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Using Malware Analysis to Improve Security Requirements Case Study 
Background 
Several approaches for incorporating security into the software development lifecycle (SDLC) 
have been documented. Most of these enhancements have focused on defining enforceable 
security policies in the requirements gathering phase and defining secure coding practices in the 
design phase. Although these practices are helpful, cyberattacks based on core flaws have 
persisted. 
 
Major corporations such as Microsoft, Adobe, Oracle, and Google have made their security 
lifecycle practices public (Lipner & Howard, 2005; Adobe, 2014; Oracle, 2014; Google, 2012). 
Collaborative efforts such as the Software Assurance Forum for Excellence in Code 
(SAFECode) (Simpson, 2008) have also documented recommended practices. These practices 
have become de facto standards for incorporating security into the SDLC. These security 
approaches are limited by their reliance on security policies such as access control, read/write 
permissions, and memory protection, and their reliance on standard secure code writing practices 
such as bounded memory allocations and buffer overflow avoidance. These processes are helpful 
in developing secure software products, but—given the number of successful exploits that 
occur—they fall short. For example, techniques such as design reviews, risk analysis, and threat 
modeling typically do not incorporate lessons learned from the vast landscape of known 
successful cyberattacks and their associated malware. 
 
We propose that current SDLC models can be further enhanced by including misuse cases 
derived from malware analysis. Our focus is on the vulnerabilities resulting from design flaws. 
We also propose an open research question: Are specific types of systems prone to specific 
classes of malware exploits? If this is the case, developers can create future systems that are 
more secure, from inception, by including use cases that address previous attacks. 
The extensive and well-documented history of known cyberattacks (Beuhring, 2014; Bisiaux, 
2014; McMahon, 2014; Sood, 2013; Tankard, 2011) can be used to enhance current SDLC 
models. Specifically, a known malware sample can be analyzed to determine if it exploits a 
vulnerability. The vulnerability can be studied to determine whether it results from a code flaw 
or a design flaw. For design flaws, we can attempt to determine the overlooked requirements that 
resulted in the vulnerability. We make this determination by documenting the misuse case that 
corresponds to the exploit scenario and creating the corresponding use case. Such use cases 
represent overlooked security requirements that should be applied to future development to avoid 
similar design flaws that lead to exploitable vulnerabilities. This process of applying malware 
analysis to ultimately create new use cases and their corresponding security requirements can 
help enhance the security of future systems. 
 
We recommend a process for creating malware-analysis-driven use cases that incorporates 
malware analysis into a feedback loop for security requirements engineering on future projects 
and not merely into patch development for current systems. Such a process can be implemented 
in the following steps and is illustrated in Figure 1. 
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Figure 1. Malware-Analysis-Driven Use-Case Creation 
 
 

1. A malicious code sample is analyzed both statically and dynamically. 
2. Analysis reveals the malware is exploiting a vulnerability that results from either a code 

flaw or a design flaw.  
3. In the case of a design flaw, the exploitation scenario corresponds to a misuse case that 

should be described. The misuse is analyzed to determine the overlooked use case. 
4. The overlooked use case corresponds to an overlooked security requirement. 
5. The use case and corresponding requirements statement is added to a requirements 

database. 
6. The requirements database is used in future software development projects. 

 
Steps 1 and 2 include standard approaches to analyzing a malicious code sample. The specific 
analysis techniques used in Steps 1 and 2 are beyond the scope of this paper. In Step 2, the 
analysis is used to determine whether the exploited vulnerability is the result of a code flaw or a 
design flaw. Typically this can be determined by detailed analysis of the exploit code. Of course, 
this presumes that the malware is detected, which in itself is a challenge. Step 2 illustrates the 
advantage of malware analysis by leveraging the exploit code to determine the flaw type. 
Standard vulnerability discovery and analysis without malware analysis excludes exploit code 
and may make flaw type identification less straightforward. Step 3 details how the exploit was 
carried out in the form of a misuse case, which provides the needed information to determine the 
overlooked use case that led to the design flaw.  
 
In Step 4, the overlooked use case is the basis for deciding what may have been the overlooked 
requirement(s) at the time the software system was created that led to the design flaw. These are 
the requirements that should have been included in the original SDLC of the software system, 
which would have prevented creation of the design flaw that led to the exploited vulnerability. 
Steps 5 and 6 record the overlooked use case and corresponding requirement(s) for use in future 
SDLC cycles. This process is meant to enhance future SDLC cycles in a simplified manner by 
providing known overlooked requirements that led to exploited vulnerabilities. Including these 
requirements in future SDLC cycles helps avoid the creation of exploitable vulnerabilities, 
resulting in software systems that are more secure.   
 
