown in
Figure 6, the user stores his/her attachments, which contain confidential information, on the
external storage of their device. The hacker exploits the Android operating system to gain access
to the attachments in storage. This can be accomplished through a data-stealing attack. The
hacker then uploads the attachments to his/her own computer using the exploit on the Android
device.

11

Figure 6. Misuse Case 2

Step 4: The overlooked use case corresponds to an overlooked security requirement.
We analyzed the misuse cases and developed the security requirements in Table 1.

Table 1. Security Requirements Derived from Use Cases
Requirement
1

1.1 Email contents shall be protected from unauthorized access.
Email contents shall be stored in an area available only to the
application (Android internal storage default configuration) and/or
protected through encryption that cannot be decrypted using data
available in Android external storage.
1.2 Processes with access to external storage shall not have the
ability to view K-9 Mail contents in clear text.
If External Storage is selected, a warning message or mitigation
such as encryption is recommended.

Derived From Misuse Case 1

Requirement
2

1.1 Attachments shall be protected from unauthorized access.
Attachments shall be stored in an area available only to the
application (Android internal storage default configuration) and/or
protected through encryption that cannot be decrypted using data
available in Android external storage.
1.2 Processes with access to External Storage shall not have the
ability to view K-9 Mail attachments in clear text.
If external storage is selected, a warning message or mitigation
such as encryption is recommended.

12

Derived From Misuse Case 2

Step 5: The use case and corresponding requirements statement is added to a requirements
database.
The scope of the case study covers only the development of security requirements from malware
analysis, so the developed requirements are not captured in a requirements database.

Step 6: The requirements database is used in future software development projects.
The case study does not have an associated mobile development project. There is no plan to use
requirements developed in this case study in future software development projects, however the
K-9 owners were notified of the flaw. There was no response to the email notification, so an
existing change request for encrypting data potentially exposed by the flaw was updated to
request a higher priority based upon the current existence of exploits.

Student Instructions
In your assignment you were given references to an actual system and malware that successfully
attacked it. With these artifacts, work through all the steps of the malware analysis process.
Document the results of each step. Discuss whether the new requirements should have been
identified before the system was successfully attacked. Also discuss how the requirements, if
implemented properly, could prevent successful attacks against similar systems.

13

Instructor notes
This case study was developed by Greg Alice (Alice & Mead, 2014), when he was a student
doing an independent study with Nancy Mead (Mead & Morales, 2014; Mead, Morales, & Alice,
2015) at Carnegie Mellon University. It could be used as a classroom example, complete with
the solution. Alternatively, a student assignment could be extracted from the early part of the
case study, and the students could be asked to work through all steps of the analysis process.
Note that if they are given this as an assignment, students should not be given the SEI Report
(Alice & Mead 2014) or the IJSSE article (Mead, Morales, & Alice 2015) until they have
completed the assignment, because it contains a solution.

However, a better exercise for students would be to pick a recent published malware example, a
system that was successfully attacked by it and then have the students work through all steps of
the analysis process shown in Table 1, keeping in mind that they are being asked to generate
overlooked security requirements, vs. writing a patch for the hacked system. Most likely the case
study work would be best assigned to a team over several weeks, or to an individual student as
part of an independent study activity. A student who was already in the workforce, could
potentially work on a case study in an area that was important to the student’s organization.

Example solution
A solution for the K-9 case study is provided with the Case Study description. Once again, the
entire case study could be used as a classroom example OR the students could learn the method
and then be given the general parameters of the case study. They would then work through the
steps to come up with a solution.

14

References
Adobe Systems, Inc. (2014). Security/Proactive Efforts. Retrieved November 12, 2014 from
 http://www.adobe.com/security/proactive-efforts.html
Ahmad, M., Musa, N., Nadarajah, R., Hassan, R. & Othman, N. (2013). Comparison Between

Android and iOS Operating System in terms of Security. 8th International Conference on
Information Technology in Asia (CITA), Bangi, Selangor, Malaysia.

Alice, Gregory & Mead, Nancy. Using Malware Analysis to Tailor SQUARE for Mobile
Platforms (CMU/SEI-2014-TN-018). Software Engineering Institute, Carnegie Mellon
University, 2014. http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=425994

Beuhring, A. & Salous, K. (2014). Beyond Blacklisting: Cyberdefense in the Era of Advanced
Persistent Threats. IEEE Security & Privacy, 12.5 (2014), 90-93.

