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INTRODUCTION

A distributed system is typically a composition of geo-dispersed resources (computing and
communication) that collectively (a) provides services that link dispersed data producers
and consumers, (b) provides on-demand, highly reliable, highly available, and consistent
resource access, often using replication schemas to handle resource failures, and (c) enables
a collective aggregated capability (computational or services) from the distributed resources
to provide (an illusion of) a logically centralised/coordinated resource or service.

Expanding on the above, the distributed resources are typically dispersed (for example, in
an Azure or Amazon Cloud, in Peer-to-Peer Systems such as Gnutella or BitTorrent, or in
a Blockchain implementation such as Bitcoin or Ethereum) to provide various features to
the users. These include geo-proximate and low-latency access to computing elements,
high-bandwidth and high-performance resource access, and especially highly-available unin-
terrupted services in the case of resource failure or deliberate breaches. The overall technical
needs in a distributed system consequently relate to the orchestration of the distributed
resources such that the user can transparently access the enhanced services arising from
the distribution of resources without having to deal with the technical mechanisms providing
the varied forms of distributed resource and service orchestrations.

To support these functionalities, a distributed system commonly entails a progression of four
elements. These include (a) data flows across the collection of authorised inputs (regulated via
Access/Admission Control), (b) transportation of the data to/across the distributed resources
(Data Transport functionality), (c) a resource coordination schema (Coordination Services),
and (d) property based (e.g., time or event based ordering, consensus, virtualisation) data
management to support the desired applications such as transactions, databases, storage,
control, and computing.

Consequently, distributed systems security addresses the threats arising from the exploitation
of vulnerabilities in the attack surfaces created across the resource structure and functionali-
ties of the distributed system. This covers the risks to the data flows that can compromise
the integrity of the distributed system’s resources/structure, access control mechanisms (for
resource and data accesses), the data transport mechanisms, the middleware resource coor-
dination services characterising the distributed system model (replication, failure handling,
transactional processing, and data consistency), and finally the distributed applications based
on them (e.g., web services, storage, databases and ledgers).

This Knowledge Area first introduces the different classes of distributed systems categorising
them into two broad categories of decentralised distributed systems (without central coor-
dination) and the coordinated resource/services type of distributed systems. Subsequently,
each of these distributed system categories is expounded for the conceptual mechanisms
providing their characteristic functionalities prior to discussing the security issues pertinent
to these systems. As security breaches in a distributed system typically arise from breaches
in the elements related to distribution (dispersion, access, communication, coordination, etc.),
the KA emphasises the conceptual underpinnings of how distributed systems function. The
better one understands how functionality is distributed, the better one can understand how
systems can be compromised and how to mitigate the breaches. The KA also discusses
some technology aspects as appropriate along with providing references for following up the
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topics in greater depth.

CONTENT

1 CLASSES OF DISTRIBUTED SYSTEMS AND
VULNERABILITIES

[1, c2][2, c5][3, c18]

1.1 Classes of Distributed Systems

A diversity of viewpoints, models, and deployments exist for characterising distributed sys-
tems. These include defining a distributed system at the level of the aggregation of physical
resources (e.g., Peer to Peer or Cloud systems), defining it at the Middleware level (e.g.,
Publish-Subscribe, distributed object platforms, or Web services), or defining it in terms of
the services a distributed system provides (e.g., Databases or Ledgers). While a spectrum of
definitions exists in literature, distributed systems can be broadly classified by the coordina-
tion schema linking the resources or by the specification of the services utilising them. One
broad class is of decentralised control where the individual resources primarily interact with
their “neighbouring” resources. The other broad category links the distributed resources via
communication processes, such as message passing, to realise varied forms of virtual cen-
tralised/coordinated control. Thus, based on such communication and coordination models,
distributed systems can be categorised into the following two broad classes.

1. Decentralised point-to-point interactions across distributed entities without a centralised
coordination service: Peer-to-Peer System (P2P) systems represent this class of dis-
tributed systems. Decentralised un-timed control is a prominent characteristic of such
systems. For example, systems such as Kademlia, Napster, Gnutella, and many other
distributed file and music sharing/storage systems, wireless sensor networks as well
as online gaming systems fall in this category.

2. Coordinated clustering across distributed resources and services: This is a broad class
that is best understood when sub-divided into two coordination sub-classes, namely (a)
the coordination of resources and (b) the coordination of services. We will utilise these
two coordination abstractions throughout this chapter. The spectrum of distributed
systems includes Client-Server models, n-Tier Multi-tenancy Models, elastic on-demand
geo-dispersed aggregation of resources (Clouds – public, private, hybrid, multi-Cloud,
Big Data services, High Performance Computing), and transactional services such as
Databases, Ledgers, Storage Systems, or Key Value Store (KVS). The Google File System,
Amazon Web Services, Azure, and Apache Cassandra are simple examples of this class.
While this class may appear to be both broad and diverse, the coordination abstraction
(for either resources or services) directly characterises the type of distributed system
into these two sub-classes. In both cases, these systems are typically coordinated via
communication exchanges and coordination services with the intended outcome of
providing a “virtually centralised system” where properties such as causality, ordering of
tasks, replication handling, and consistency are ensured. There are discrete definitions in
the literature for Client-Server systems, Cloud Computing, Mobile Computing, Distributed
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Databases, etc., though the provisioning of virtual “centralised/coordinated” behaviour
is a common characteristic across them.

Notes: There are many nuances of security in distributed systems. One viewpoint focuses on
the concepts and mechanisms to provide security in a distributed system where the resources
and services are dispersed. The other viewpoint considers using distribution as a means
of providing security, e.g., the dispersal of keys versus a centralised key store or the use of
Virtual Machines (VMs) to partition and isolate resources and applications. This KA focuses
on the former category of “security in a distributed system”. However, it also discusses the
latter viewpoints given that the dispersed security mechanisms typically execute on dispersed
resources logically resulting in the need for the above mentioned classes of Decentralised or
Coordinated clustering.

It is worth highlighting that a distributed system architecture is often an aggregation of
multiple layers where each layer builds upon the services provided by the layer below and
coordinated services offered across the distribution. At the lowest level, resources within a
particular device (memory, computation, storage, communication) are accessed through the
Operating System primitives provided on that device. Distributed services e.g., naming, time
synchronisation, distributed file systems are assembled through the interaction of different
components and services running on individual devices. Higher layers build upon the lower
layers and services to provide additional functionalities and applications. Interactions across
the different components of the distributed system at each level are provided by middleware
frameworks that support many different communication styles: message passing, Remote
Procedure Calls (RPCs), distributed object platforms, publish-subscribe architectures, enter-
prise service bus. Distributed applications are thus realised in a layered (or tiered) fashion
through the interactions and coordination of distributed components and services. Within
these architectures, decentralisation and coordination at each layer may differ resulting in
hybrid compositions of decentralisation and coordination patterns. We refer the reader to the
Operating Systems & Virtualisation CyBOK Knowledge Area [4] for issues concerning access
to basic resources and the books [5, 6, 3, 7, 8] for further reading on distributed systems
architectures and middleware.

1.2 Classes of Vulnerabilities & Threats

Vulnerabilities refer to design or operational weaknesses that allow a system to be potentially
compromised by an attacker. Analogously, a threat reflects the potential or likelihood of an
attacker causing damage or compromising the system. Furthermore, security is an end-to-
end systems property. Consequently, the vulnerabilities of a distributed system are broadly
grouped based on the functional blocks therein defining the distributed system. Logically,
these functional blocks and their operations also constitute the threat/attack surface for the
systems where an attacker/adversary can exploit a vulnerability to compromise the system.
At a high level, the attack surface relates to the compromises of the physical resources, the
communication schema, the coordination mechanisms, the provided services themselves,
and the usage policies on the data underlying the services.

The following outlines the general functionalities that will be progressively detailed in the
subsequent sections as relevant to the specific distributed system model.
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1.2.1 Access/Admission Control & ID Management

Access or Admission control determines the authorised participation of a resource, a user, or
a service within a distributed system. This can include the sourcing of data and the access
rights to read/write and use data over the lifetime of a service. The potential threats and
consequent attacks include masquerading or spoofing of identity to gain access rights to the
data. They can also involve Denial of Service (DoS) attacks that detrimentally limit access
(e.g., depletion of computing resources and communication channels) leading to the inacces-
sibility and unavailability of the distributed resources/services. It is worth emphasising that
resource distribution often entails more points for access control, and also more information
transported in the system to support access control thus increasing the attack surface of the
system (see the Authentication, Authorisation & Accountability CyBOK Knowledge Area [9] for
a discussion of authentication and authorisation in distributed systems).