It should be noted that the new security requirement(s) may conflict with or render null other 
requirements that either already appear in an existing software product or are under consideration 
for a new software product.  This means that the specification needs to be revisited and tradeoff 
analysis may be needed to determine which requirements to add/delete/modify.   
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Case Study Overview 
This case study explores the proposed process of analyzing a malware sample. Using a sample of 
malware that steals data from Android mobile devices, we determine the exploitation scenario 
used by the malware exploit. Our investigation into the consequences of this malware exploit 
reveals a design flaw in a mobile application that could compromise user data. We scrutinize the 
design flaw to determine the applicable misuse cases and use those misuse cases to ascertain the 
missing security requirements to be used on future mobile applications for the Android platform. 
We explored the proposed malware-analysis-driven use-case creation method by studying 
impacts of a variation of malware for Android and its potential exploit of an open source 
Android email client called K-9 Mail. The steps outlined in Figure 2 resulted in the following 
activities and findings: 
 
Step 1: A malicious code sample is analyzed both statically and dynamically. 
To identify malware that can target the K-9 Mail application, a survey of Android malware was 
conducted using publicly available exploit databases from major computing security firms. The 
databases were examined for Android malware which compromises the security model of the 
application layer for a viable candidate. The malicious code sample selected for this case study is 
DroidCleaner, which is a Trojan variety of malware. Since application security practitioners may 
not be experts in malware analysis, literature from industry experts who conduct static and 
dynamic analysis of malicious code was studied to determine the impacts of the malware on the 
application’s security posture.  
 
Security researchers at Kaspersky Lab analyzed this malware and found that, while it 
masquerades as a utility to free memory on Android devices, it secretly sends premium-rate SMS 
messages and carries the capability to infect PCs when the Android device is connected. One of 
the key features of DroidCleaner is its capability to upload all of the contents of the device 
external storage directories to a remote server under the control of the malware designers (Paoli, 
2013).  Dynamic analysis of the malware conducted by FortiGuard’s Threat Research and 
Response shows the commands issued by DroidCleaner to the Android OS, including a request 
to send a directory listing of the External Storage area of the device to a remote server followed 
by a repeated transfer requests for each file in External Storage to the remote server (Fortinet, 
2013). The capability to upload the device external storage to a hacker’s server has significant 
ramifications for mobile application developers. 
 
Step 2: Analysis reveals the malware is exploiting a vulnerability that results from either a 
code flaw or a design flaw.  
Though DroidCleaner was not designed to directly target the K-9 Mail application, it is a data-
stealing application. What the malware designers did with the contents of the uploaded data is 
unknown, but the data was likely examined for valuable private information. Future attacks using 
a similar attack vector for stealing and extracting value from data are likely.  
 
Android is derived from the Linux kernel and inherits many security features from Linux. 
Application sandboxing in Android is achieved by running each application as a separate user in 
the underlying Linux kernel (Google, 2014). This design choice leverages Linux’s ability to 
separate application data, provide secure inter-process communications, and perform process 
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isolation. Because most Android OS functions operate at application level permissions (Google, 
2014), cracking OS libraries does not give an attacker a foothold into other applications.  
Android provides each application with a data storage area called internal storage, which is 
controlled by the application’s ID (Google, 2014) much in the way a user in UNIX has control 
over his/her personal Home directory. Android also has a general storage area called external 
storage, which may be in the form of removable media or an emulated storage area in the 
device’s file system. In contrast to the stringent controls for internal storage, the external storage 
area is granted permissions at the top level (Ahmad, Musa, Nadarajah, Hassan, & Othman, 
2013). That is, if read access is required for a single directory in external storage, read access 
must be granted to the entire storage area. 
 
At installation time, applications are assigned the permissions requested during the install 
process. As a result of this permissions mechanism, software is easier to implement, as the 
application will never have a permission-denied error; however, this mechanism has the 
disadvantage of forcing users to fully trust the software in order to do an installation (La Polla, 
Martinelli, & D. Sgandurra, 2013). Users are more likely to grant access to quickly install the 
application rather than scrutinize the requested permissions, thereby granting malware the 
permissions it needs to wreak havoc. 
 