Bisiaux, J-Y. (2014). DNS threats and mitigation strategies. Network Security 2014.7 (2014), 5-
9.

Fortinet, Inc. (2013, February). FortiGard Encyclopedia: Virus: Android/Claco.A!tr. Retrieved
November 12, 2014 from http://www.fortiguard.com/encyclopedia/virus/#id=4585895

Google. (2012). Google’s Approach to IT Security: A Google White Paper. Retrieved November
12, 2014 from
https://cloud.google.com/files/Google-CommonSecurity-WhitePaper-v1.4.pdf

Google. (2014). Android Security Overview. Retrieved November 12, 2014 from
https://source.android.com/devices/tech/security/

La Polla, M., Martinelli, F., & Sgandurra, D. (2013). A Survey on Security for Mobile Devices.
IEEE Communications Surveys & Tutorials, 446-471.

Lipner, S. & Howard, M. (2005, March). The Trustworthy Computing Security Development
Lifecycle. Retrieved November 12, 2014 from http://msdn.microsoft.com/en-
us/library/ms995349.aspx

McMahon, J. (2014). An Analysis of the Characteristics of Cyber Attacks. Discovery, Invention
& Application 1 (2014).

Mead, N.R., Morales J. A., Using Malware Analysis to Improve Security Requirements on
Future Systems, Evolving Security & Privacy Requirements Engineering (ESPRE)
Workshop, IEEE International Requirements Engineering Conference Proceedings,
August 25, 2014, pp. 37-42

Mead, N.R., Morales, J. A., Alice, G. P., A Method and Case Study for Using Malware Analysis
to Improve Security Requirements , International Journal of Secure Software
Engineering, IGI Publishing, 6(1), pp.1-23, January-March 2015 Oracle. (2014).
Software Security Assurance / Secure Development / Secure Coding Standards.
Retrieved November 12, 2014 from
http://www.oracle.com/us/support/assurance/development/secure-coding-
standards/index.html

Oracle. (2014). Software Security Assurance / Secure Development / Secure Coding Standards.
Retrieved November 12, 2014 from

http://www.adobe.com/security/proactive-efforts.html
http://www.fortiguard.com/encyclopedia/virus/#id=4585895
https://cloud.google.com/files/Google-CommonSecurity-WhitePaper-v1.4.pdf
https://source.android.com/devices/tech/security/
http://msdn.microsoft.com/en-us/library/ms995349.aspx
http://msdn.microsoft.com/en-us/library/ms995349.aspx
http://www.oracle.com/us/support/assurance/development/secure-coding-standards/index.html
http://www.oracle.com/us/support/assurance/development/secure-coding-standards/index.html

15

http://www.oracle.com/us/support/assurance/development/secure-coding-
standards/index.html

Paoli, C. (2013, February). New Android Malware Aims to Infect PCs. Redmond Magazine.
Retrieved November 12, 2014 from http://redmondmag.com/articles/2013/02/06/android-
malware-aims-to-infect-pc.aspx

Simpson, S. (ed). (2008, October). Fundamental practices for secure software development: a
guide to the most effective secure development practices in use today. SAFECode.
Retrieved November 12, 2014 from
http://www.safecode.org/publications/SAFECode_Dev_Practices1108.pdf

Sood, A. K., Enbody, R.J. & Bansal, R. (2013). Dissecting SpyEye–Understanding the design of
third generation botnets. Computer Networks 57.2 (2013), 436-450.

Tankard, C. (2011). Advanced Persistent threats and how to monitor and deter them. Network
security 2011.8 (2011),16-19.

http://redmondmag.com/articles/2013/02/06/android-malware-aims-to-infect-pc.aspx
http://redmondmag.com/articles/2013/02/06/android-malware-aims-to-infect-pc.aspx
http://www.safecode.org/publications/SAFECode_Dev_Practices1108.pdf

	Using Malware Analysis to Improve Security Requirements Case Study
	Nancy R. Mead, Carnegie Mellon University
	Jose A. Morales, Carnegie Mellon University
	Gregory P. Alice, Carnegie Mellon University
	Background
	Case Study Overview
	Student Instructions
	Instructor notes
	Example solution
	References
	Adobe Systems, Inc. (2014). Security/Proactive Efforts. Retrieved November 12, 2014 from
	http://www.adobe.com/security/proactive-efforts.html