A distributed system entity (resource, service, user, or data element) participates in a dis-
tributed system with a physical or logical identity. The identity, statically or dynamically
allocated, can be a resource identifier such as an ID name or a number1. Here, authorisation
may be specified in terms of the user and/or resource identity including the use of login names
and passwords. Thus, an activity that involves tampering with the identity constitutes a likely
threat.

1.2.2 Data Transportation

The network level threats span routing, message passing, the publish-subscribe modalities
of resource interaction, event based response triggering, and threats across the middleware
stack. Moreover, these can be passive (eavesdropping) or active attacks (data modification).
A typical example is the Man In the Middle (attack) (MITM) attack where the attacker inserts
itself between the victim’s browser and the web server to establish two separate connections
between them. This enables the attacker to actively record all messages and selectively
modify data without triggering a suspicious activity alarm if the system does not enforce
endpoint authentication. We refer the reader to [5, 6] for detailed coverage of these topics,
and to the Network Security CyBOK Knowledge Area [10].

1[7] provides an excellent discourse on naming issues in Chapter 6.
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1.2.3 Resource Management and Coordination Services

This critical group encompasses the spectrum of threats to the mechanisms (typically mid-
dleware protocols) that provide the coordination of resources. This includes, among others,
the aspects of synchronisation, replication management, view changes, time/event ordering,
linearisability, consensus, and transactional commit.

1.2.4 Data Security

As a distributed system essentially operates on data (at rest or in motion) over the facets
of data-sourcing, data-distribution, data-storage, or data-usage in services, the classical
CIA (Confidentiality, Integrity and Availability) properties directly apply to each element (and
interfaces) of this data chain. The threats to confidentiality include information leakage
threats such as Side Channel Attacks or Covert Channel Attacks. Any delay or denial of data
access constitutes a threat to Availability. Integrity aspects concern any compromise of
data correctness such as the violation of data consistency as observed by the distributed
participants. This includes the different types of consistency (strong, weak, relaxed, eventual,
etc.) over storage and transactional services. Consequently, addressing the security of the
data elements of a distributed system requires consideration of the threats mentioned above
across resources, access control, data transportation, and coordination services as well as
data threats in the form of malicious applications, code, and viruses (see the Malware & Attack
Technologies CyBOK Knowledge Area [11]).

Section Organisation Based on this overview, the subsequent sections progressively outline
the security approaches for distributed systems as split into the above mentioned classes of
decentralised and coordination based systems. In order to understand the security issues
relevant to each class, the sections also provide a basic overview of the underlying distributed
system concepts along with pointers for further reading. Section 2 presents the commonly
used models for decentralised P2P systems. Section 3 then elaborates the corresponding
security threats for the P2P systems. This is followed by the exposition of coordinated
distributed system models in Section 4, and by a discussion of the corresponding security
aspects in Section 5.

2 DISTRIBUTED SYSTEMS: DECENTRALISED P2P MODELS

[12, c11-12][2, c25]

Peer-to-Peer System (P2P) systems constitute a decentralised variant of distributed systems.
Their popularity is driven by the characteristic P2P features of scalability, decentralised
coordination, and low cost. Scalability implies that no changes to the protocol design are
needed with increasing numbers of peers. Whereas a Client-Server architecture typically entails
increasing back-end (Server) resources with increasing numbers of (Client) requests, this is
not the case in P2P systems due to their inherent decentralised architecture. Furthermore,
the decentralised P2P system designs promote inherent resilience against individual peer
failures or other disruptions. The peer population itself represents the service provisioning
infrastructure of the system. Thereby, potential service consumers are required to partake in
resource provisioning avoiding the need for dedicated data centres. Over the past two decades,

KA Distributed Systems Security | July 2021 Page 7

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

a multitude of P2P models have emerged. Regardless of their specific realisation, they usually
combine the following five principles: (1) symmetry of interfaces as peers can take inter-
changeable duties as both servers and clients, (2) resilience to perturbations in the underlying
communication network substrate and to peer failures, (3) data and service survivability
through replication schemes, (4) usage of peer resources at the network’s edge, imposing
potentially low infrastructure costs and fostering scalability as well as decentralisation, and
(5) address variance of resource provisioning among peers.

These five principles make P2P a vital foundation for a diverse set of applications. Originally,
P2P systems were (in)famous for their support of file sharing applications such as eMule or
KaZaA, though their usage is now common in applications such as social networks, multimedia
content distribution, online games, internet telephony services, instant messaging, the Internet
of Things, Car-to-car communication, Supervisory Control and Data Acquisition (SCADA)
systems, and wide area monitoring systems. As discussed in later sections, distributed
ledgers also utilise some aspects of P2P operations.

P2P Protocol Categories The two major P2P paradigms are unstructured and structured
systems. These system designs directly correlate with the application categories introduced
in the previous section, i.e., unstructured protocols are mostly suitable for (large scale and
scalable) data dissemination, whereas structured ones are usually applied for efficiency
of data discovery. The emergent hybrid P2P protocol designs combine aspects from both
unstructured and structured ones within an integrated P2P system.

Additionally, hierarchical P2P systems also exist. These partly contradict the conceptual
P2P principle that considers all peers as equal in the sense of service provisioning. These
hierarchical systems can be considered as layered systems, e.g., composition of multiple
overlays consisting of front-end and back-end peers.

Regardless of the type of P2P system, it is important to note that the basic P2P operations
are based on three elements, namely (a) identification or naming of peer nodes, (b) routing
schemas across peers, and (c) discovery of peers as a function of their identifiers and routing.

In order to support the discussion of security in P2P systems, the next subsections provide
an introductory level technical overview on P2P protocols. We provide a brief overview of the
P2P protocol categories in regard of the overlay topology, resources discovery, and message
passing. The reader is referred to [13] for a comprehensive discussion on P2P operations.

2.1 Unstructured P2P Protocols

Representatives of the unstructured P2P protocol class such as Freenet2 or Gnutella [14, 15]
are mainly used for data dissemination applications such as censorship-free3 communication
or file sharing. While the set of peers do not have any characteristic topology linking them, their
implicit topology is usually embedded within the physical communication underlay network
topology and often unveils tree or mesh like sub-graphs, which allow for low latency message
exchange, e.g., to address timeliness requirements of data dissemination applications. Tree
topologies can be found, e.g., in single source streaming media data dissemination with vari-
ous consumers as leaf nodes. Meshes are the more generic case, for example, in applications

2https://freenetproject.org/
3In the sense that data and information is stored and exchanged with integrity and privacy preserving tech-

niques to address freedom of expression and speech concerns.

KA Distributed Systems Security | July 2021 Page 8

https://www.cybok.org
https://freenetproject.org/


The Cyber Security Body Of Knowledge
www.cybok.org

with multiple sources and sinks such as in file sharing applications.

Unstructured P2P protocols typically search for resources (i.e., peers and data) by name
or labels, and do not use a structured addressing scheme. This feature supports scalable
dissemination but scales poorly for resource discovery or reproducible routing paths. Peers
nevertheless maintain an identifier to allow independence of the underlay network address.
Resources are discovered using search algorithms on the overlay graph. Examples of search
algorithms include breadth-first search, depth-first search, random walks, or expanding ring
searches. These options are often combined according to the requirements of the application.

The communication across peers is via messages. Message passing may be direct, i.e., using
an underlay network connection between two peers, but this usually requires that the peers
explicitly know the peer address and route. When the destination peer for the message to be
sent is unknown, messages are piggybacked alongside a resource discovery operation.

All peers maintain lists (direct routing tables with addresses or hashed addresses) with contact
information about other peers. Hence, messaging works efficiently and the network does
not suffocate from address-search messages. The efficiency of such lists depends on the
liveness of the peers. Hence, the listed peers are periodically pinged for liveness and removed
when no reply is received. The periodicity is dynamically adjusted based on the relevant churn,
i.e., the rate of peer joins and departures.

2.2 Structured P2P Protocols

Structured P2P protocols such as Chord, Pastry, Tapestry, Kademlia, CAN etc. [16, 17, 18, 19]
are typically used for data discovery applications where the structure of the topology aids
efficient searches. Their topology graphs usually show small-world properties, i.e., there exists
a path between any two peers with a relatively small number of edges. Structured topologies
often appear as ring structures with shortcuts, which forms a basis for scalable and efficient
operations such as resource discovery and message passing. Some protocols have more
exotic topologies, e.g., butterfly graphs, fixed-degree graphs, or a multi-torus. The salient
characteristics are efficiency of node discovery and efficiency of routing that uses information
on the P2P structure and topology. As this aspect has security implications, we briefly detail
these operations.