From the perspective of the K-9 Mail application, there are three primary methods in which 
Android’s robust security model will fail to protect the application data: 

1. The application mistakenly grants broad access to the application’s data storage area. 
2. The application stores data outside of its application storage area (e.g., in external 

storage). 
3. A process other than the Linux kernel obtains root privileges. This scenario can occur 

when a user “roots” their device or when a Trojan contains an attack against the OS. 
Malware designed to obtain root privileges typically uses the same code available for 
ambitious Android users who wish to root their device. 

 
K-9 Mail does not grant broad access to its application storage area, so it is not vulnerable to the 
first issue above. K-9 Mail does allow users to save email data in the external storage area, so it 
is vulnerable to the second issue. The third issue occurs when the entire Android security model 
has been compromised. There is very little the K-9 Mail application can do when the entire 
platform on which it is operating is compromised, much in the way fire-resistant fabric will not 
hold up in a house that is on fire.  
 
DroidCleaner is able to defeat K-9 Mail’s security model when the application is configured to 
store email in external storage. In order to obtain external storage drive-level permissions, 
DroidCleaner asks the user for permission to access the external storage and network at the time 
of installation. When permissions are granted, DroidCleaner has access to all the data stored in 
this storage area (Ahmad, Musa, Nadarajah, Hassan, & Othman, 2013). Internet permissions 
open up network access, granting DroidCleaner a channel for transferring data to the hacker. For 
K-9 Mail users configured to use External Storage, the DroidCleaner malware is capable of 
uploading the K-9 Mail data stored on the device. 
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Assuming a K-9 Mail user was victimized by DroidCleaner, and the data from his/her External 
Storage was uploaded to a hacker’s computer, the hacker would have access to the data stored by 
K-9 Mail in external storage. The following section examines the impacts of such an exploit. The 
exploit was simulated by changing the settings in the K-9 Mail client for sample email accounts 
to use External Storage, and the newly visible directory in <external storage>/Android/data was 
observed, copied to a PC, and examined. K-9 Mail stores the following data in External Storage: 
 

 
Figure 2. K-9 Mail Local Email Storage Files 
 
Though the data in Figure 2 appears to be cryptic when viewed on the phone, the bottom three 
files are Sqlite databases corresponding to email accounts. The directories correspond to the 
databases. Figure 3 shows the contents of one of the directories. 
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Figure 3. K-9 Mail Local Attachment Files 
 
The directory contains a file with no extension, but examination reveals it corresponds to an 
opened attachment. 
 
To assess the damage from malware such as DroidCleaner, we examined the contents of the K-9 
data directory using a PC. Figure 4 shows the results of this examination. 
 

 
Figure 4. K-9 Mail Database Contents 
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The Sqlite database is not encrypted. When the files are transferred to a PC, the contents of the 
email account display in clear text. Each row in the “html_content” column is a record in the 
Sqlite database containing the HTML contents of the emails synced to the Android device. The 
text “This is a secret message” is visible in clear text; the visibility of this test email 
demonstrates the security flaw present in this design.  
 
Furthermore, when the extension-less file “1” from the attachment directory is loaded onto a PC 
and opened in its native application (Microsoft Word), it displays in clear text (it is also not 
encrypted). The ability of K-9 data files to be copied from Android External Storage to another 
location by DroidCleaner or other malware and read in plaintext represents a confidentiality 
vulnerability. K-9 Mail users who are victims of DroidCleaner or a similar data-stealing Trojan 
are at risk of having their email contents exposed. 
 
The storage of the email contents and attachments in the external storage area of Android 
without any protective measures is a design flaw since Android does not provide operating 
system level enforcement of directory permissions for the external storage area. Trojans can 
simply request read access to the external storage area to gain access to all of the locally stored 
contents for K-9 Mail. 
 
Step 3: In the case of a design flaw, the exploitation scenario corresponds to a misuse case 
that should be described. The misuse is analyzed to determine the overlooked use case. 
There are two exploitation scenarios exposed by DroidCleaner. The first exploitation scenario is 
the ability of a hacker to upload and view email stored on the Android device. The second 
exploitation scenario is the ability of a hacker to upload to their own server and view attachments 
stored on the Android device. In both exploitation scenarios, the user sets K-9 Mail to store data 
in the external storage area, and a data-stealing Trojan or other attack is conducted against the 
device. 
 