Unlike unstructured P2P’s open addressing schemas, in structured P2P protocols, pointers
to resources such as peers or data are stored in a distributed data structure which is called
a Distributed Hash Table (DHT). The overlay’s address space is usually an integer scale in
the range of [0, . . . , 2w − 1] with w being 128 or 160 in general. Usually, a distance function
d(a, b) is defined which allows distance computations between any two identifiers a and b
in the address space. Distance computations are crucial for the lookup mechanism and
data storage responsibilities. The distance function and its properties differ among protocol
implementations. Data discovery is realised by computing the key of an easy-to-grasp resource
identifier such as a distinctive name/key and subsequently requesting that key and its data
from one of the responsible peers.

Messages – for example to request the data for a given key – are exchanged in most structured
protocols directly, i.e., using an underlay network connection between two peers. If peers
do not know each other, then no direct connection can be set up and the destination peer’s
location needs to be determined to conduct routing. To this end, an overlay lookup mechanism
aims to steadily decrease the address space distance towards the destination on each iteration
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of the lookup algorithm until the identifier can be resolved. This design approach turns out
to be very efficient and promotes scalability. Once the lookup has successfully retrieved
the destination’s underlay network address, messages can be exchanged. Lookup variants
include iterative or recursive algorithms as well as parallelised queries to a set of closest
neighbour peers.

Routing tables usually store k · w entries with k being a protocol specific constant. Moreover,
for the ith portion of k entries with i ∈ [0 . . . w], the peer stores contact information of peers
that share i common prefix bits of the peer’s key. In other words, routing tables usually
provide more storage for closer peers than more distant ones. Moreover, routing tables keep
only information about live and reachable peers, therefore peers are periodically pinged. In
structured protocols, maintenance is more expensive as the topological structure needs to be
retained, e.g., newly joined peers have to be put into the appropriate peer’s routing tables or
leaving/unresponsive peers have to be replaced by live ones in many peers’ routing tables.

2.3 Hybrid P2P Protocols

Hybrid variants of P2P protocols integrate elements from unstructured and structured schemas,
as their principal intent is data discovery and data dissemination. Prominent hybrid protocol
examples include file sharing services such as Napster and BitTorrent [20]. BitTorrent was
originally a classical unstructured protocol but now has been extended with structured P2P
features to provide a fully decentralised data discovery mechanism. Consequently, BitTorrent
could abandon the concept of so called “tracker servers” (that facilitated peer discovery) and
improve its availability. On the other hand, architectural requirements often need to be consid-
ered to fully utilise the capacity of hybrid P2P protocols. An example would be establishing
how the data discovery is transmitted among the servers and how it is reported back to the
user [21]. Similar considerations apply to other streaming overlay approaches.

2.4 Hierarchical P2P Protocols

Typically, all the peers in a P2P system are considered to be equal in terms of the client-server
services they can provide. Yet, for some application scenarios it turns out that a hierarchical
P2P design can be advantageous. These can include a layered design of structured and
unstructured overlays. In hierarchical designs, peers are further categorised based on their
bandwidth, latency, storage, or computation cycles provisioning with some (super) peers
taking a coordinating role. Usually, the category with fewer peers represented the back-end
part of the hierarchical system, whereas the multitude of peers act as front-end peers that
process service requests at the first level and only forward requests to the back-end when they
cannot fulfill the service request in the first place. This improves the look-up performance and
also generates fewer messages in the network. Furthermore, popular content can be cached
locally to reduce download delays [22]. This design has proven successful, for example, in the
eDonkey file sharing system or in Super P2P models such as KaZaA where a selected peer
acts as a server to a subset of clients.
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3 DISTRIBUTED SYSTEMS: ATTACKING P2P SYSTEMS

[3, c16][23, c5]

We present security attacks corresponding to the above mentioned classes of P2P systems.
To facilitate this discussion, we outline the functional elements of a P2P system that help the
reader relate the security implications for specific systems or application cases. Subsequently,
we assess the risks stemming from attacks to plan the requisite mitigation. The P2P functional
elements that need protection broadly include:

1. P2P Operations (P-OP) such as discovery, query, routing, download, etc. that are acces-
sible through the service interface of the P2P protocol. This functionality relates to the
network level.

2. P2P Data Structures (P-DS), e.g., data stored in a peer’s routing table or resources that
are shared with other peers of the overlay network. This functional element may be
accessible at either the network level or locally on the peer’s host machine.

We will refer to these two elements as P-OP and P-DS, in the following subsections where
we discuss the specific P2P attacks. We use the established security notions of [24] for
Confidentiality, Integrity and Availability. Whenever a definition refers to authentication, we
assume that peers are implicitly authenticated on joining the overlay network. P2P protocols
may may use admission control systems or may be open to arbitrary peers.

Note that we focus on attacks against P2P systems (e.g., denial of service or routing disrup-
tions) and do not consider attacks that are prepared or conducted using P2P systems in order
to harm non-P2P systems (e.g., using a P2P system to coordinate distributed denial of service
attacks).

3.1 Attack Types

We now present the different attacks that are specific to P2P systems. Broadly, the attacks
correspond to attacking the functional elements, P-OP and P-DS, either by (a) disrupting their
connectivity or access to other nodes for dissemination/discovery/routing or (b) corrupting
their data structures. Besides the well known (distributed) denial of service attacks which
apply to P2P as well as to other systems, most attacks exploit fundamental P2P features such
as message exchange based decentralised coordination and especially that each peer has
only a partial (local) view of the entire system. Consequently, attackers aim to trick other peers
by providing incorrect data or collude to create partitions that hide views of the system from
good nodes. This includes example scenarios such as (a) to mislead peers in terms of routing,
(b) to take advantage of access to resources, (c) to overcome limitations in voting systems or
games, or (d) to hide information in the overlay among others. We refer the reader to the survey
articles [25, 26] for a fuller exposition of P2P security. We now enumerate some representative
security attacks and relate them to their corresponding impact on Confidentiality, Integrity
and Availability (CIA). Some examples of attacks are further discussed in Section 3.2 along
with corresponding mitigation approaches.

- Denial of service attacks (DoS) [24], Distributed Denial of Service (DDoS), or disruption at-
tacks [27] manifest as resource exhaustion by limiting access to a node or a communication
route. In P2P architectures, the attacker aims to decrease the overlay network’s service
availability by excessively sending messages to a specific set of peers and thereby negatively
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affecting the P-OP functionality. This could affect the peer join/leave mechanism, or other
arbitrary P2P service aspects, e.g., damaging the routing put/get operations in a DHT. For
example, benign peers may be impaired by an excessive maintenance workload. Moreover,
DoS and DDoS attacks can have a negative impact on bandwidth usage and resource provi-
sioning which may result in degraded services. For instance, GitHub was hit with a sudden
onslaught of traffic that reached 1.35 terabits per second4. The traffic was traced back to
“over a thousand different Autonmous Systems (ASNs) across tens of thousands of unique
endpoints” participating in the attack.

- Collusion attacks [28] aim to compromise the availability, integrity, or confidentiality of P2P
networks. Collusion refers to the fact that a sufficiently large subset of peers colludes to
carry out a strategy which targets the P2P services and thereby negatively affects the P-OP
functionality. The typical attack aims to override control mechanisms such as those for
reputation or trust management, or bandwidth provisioning. The Sybil and Eclipse attacks,
discussed later on, are based on attackers colluding to create network partitions to hide
system state information from good nodes.

- Pollution attacks [29, 30] or index poisoning [31] aim to compromise the P2P system’s in-
tegrity and its P-DS functionality by adding incorrect information. Consequences of pollution
attacks are the proliferation of polluted content resulting in service impairments. An example
is the typhoid ad-ware attack where the attacker partially alters the content, e.g., adding
advertisement at a single peer that subsequently spreads this polluted content to other peers.

- White washing [30] or censorship attacks aim to compromise the availability or integrity of
P2P systems. This includes either illicit changing of, deletion of or denying access to data.
Therefore, these attacks endanger the P-DS functionality. White washing attacks are especially
dangerous for P2P systems that use reputation based systems since they allow a peer with a
bad reputation to leave the system, and subsequently re-join as a benign user.

- Routing attacks [32, 27] aim to compromise the availability or integrity of P2P networks.
Routing attacks play an important role in composite attacks, such as the Eclipse attack
which obstructs a good node’s view of the rest of the system. In routing attacks, a malicious
peer undermines the message passing mechanism, e.g., by dropping or delaying messages.
Another routing attack variant is Routing Table Poisoning (RTP) [32]. In this attack, an attacker
deliberately modifies its own or other peers’ routing tables, e.g., by returning bogus information
to benign peer lookup requests. Attraction and repulsion [27] are specific variants of routing
attacks which either increase (attraction) or decrease (repulsion) the attractiveness of peers,
e.g., during path selection or routing table maintenance tasks. These attacks negatively affect
the P-DS functionality. The compromise of the routing table in Pastry, often used in online
social networks, is a typical routing attack.

- Buffer map cheating attacks [33] aim to decrease the availability of P2P networks, particularly
those used for media streaming applications. Through this attack, adversaries reduce the
outgoing traffic load of their peers by lying about their data provisioning. This is also an
infringement on integrity and affects the P-OP functionality. This attack is especially relevant
in streaming media P2P applications which rely on the collaboration of peers. Omission,
Fake Reporting, Fake Blocks, incorrect Neighbour Selection are related implications of such
attacks.

- Sybil attacks [34] aim to compromise the availability or confidentiality (via spoofing) of
P2P networks and can be regarded as a specific version of node/peer insertion attacks. They

4https://www.wired.com/story/github-ddos-memcached
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consider the insertion into the overlay of peers that are controlled by one or several adversaries.
This could happen at specific or arbitrary locations of the overlay’s topology, depending on the
attacker’s aim. Furthermore, P2P applications may consider system users as legal entities
and consequently restrict the amount of peers per user to the amount of allowed votes for
that entity. Hence, an imbalance results in terms of the expected amount of peers per user.
Sybil attacks may be a precursor for many of the previously described attacks. Sybil attacks
affect the P-OP functionality of the system. Prominent Sybil attacks include the compromise
of the BitTorrent DHT and the Sybil attack on the Tor anonymisation network.

- Eclipse attacks [35] aim to decrease the availability, integrity and confidentiality of P2P
networks. Essentially, a good peer is surrounded by a colluding group of malicious peers
that either partially or fully block the peer’s view of the rest of the system. The consequence
is that the malicious nodes can either mask or spoof the node’s external interactions. This
is a composite attack that may involve routing table poisoning, DoS/DDoS, Sybil attacks,
collusion, white washing, or censorship. Consequently, these attacks have an impact on both
the P-OP and P-DS functionality. Variants of Eclipse attacks include Localised Eclipse Attacks
(LEA), Topology Aware Localised Eclipse Attacks (taLEA) and Outgoing Eclipse Attacks (OEA)
attacks among others. An example of an Eclipse attack on Bitcoin is discussed in Section 5.

Attack Availability Integrity Confidentiality Functionality

DoS/DDoS 3 7 7 P-OP
Collusion 3 3 3 P-OP
Pollution 7 3 7 P-DS
White washing & censorship 3 3 7 P-DS
Routing 3 3 7 P-DS
Buffer map cheating 3 3 7 P-OP
Sybil 3 7 3 P-OP
Eclipse 3 3 3 P-DS, P-OP

Table 1: P2P Attacks, Security Goals and Affected Functionality

3.1.1 Summary

Table 1 summarises attacks on the P2P functional elements that entail modifications of the
P2P system to either degrade or compromise the P2P operations. The adversarial collusion
of malicious peers is a key factor to launch these attacks resulting in significant disruption.
In many cases, the inherent design choices of P2P, which foster scalability and fault toler-
ance, are exploited. Attacks against P2P systems usually show an impact in terms of the
system’s confidentiality, integrity, or availability. Several of the observed attacks are known
from other system architectures such as client-server models while others are new ones or
compositions of various attacks. The difference from comparable attacks in client-server
system architectures is that P2P overlay networks may grow very large and adversaries have
to correspondingly adapt their efforts, i.e., they need to scale up the fraction of malicious peers
accordingly, thereby requiring a substantial amount of coordination to execute an effective
collusion strategy. These attacks vary depending upon whether the attacker has direct or
indirect network access via a P2P overlay. The latter requires attackers to properly join the
network prior to the attack. Thus, this may entail malicious peers making, e.g., a proper
announcement in the overlay network, before they can launch their adversarial behaviour.

Supplemental Observations:
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- Denial of service attacks degrade or prevent a system from correct service delivery [36, 37].
The more sophisticated Sybil attack [38, 37, 39] can be used as a potential precursor for an
Eclipse attack [38, 37].

- If either secure storage, secure routing, or authentication mechanisms cannot be provided, a
set of attacks including omission, content forgery, content pollution, censorship, or routing
table poisoning may be the consequence [37, 39].

- Churn relates to the effects of peers joining and leaving in an overlay. Churn attacks consider
artificially induced churn with potentially high peer join/leave rates to cause bandwidth con-
sumption due to the effort needed to maintain the overlay structure. This can lead to partial
or complete denial of service [39].

- Varied cheating attack strategies exist (for observing or corrupting player information and
activities) in Massive Multiplayer Online Games (MMOG) built upon P2P architectures [39].

3.2 Attacks and their Mitigation

We present some example attacks along with the approaches used to mitigate them. For a
comprehensive coverage, we refer the reader to the surveys of [25, 26].

Basic PoS and P-DS Based Scenarios: The prominent P2P protocol security mechanisms
are authentication mechanisms, secure storage, and secure routing. These three mecha-
nisms allow the implementation of various downstream mechanisms. Authentication mecha-
nisms [40, 37] help to maintain a benign peer population and provide the technical basis for
downstream mechanisms like secure admission, secure storage, or secure routing. Secure
storage is vital for data centric applications in order to prevent attackers from conducting
illicit data modifications [36, 38, 41, 40]. In a broader sense, illicit data modification in online
games is considered as cheating [39]. The use of secure routing is typically advocated as
an approach to facilitate the identification of peers conducting improper message forward-
ing [38, 41, 40]. Limiting the number of routing paths and/or protecting the paths using (high
overhead) cryptographic approaches are alternate approaches to mitigating routing attacks.

Sybil and Eclipse Scenarios: Sybil attacks occur where the attacker could launch an attack
with a small set of malicious peers and subsequently gather multiple addresses, which
allows malicious peers to fake being a larger set of peers. Using Sybil attacks, a LEA can be
launched via a chain of Sybil/malicious nodes. However, the attack relies on the assumption
of the existence of a single path towards the victim that can be manipulated by the attacker.
Alternately, a LEA can be launched using Sybil peers.

In such attacks, mitigation relies on using a centralised authority that handles peer enrolments
or admission. Extending this concept, adding certificates (issued by a common Certificate
Authority) to peers’ network IDs while joining the network is another possibility. Other miti-
gation techniques to prevent malicious entities from selecting their own network IDs could
entail a signing entity using public key cryptography.

Buffer Map Cheating Scenarios: Other disruptions could be used to attack the KAD P2P net-
work [19], which is a Kademlia based network, through flooding peer index tables close to
the victim with false information as a simplistic taLEA variant. A KAD network crawler is
introduced to monitor the network status and detect malicious peers during a LEA. However,
a high overhead is incurred if each peer uses such a mechanism to detect malicious entities.
This becomes impractical as the overlay size increases.
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Divergent lookups have been proposed as an alternate taLEA mitigation technique where the
disjoint path lookups avoid searching the destination peer’s proximity to skip the wasteful
querying of malicious peers under taLEA assumptions.

Routing Scenarios: Mitigation mechanisms to handle routing attacks consider assigning mul-
tiple paths for each lookup using disjoint paths though at the cost of high message overhead.
Alternatives include the use of cryptographic schemes to protect the paths. However, P2P is a
decentralised coordination environment where implementing a centralised service to support
the coordination of system wide cryptographic signatures is hard to realise.

The aforementioned security mechanisms increase the resilience of P2P systems against the
various attacks. Naturally, these mechanisms are resilient only until a critical mass of colluding
malicious peers is reached. In addition, some of these mechanisms require cryptographic
support or the identification of peers. These requirements may interfere with application
requirements such as anonymity, heterogeneity, or resource frugality.