Misuse Case 1 – The contents of emails stored on the device are stolen. The misuse case in 
Figure 5 was developed based on the exploitation scenario that allows a hacker to view the 
contents of emails stored on the Android device. 
 
In this misuse case, the user keeps his/her email on the phone’s storage drive. The hacker gains 
access to the phone’s storage by compromising the operating system. A common way for the 
hacker to gain access to the phone is by tricking the user into installing a Trojan, which is then 
granted access to the drive via the user during the install process. Once the Trojan gains access to 
the drive, the Hacker is able to use the Trojan to download files, including the email contents 
file. 
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Figure 5. Misuse Case 1 
 
Misuse Case 2 – Attachments stored on the device are stolen. In the misuse case shown in 
Figure 6, the user stores his/her attachments, which contain confidential information, on the 
external storage of their device. The hacker exploits the Android operating system to gain access 
to the attachments in storage. This can be accomplished through a data-stealing attack. The 
hacker then uploads the attachments to his/her own computer using the exploit on the Android 
device. 
 



 
 
 

11 
 

 
Figure 6. Misuse Case 2 
 
Step 4: The overlooked use case corresponds to an overlooked security requirement. 
We analyzed the misuse cases and developed the security requirements in Table 1. 
 
Table 1. Security Requirements Derived from Use Cases 
Requirement 
1 

1.1 Email contents shall be protected from unauthorized access. 
Email contents shall be stored in an area available only to the 
application (Android internal storage default configuration) and/or 
protected through encryption that cannot be decrypted using data 
available in Android external storage. 
1.2 Processes with access to external storage shall not have the 
ability to view K-9 Mail contents in clear text. 
If External Storage is selected, a warning message or mitigation 
such as encryption is recommended. 

Derived From Misuse Case 1 

Requirement 
2 

1.1 Attachments shall be protected from unauthorized access. 
Attachments shall be stored in an area available only to the 
application (Android internal storage default configuration) and/or 
protected through encryption that cannot be decrypted using data 
available in Android external storage. 
1.2 Processes with access to External Storage shall not have the 
ability to view K-9 Mail attachments in clear text. 
If external storage is selected, a warning message or mitigation 
such as encryption is recommended. 
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Derived From Misuse Case 2 
 
Step 5: The use case and corresponding requirements statement is added to a requirements 
database. 
The scope of the case study covers only the development of security requirements from malware 
analysis, so the developed requirements are not captured in a requirements database. 
 
Step 6: The requirements database is used in future software development projects. 
The case study does not have an associated mobile development project. There is no plan to use 
requirements developed in this case study in future software development projects, however the 
K-9 owners were notified of the flaw.  There was no response to the email notification, so an 
existing change request for encrypting data potentially exposed by the flaw was updated to 
request a higher priority based upon the current existence of exploits. 
 
 
Student Instructions 
In your assignment you were given references to an actual system and malware that successfully 
attacked it.  With these artifacts, work through all the steps of the malware analysis process.  
Document the results of each step.  Discuss whether the new requirements should have been 
identified before the system was successfully attacked.  Also discuss how the requirements, if 
implemented properly, could prevent successful attacks against similar systems.  
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Instructor notes 
This case study was developed by Greg Alice (Alice & Mead, 2014), when he was a student 
doing an independent study with Nancy Mead (Mead & Morales, 2014; Mead, Morales, & Alice, 
2015) at Carnegie Mellon University.  It could be used as a classroom example, complete with 
the solution.  Alternatively, a student assignment could be extracted from the early part of the 
case study, and the students could be asked to work through all steps of the analysis process.  
Note that if they are given this as an assignment, students should not be given the SEI Report 
(Alice & Mead 2014) or the IJSSE article (Mead, Morales, & Alice 2015) until they have 
completed the assignment, because it contains a solution.   
 
However, a better exercise for students would be to pick a recent published malware example, a 
system that was successfully attacked by it and then have the students work through all steps of 
the analysis process shown in Table 1, keeping in mind that they are being asked to generate 
overlooked security requirements, vs. writing a patch for the hacked system. Most likely the case 
study work would be best assigned to a team over several weeks, or to an individual student as 
part of an independent study activity.  A student who was already in the workforce, could 
potentially work on a case study in an area that was important to the student’s organization. 
 
 
Example solution  
A solution for the K-9 case study is provided with the Case Study description.  Once again, the 
entire case study could be used as a classroom example OR the students could learn the method 
and then be given the general parameters of the case study.  They would then work through the 
steps to come up with a solution.   
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