4 DISTRIBUTED SYSTEMS: COORDINATED RESOURCE
CLUSTERING

[12, c5,7,12,25][1, 3][2, c5,c14] [3, c16-17,c19]

Contrasting with the decentralised-control of P2P systems, a multitude of distributed systems
exist where the interactions across the distributed resources and services are orchestrated
using varied coordination mechanisms that provide the illusion of a logically centralised and
coordinated system or service. The coordination can simply be a scheduler/resource manager,
a discrete coordinator or a coordination group, and include ordering in time (causality) or
varied precedence orders across distributed transactions. While it is tempting to define each
type of distributed system discretely (i.e., differing from decentralised control in P2P), the
large and diverse group of distributed systems/services share a common abstraction of
“coordination” although its realisation and resultant properties for each system will vary.

Firstly, there is the case where a service is replicated on a distributed resources platform (or
infrastructure) to enable geo-dispersed access to users while sustaining the required type
of consistency specifications on the service. The Cloud and many distributed Client-Server
systems fall in this category.

The alternate approach addresses distributed services (versus platforms) where the dispersed
service participants interact to yield the collective distributed service for given consistency
requirements. For example, transactional databases and distributed ledgers fall in such a
category of strong consistency. Web crawlers, searches, or logistics applications may well
work with weak consistency specifications.

Overall, these constitute the two broad classes of distributed systems in the coordinated
resource pooling mode, namely the classes of resource-coordination and service-coordination,
as based on their characteristic coordination schema although their functionality and defini-
tions often overlap.

In the subsequent subsections, in order to contextualise distributed systems security, we first
detail the basic distributed concepts along with the coordination schema based on them.
This is followed by outlining the characteristic systems in each of the resource and service
coordination models. This forms the basis behind the general set of disruptions/vulnerabilities
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relevant to both classes of coordinated distributed systems. We then outline the threats and
security implications specific to each class of systems. We refer the reader to the excellent
texts of [2, 12, 1] for a comprehensive and rigorous treatise of these issues.

A Note on Technologies Underlying Distributed Platforms: The introduction emphasised
that the focus of this KA is on security in distributed systems rather than the use of dis-
tribution towards providing security. Expanding on this topic, it is worth commenting on
alternate perspectives related to the “design and realisation” of distributed platforms and
services. This design oriented perspective tends to emphasise the architecture of distributed
systems, distributed services and their construction. This perspective typically focuses on (a)
establishing security requirements, (b) realisation approaches on how to meet given security
requirements at each level of abstraction, and (c) considers a distributed system as a layered
architecture where each layer builds upon the primitives offered at the layer below and from
distributed services. In this perspective, centralised (coordinated) and decentralised patterns
are often combined, differently and at different layers. Also from this perspective, the security
requirements of the applications must be met by complementing and building upon what is
offered at the lower layers and services.

This is a construction and compositional approach where the security properties (require-
ments) at the application level, or at a given layer, drive the selection of solutions and sub-
systems that must be assembled (e.g., authentication, authorisation, accountability, non-
repudiation etc.). The composition of such subsystems/solutions is often achieved through
the use of trade-offs (and also threat) analysis that tend to cover some and not all of the re-
quirements and thus determining relative strengths and weaknesses. For example, blockchain
applications, further discussed in Section 5.2, emphasise non-repudiation and decentralisation
as their main properties.

This layered and compositional approach can often be encountered in the literature such
as [8, 42, 5, 6, 3, 2, 43] and many others. As the architectures and realisation fundamentally
underlie the KA premise of providing security in distributed systems, the reader is encouraged
to refer to this literature. The following section returns the focus back on distributed system
concepts, and especially the fundamental concepts of the coordination class of distributed
systems.

Distributed Concepts, Classes of Coordination

As mentioned in the introduction, a distributed system is a collation of geo-dispersed com-
puting resources that collectively interact to provide (a) services linking dispersed data pro-
ducers and consumers, (b) high-availability via fault tolerant replication to cover resource
(computing and communication) failures, or (c) a collective aggregated capability (com-
putational or services) from the distributed resources to provide (an illusion of) a logically
centralised/coordinated resource or service.

Distributed systems are often structured in terms of services to be delivered to clients. Each
service comprises and executes on one or more servers and exports operations that the clients
invoke by making requests. Although using a single, centralised server appears tempting, the
resulting service resident on a server can only be as fault tolerant as the server hosting it.
Typically, in order to accommodate server failures, the servers are replicated, either physically
or logically, to ensure some degree of independence across server failures with such isolation.
Subsequently, replica management protocols are used to coordinate client interactions across
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these server replicas. Naturally, the handling of client failures or client compromises (including
their role in launching attacks via malicious code or viruses) also needs to be considered.

We now outline a basic set of distributed system concepts that also constitute the basis
of the security considerations therein. The concepts are presented at an informal level to
communicate the intuitions, and the reader is referred to [12, 1, 2, 3] for a comprehensive
treatise on the topics.

4.1 Systems Coordination Styles

In order for the distributed resources and services to meaningfully interact, the synchronisation
basis across them, in physical time or in logical order, needs to be specified. The synchroni-
sation applies at both the network and process levels. We refer the reader to [3, 2, 1, 12] for
more details. At a high level, the synchronisation types include the following:

1. Synchronous: All components of a distributed system are coordinated in time (as lock
step or rounds) to be synchronised with each other. Causality is explicitly obtained.
Examples include typical safety-critical systems such as aircraft fly-by-wire control
where predictability and guaranteed real-time responsiveness is desired.

2. Asynchronous: Separate entities take steps in arbitrary order and operate at different
speeds. The ordering of events needs to be ensured through collective interactions.
Typical examples are transactional systems, databases, web crawlers, etc.

3. Partially synchronous: Some restrictions apply on ordering of actions but no lock-
step synchronisation is present. Typical examples are SCADA control systems or high-
value transactional stock systems where timeliness has implications on the service
correctness.

4.2 Reliable and Secure Group Communication

Group communication addresses the communication schema available to ensure reliable
delivery of messages across the distributed entities. These can be simple point-to-point
direct messaging supported by appropriate acknowledgements (ACKS and NACKS) for reli-
able delivery. Alternately, reliable and secure multicast (atomic, best-effort, regular, uniform,
logged, stubborn, probabilistic, causal, etc.) to provide redundant channels or ordering of
messages can be used along with the more sophisticated publish-subscribe forms of group
communication [2, 3]. In these approaches, the channels and messages can be encrypted or
cryptographically signed though this entails higher transmission and processing overheads.
The range of credential management, symmetric/asymmetric cryptography techniques, PKI
cryptosystems, secure key distribution [44] also fall in this category. The reader is referred
to [2, 1, 3, 45] for a comprehensive coverage of group communication primitives.

KA Distributed Systems Security | July 2021 Page 17

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

4.3 Coordination Properties

The utility of a distributed system comes from a coordinated orchestration of the dispersed
resources to yield a collectively meaningful capability. Prior to discussing the variety of
commonly used coordination schemas in Section 4.4, we first present the base definitions of
Consensus, Group Membership and Consistency.

Consensus

Informally, consensus pertains to achieving an agreement on values. For example, the values
could be data or process IDs. Consensus requires the following properties to hold:

1. Agreement: All good processes agree on the same value.

2. Validity: The agreed upon value is a good/valid value.

3. Termination: A decision is eventually achieved.

The specific type of consensus depends upon the semantics of the faults (crash, omission,
Byzantine, etc.) to be addressed. The faults types are discussed in Section 5.

Group Membership and Consistency:

Membership is a key “service” property in distributed systems that determines the set of
constituent resources and also the nature of the agreement achieved on the set of valid
participants (static, dynamic, quorum membership) and the data. From a security perspective,
this often relates to the integrity property for the service. Consistency has varied nuances and
the prominent types are listed below with fuller details presented in [12, 1, 2, 3, 46, 45]. Note
that the underlying assumption is always that the constituent processes can be modelled
as deterministic state machines. That is, performing a specific sequence of actions always
leads to the same state.

• Strong consistency models: In these models the participants must agree on one consis-
tent order of actions to take. Hence, the processes are guaranteed to reach a consistent
state under the assumption of determinism.

1. Strict Consistency: In strict consistency there are no constraints on the observed
order of actions as long as it is consistent across all the participants.

2. Linearisability: The linearisability model is essentially strict consistency with the
additional constraint that the observed order of actions corresponds to their real
time order.

Strong consistency models are widely used in high risk contexts where any inconsis-
tencies in the data may lead to dire consequences. In these situations, consistency is
more valued than availability and enforcing strong consistency constraints results in
more delays in the systems due to the frequent synchronisation. Traditional relational
database systems such as MySQL [47] or Microsoft’s SQL Server [48] but also mod-
ern NoSQL databases such as MongoDB [49] or Google’s Chubby lock service [50] are
popular examples that implement these strong consistency models.

• Weak ConsistencyModels: In these models, the participants do not necessarily observe
the same order of actions. This can lead to inconsistent states depending on the nature
of the additional constraints that the observed orders have to satisfy. Naturally, this can
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lead to inconsistent states that can be dealt with through conflict resolution mechanisms
[51].

1. Sequential Consistency: Sequential consistency is met if the order in which the
actions are performed by a certain process corresponds to their original order. In
order words, the sequential execution order of every process is preserved.

2. Causal Consistency: Causal consistency is achieved by categorising actions into
those causally related/dependent and those that are not. In this case only the order
of causally related actions has to be preserved. Two events are causally related if
they both access the same data object and at least one of them is a write event.

3. Eventual Consistency: In eventual consistency there are no special constraints that
have to be satisfied by the order of observer actions. The idea behind this concept
is that the participants will eventually converge to a consistent state either by
observing equivalent orders of actions or by resorting to costly conflict resolution
mechanisms.

Systems with weaker consistency models became popular with the advent of the Internet
where wide scale web servers had to accommodate a large number of users. To achieve
this, such systems sacrifice strong consistency guarantees to achieve higher availability
for their user base. Systems like Amazon’s Dynamo [52], Facebook’s Cassandra [53] are
widely known examples of systems with weak consistency guarantees.

4.4 Replication Management and Coordination Schema: The Basis Be-
hind Attack Mitigation

A fundamental challenge for developing reliable distributed systems is to support the cooper-
ation of the dispersed entities required to execute a common task, even when some of these
entities, or the communication across them, fails. There is a need to ensure ordering of the
service actions and to avoid partitions of the distributed resources in order to result in an
overall “coordinated” group of resources.

The state machine replication or state machine approach [54] is a general method for imple-
menting a fault-tolerant service by replicating servers and coordinating client interactions
with server replicas. The approach also provides a framework for understanding and design-
ing replication management protocols. The essential system abstraction is that of a state
machine such that the outputs of the state machine are fully determined by the sequence of
requests it processes independent of time or other activity in the system. Replication can be
active, semi-active, passive, or lazy [3].

It should be noted that ideally one would like to collectively attain high availability, consistency
and also full coordination to eliminate any partitioning of the set of distributed resources.
However, the CAP assertion comes into play as:
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CAP

Any network shared data system (e.g. Web) can provide only 2 of the 3 possible properties [55]
as:

1. Consistency (C): equivalent to having a single up-to-date copy of the data, i.e., each
server returns the right response to each request.

2. Availability (A): of the data where each request eventually receives a response.

3. Partition (P): Network partition tolerance such that servers cannot get partitioned into
non-communicating groups.

Naturally, security attacks attempt to compromise these elements of CAP.

Replication and Coordination

In order to provide coherent and consistent behaviour (in value and order), distributed re-
sources use various types of replica management, i.e., the coordination schema. This is a
key coordination mechanism that characterises the functionality of any distributed system.
The factors determining the specific mechanism depend on the type of system synchronisa-
tion model, the type of group communication and especially the nature of the perturbations
(faults or attacks) being considered. The mechanisms can be simple voting or leader election
processes (e.g., Ring Algorithms, Bully) or more complex consensus approaches to deal with
crashes or Byzantine5 behaviour. The commit protocols for database transactions are relevant
here as are the schemes for credential management and PKI infrastructures providing verified
access control. We briefly describe a set of widely used schema, and the reader is referred
to [12, 2, 1] for complete coverage. Authorisation and Authentication in distributed systems
are also discussed in the Authentication, Authorisation & Accountability CyBOK Knowledge
Area [9].

Paxos

To avoid the situation of distributed entities conducting uncoordinated actions or failing to
respond, Paxos [56], a group of implicit leader-election protocols for solving consensus in an
asynchronous setup, has been developed. Paxos solves the consensus problem by giving
all the participants the possibility to propose a value to agree upon in an initial phase. In the
second phase, if a majority agrees on a certain value, the process that had proposed the value
implicitly becomes the leader, and agreement is achieved. The same process is repeated for
the next value to achieve consensus on a sequence of values.

The protocol is known not to provide liveness only under very specific circumstances as
described in [56]. In this case, processes continue to propose values indefinitely and remain
blocked in the initial phase as no majority can be formed and progress is never made. However,
this situation rarely occurs in practice and Paxos remains one of most widely used coordination
protocols.

Since only a majority is necessary in the second phase to reach consensus, the protocol is
additionally tolerant to crashes even in the case of recovery. This is remarkable since, as long
as the majority of the processes has not failed, consensus can be reached. The paper [57]

5Byzantine behaviour happens when an entity/attacker sends different (albeit valid) information to different
recipients.
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is an excellent read of the experiences of implementing Paxos at Google for the Chubby file
system.

While there exists a variety of implementations of the Paxos protocol, it is notoriously known
for being hard to implement and build middleware upon it due to its inherent complexity.
For this purpose, RAFT, a protocol similar to Paxos that provides the same guarantees, has
been proposed. RAFT has recently gained in popularity due to its simpler design. Paper [58]
explains the motivation behind the development of the RAFT protocol and how it works by
comparing it with Paxos.

Byzantine Fault Tolerance (BFT)

Attacks and other deliberate disruptions do not necessarily follow the semantics of benign
omissions, timing or crashes. In order to tolerate arbitrarily malicious behavior, Byzantine Fault
Tolerance (BFT) protocols use coordinated replication to guarantee the correct execution of
operations as long as at most a third of processes is compromised and exhibits arbitrary (i.e.,
Byzantine, cf. Section 5) behavior.

In BFT, processes exchange the values they have received from each other in rounds. The
number of rounds necessary to reach consensus is determined by the number of compromised
participants there are in the system [59]. Note that since the protocol operates in rounds, it
is classified as a synchronous coordination protocol. It has been shown in [60] as the FLP
impossibility result that it is impossible to reach consensus in the case of asynchronous
communication. Due to the necessity of synchronous communication and the rather higher
overhead of message exchange required to deal with Byzantine failures, BFT protocols are
applied mostly in specific critical applications. However, there are multiple ongoing attempts
for practical BFT optimisations by strengthening some basic assumptions on synchronisation,
determinism, and number of compromises [61, 62, 63]. The Google File System (Chubby) and
Amazon Web Services (AWS) implement Paxos and also partial BFT functionality. It is also
important to emphasize that BFT is expensive not only for the message complexity over the
number of rounds needed. It is also expensive for the number of nodes needed (> 3f ) to
handle f malicious failures, i.e., f being the number of nodes controlled by an adversary. The
generalisation of adversarial structures to quorum systems is discussed in [45].

From a security viewpoint, for its ability to tolerate arbitrary malicious behaviors, the BFT
protocols constitute an appealing building block for the construction of intrusion tolerant
systems. It is worth making the observation that these protocols consider the number of com-
promised entities. When faced with a malicious attacker identical replicas are not sufficient
because they exhibit the same vulnerabilities. A malicious adversary who can compromise
one replica can easily compromise the others if they are identical. Replication and diversity
(or distinct protection methodologies) are needed. We refer the reader to the discussions
in [59, 64, 65, 12, 1, 2, 45].
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Commit Protocols

A number of applications, e.g., databases, require ordering across replicated data or operations
where either all participants agree on conducting the same correct result (i.e., commit) or do
nothing – the atomicity property. Hence, as a specialised form of consensus, a distributed
coordinator directed algorithm is required to coordinate all the processes that participate in a
distributed atomic transaction on whether to commit or abort (roll back) the transaction.

The Two-Phase Commit (2PC) is a straightforward example of such atomic commitment
protocols. The protocol proceeds with a broadcast query from a leader to all the clients to
commit. This is followed by an acknowledgment (commit or abort) from each client. On
receiving all responses, the leader notifies all clients on an atomic decision to either commit
or abort [2, 5, 6]. The protocol achieves its goal even in many cases of failure (involving either
process, network node, or communication failures among others), and is thus widely used.
An approach based on logging protocol states is used to support recovery. The classical 2PC
protocol provides limited support for the coordinator failure that can lead to inconsistencies.

To solve this problem the three-phase commit (3PC) protocol has been developed. The 3PC
protocol is essentially an extension of the BFT protocol and adds a third communication
phase to assist the leader with the decision for an abort. This entails a higher messaging and
logging overhead to support recovery. While 3PC is a more robust protocol compared to BFT,
it is not widely used due to the messaging overhead and its sensitivity to network partitioning
(i.e., the P in CAP). In practice, systems use either BFT for its simplicity or the Paxos protocol
for its robustness.

5 DISTRIBUTED SYSTEMS: COORDINATION CLASSES AND
ATTACKABILITY

[12, c3][1, c5,c6][2, c19] [3, c18][23, c3]

The General Class of Disruptions

The attack surface [23, 66] in distributed systems involves the disruption of the resources,
communication, interfaces, and/or data that either impairs the resource availability or disrupts
the communication layer interconnecting the resources to impact Confidentiality, Availability,
or Integrity of the overall system and its services. The disruptions can be from improper
design, arising from operational conditions or deliberate attacks. Resource compromises or
disruptions form the basic attack targets. However, the functionality of a distributed system
emerges from the interactions across the distributed resources. As referenced in Section 1.2,
the resources and services (including replication management) in a distributed system are
primarily linked via communication infrastructures. These span the range of direct message
exchanges or via middleware architectures such as pub-sub or event based triggering among
others.

A number of varied terminologies exist to cover the range of operational and deliberate
perturbations from crashes, omissions, timing, value disruptions, spoofing, viruses, trapdoors,
and many others. We refer the reader to [24] for a comprehensive discussion on the topic.

As the distributed systems primarily rely on message passing for both data transportation
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and coordination, we group the perturbations at the level of message delivery6. The term
“perturbation or disruption” is deliberately used as the anomalous operation can result from
operational issues (dependability) or from a malicious intent (security). The manifestation of
these perturbations on the system operations results in deviations from the specified behavior
of the system. Complementing the vulnerabilities mentioned in Section 1.2 of access control,
data distribution, interfaces, the communication level perturbations can be broadly grouped
as:

1. Timing Based: This spans the omission of messages, early, delayed, or out-of-order
messaging. Crashes and denial-of-service also fall in this group as they typically manifest
as disruptions of the proper temporal delivery of messages by obstructing access to
the communication channels or resources.

2. Value/Information Based: Spoofing attacks, mimicking, duplication, information leak-
age such as a Covert Channel Attack or Side Channel Attack, and content manipulation
attacks broadly fall in this category. The manipulation of the content of messages
manifests as Byzantine behavior. This attack is only viable if a set of resources use
the exchange messages to build their global view of the system. A malicious entity
can send deliberately modulated information (e.g., a mixture of correct and incorrect
values) to different groups of resources to result in partitions of system state views.
Thus, based on different values received by different nodes, the individual nodes are
unable to constitute a “consistent” and correct view of the system state. The degree
of breach of consistency (strong – full agreement by all on value and order – weak,
partial, eventual) constitutes the degree of disruption. The nature of the underlying
transactional service (e.g., distributed ledgers in Blockchains) determines the type of
breach of the functionality. Relating to the groups of vulnerabilities, a Byzantine attack
can abuse access control, message delivery and coordination services, or the data itself
(viruses, compromised mobile code, worms) to compromise the system.

It should be noted that a perturbation also includes the property of persistence, i.e., the duration
of a perturbation can be transient, episodic, intermittent, or permanent in nature. Furthermore,
attacks often entail multiple simultaneous occurrences that involve a combination of timing,
value, persistence, and dispersed locations, potentially due to collusion between multiple
attacking entities.

Attacks and Implications

On this general background, we now detail the two prominent classes of distributed systems
as based on the coordination schema (resource- and service-coordination). This will also
form the system grouping for considering the security manifestations of attacks.

We use the classical CIA (Confidentiality, Integrity, and Availability) terminology though the
implications of these terms often differ according to the type of system and services. For
each class, the specification of its functionality determines the type of attack and the resultant
compromise that detrimentally affects the delivery of services.

As mentioned in Section 1.2, the threat surfaces of a distributed system comprise attacks
on the resources, admission control, the communication architectures, the coordination

6The provisioning of message integrity by techniques such as coding, cryptographic primitives, message
acknowledgements, retries, secure group communication, etc. are discussed in [2, 3] and the Cryptography
CyBOK Knowledge Area [67].

KA Distributed Systems Security | July 2021 Page 23

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

mechanisms, and the data. Similarly, attacks aim to subvert the assumptions behind the
functionality of resources, the services, and the underlying coordination schema.

In the following subsection, we enumerate some attack scenarios for the resources/infrastructure
and services/application classes of coordination. Given the immense diversity of types of
resource and services based distributed systems, the purpose of these examples is only to
illustrate some potential scenarios. It is also worth highlighting that often a resource attack
does not harm the resource per se but primarily affects the service executing on the resource.

5.1 The Resource Coordination Class – Infrastructure View

This class of “virtualised resource access” primarily deals with the coordination of a group
of computing and communication resources to provide an ensemble of highly-available,
highly-reliable “platform” of diverse shared resources to the user. This is an infrastructure (vs
applications) view where the user specifies the operational requirements for the desired service
(e.g., computational capabilities, number of Virtual Machines (VMs), storage, bandwidth
constraints, etc.) but is agnostic to the actual mechanisms providing the on-demand access
to the resources, scalability, physical characteristics, and geo-location/distribution of the
underlying resources.

Overall, the key characteristic of this coordination model is the provisioning of high-reliability,
high-availability access to resources. The basic resource replication simply provides a pool
of resources to support high-availability access. However, the resource replication schema
provides only the “capabilities” to support the services executing on it. Integrity is relevant
corresponding to the service specifications. For instance, VMs need to provide the specified
level of isolation without information leakage. Similarly, a web server is typically replicated
across machines both for reliability and for low-latency localised geo-dispersed access. Each
replicated server has the same set of data, and any time the data is updated, a copy is updated
across the replicated servers to provide consistency on data. It is the nature of the service
(as executing on the resources platform) that determines the type of desired coordination,
perhaps as consistency (strong, weak, eventual, causal). This will be the basis of the Service
Coordination class discussed later on.

We briefly present the Cloud and Client-Server models that constitute prominent examples of
the class of distributed resources.

The Cloud Model

The Cloud, in all its manifestations, is representative of the resource coordination model
as essentially a “resources platform” for services to execute on. There are multiple types
of Clouds offering varied types of services ranging across emphasis on high-performance,
low-latency access or high-availability amongst many other properties. It is the specific
resource coordination schema dictated by the specifications of the desired services based on
which the Cloud “platform” provides structured access to the Cloud resources. The chosen
coordination schema correspondingly supports the type of desired capabilities, for example,
access to specialised computing resources and/or resource containers such as physical
or virtual machines each offering differing isolation guarantees across the containers. The
user specified services execute on the Cloud resources, which are managed by the Cloud
service provider. The coordination schema, as a centralised or distributed resource manager,
handles the mapping and scheduling of tasks to resources, invoking VMs, health monitoring
of resources, fault-handling of failed resources such that the user transparently obtains
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sustained access to the resources as per the contractual Service Level Agreements (SLAs)
specified on the Cloud resources. The ENISA [68], NIST [69], and ISO [70] specifications
of Infrastructure as a Service (IaaS) and Platform as a Service (PaaS) are representations
of “resources/platforms/infrastructures supporting the services”. The multitude of Cloud
models, architectures, and services existing in practice makes it difficult to project a single
notion of Cloud security. Each specific resource coordination model is characterized by the
types of resource types in the Cloud model, the type of computing architecture as well as the
desired functionalities within the Cloud. These include, as a non-exhaustive list, the desired
types of resource fault handling, the chosen approach for handling of service bursts, the
type of schemas implemented for resource federation and migration, for task orchestration,
scheduling, the desired degree of concurrent access, the supported levels of multi-tenancy
etc.

However, from a security perspective, it is useful to de-construct the Cloud into its architectural
and functional components that result in the Cloud’s attack surface to consider. Analogous to
the infrastructure view of a data center being an aggregation of computing and storage re-
sources, the Cloud is an aggregation of geo-dispersed resources that are available on-demand
to the user. The user has resource-location and resource-composition agnostic transparent
access to highly-scalable, highly-available, highly-reliable resource and service virtualisation.
The user specifies the operational attributes of interest (termed as Service Level Objectives)
as (a) performance specifications, (b) reliability, (c) replication and isolation characteristics as
types and number of VMs, (d) latency, (e) security as the level/degree of encryption and other
mechanisms at the computing or communication level and (f) cost parameters for delivery or
non-delivery of services in the form of contracts known as Service Level Agreements. The
exact composition of the resources, their location or the mechanisms collating the aggregated
resources is transparent to the user. The functional blocks of the Cloud include authentication,
access control, admission control, resource brokering, VM invocation, schedulers, monitors,
reconfiguration mechanisms, load balancers, communication infrastructures, user interfaces,
storage, and many other functions under the PaaS and IaaS paradigms [70, 68, 69]. These
functional blocks, the physical Cloud resources along with the interfaces across them directly
constitute the attack surface of the Cloud.

The Client-Server Model

Resource groups where a set of dedicated entities (servers – service providers) provide a
specified service (e.g., Web services – file system servers, name servers, databases, data min-
ers, web crawlers, etc.) to a set of data consumers (clients). A communication infrastructure,
such as the public Internet, a local network, or a combination thereof, links the servers to the
clients. This can be monolithic, layered, or hierarchical. Both servers and clients are replicated
to either provide a characteristic collective distributed service or for fault tolerance. Note that
we are referring to Client-Server architecture as a resources platform or infrastructure and not
the Client-Server services per se. The functionality of a Client-Server infrastructure is derived
from the specifications of the services using the Client-Server model and from the requisite
coordination schema underlying it.
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Attackability Implications (and Mitigation Approaches) on Resource Coor-
dination

We now outline some example scenarios for the Cloud though they analogously apply to
the Client-Server and other resource models as well. The reader is referred to [71, 72] for an
insightful discussion relating security and functionality issues in the Cloud.

- Compromise of Resources: Such attacks impact the Availability of the basic resources.

Mitigation: Protection can be obtained by using access control schemes (including Firewalls)
to limit external access to services and network resources. Authorisation processes are set
up for granting of rights along with access control mechanisms that verify the actual rights
of access [73]. Other approaches to resource protection include the sandboxing resources
or having a tamper-resistant Trusted Computing Base (TCB) that conducts coordination
handling [2, 3] and enforces resource accesses. While the resource class primarily considers
attacks on the infrastructure, data at-rest or in-motion (as in a data storage facility) can also
be considered as a resource. Consequently, it can be protected using techniques such as
encryption. As the specification of a distributed service includes the specification of both
normal and anomalous behavior on the use of the data providing the service, this protection
is considered under the services class.

Other manifestation of resource attacks, including on communication channels, aim to parti-
tion resources (and overlying services). The implication here is on Availability for the resources
and on Integrity for the services.

- Compromise of Access/Admission Control: This comprises the broad categories of Mas-
querading, Spoofing, and ID management attacks. The implication on the resources is on
Availability, though both the Integrity and Confidentiality of the data/service are affected. In
case of a DoS attack, the consequence is on resource Availability.

Mitigation: Intrusion Detection System (IDS) constitute typical mitigation approaches. These
are complemented by periodic or random ID authentication queries. The periodic checking of
system state is used to establish the sanity of IDs.

- Compromise of VM: The typical manifestation is of information leakage from the VM via a
Covert Channel Attack or Side Channel Attack or similar attacks. The consequence is the
violation of Integrity and Confidentiality of the services provisioned by the VM.

Mitigation: A variety of schemes for VM’s protection are detailed in [43] (also see the Operating
Systems & Virtualisation CyBOK Knowledge Area [4]). There are three aspects to be considered
here as the detection of leakage, the system level where the leakage transpires, and the
handling of leakage. Taint analysis is a powerful technique for data level detection. As
covert/side-channel attacks often happen at the hardware level and are influenced by the
schedulers, the use of detectors employing hardware performance counters is a generally
used technique as advocated in [74]. System level handling of VM compromises often starts
from the level of tightening the specification of trust assumptions and validating them being
upheld using analytical, formal, or experimental stress techniques. Hypervisors are commonly
used for the enforcement of VM operations.

- Compromise of Scheduler: There are two manifestations of such attacks. When the scheduler
is affected and this results in an anomalous task or resource allocation, such a deviation
(on an incorrect resource allocation) can be detected through Access Control. In the case
of a malicious takeover of the scheduler, the likely resultant inconsistencies across the
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system state or resource-task bindings can be filtered by the coordination schema whose
job is to maintain a consistent state. Such attacks typically impact Availability and Integrity.
Confidentiality is not breached.

Mitigation: As mentioned in the attack description, Access Control and coordination constructs
are used to check the consistency of the system state for any observed mis-match to the
legitimate or allowed set of resource allocations. This can be used identify corruptions of the
scheduler.

- Compromise of Broker: This occurrence, within a Cloud resource manager/broker or an
inter-Cloud broker, primarily impacts resource Availability.

Mitigation: Approaches similar to scheduler compromise mitigation are used here. If backup
brokers are part of the design, that is a typical fall back, otherwise, system stops are often the
solution.

- Compromise on Communication: As communication is a core functionality to achieve re-
source coordination, this has strong implications on the resources to stay coordinated and
directly impacts Availability. The consequent inability to support replication, resource to task
allocation, etc. fundamentally compromises the functionality of the system.

Mitigation: A variety of communication protection techniques are presented in the Network
Security CyBOK Knowledge Area [10]. These include retries, ACK/NACK based schemes,
cryptographically secured channels among others.

- Compromise on Monitoring and Accounting: With incorrect information on the state of the
system and/or services, this can lead to compromise of Confidentiality, Integrity, and Avail-
ability.

Mitigation: State consistency schemes are the typical mechanism utilised here. It is worth
mentioning that the replication and coordination concepts presented in Sections 4 and 4.4
form the basis of the mitigation approaches. The very purpose of the replication management
is to obtain consistent system states to circumvent disruptions.

5.2 The Services Coordination Class – Applications View

The service coordination model focuses on the specific characteristics of the services that
determine the degree/type of coordination relevant to supporting that service. For example,
a database hosted on a Cloud necessarily requires the provision of integrity in the form of
ACID7 properties along with liveness. Distributed storage, such as KVS (Key Value Store) or
transactional database services, may require varied levels of consistency or linearisability
where the desired level of integrity may depend on the level of data-access latency feasible in
the system. The broad class of Web services to include Web crawlers and search engines
may require weak or partial consistency as per CAP. On the other hand, Blockchains or
ledger queries, that provide distributed crypto based consensus, have strong consistency
(and traceable auditing) as a key requirement with lesser demands on latency. Thus, it is the
specification of the service (KVS, Database, Blockchain) that determines the nature of the
coordination schema for the distributed resources platform.

We present some characteristic examples of the services class as:
7A stands for atomic, C for consistent, I for isolated and D for durable.
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Web Services: These cover the spectrum of data mining, web crawlers, information servers,
support for e-transactions, etc. This is a fairly broad, and generic, category, which encom-
passes a wide variety of services. It is useful to note that many of these services utilise the
Client-Server paradigm though our interest here is at the services level.

Key Distribution: This is a broad class of (Authorisation & Authentication) services such
as Kerberos, PKI, etc. Such services typically enable authentication (either proving server
authenticity to a client, or mutually authenticating both client and server) over insecure net-
works, based on various cryptographic protocols. Authentication services commonly act as
trusted third party for interacting entities in a distributed system. For further details see the
Authentication, Authorisation & Accountability CyBOK Knowledge Area [9].

Storage/KVS

This is a diverse set of services starting from register level distributed read-writes that entail
strong consistency with very low latency. Another general model is Key Value Store (KVS)
where data is accessed via keys/pointers/maps with simple read, write, delete types of
semantics. In KVS, the data is represented as a collection of key-value pairs, such that each
possible key appears at most once in the collection with a focus on fast access times (up to
a constant access time). The key-value model is one of the simplest non-trivial data models,
and richer data models are often implemented as extensions with specified properties. For
example, an ordered model can be developed that maintains the keys in a lexicographic order
to efficiently retrieve selective key ranges. Key-value stores can use consistency models
ranging from eventual consistency to strict consistency. The security issues requires dealing
with data-at-rest (static storage) and data-in-transit (dynamic R/W ops).

Transactional Services, Databases

This is a wide class of services covering databases and general transactional services (re-
trieval, informational data mining, banking and stock transactions, etc.). The requirements are
consistency as in banking where all the debit and credit transactions are (strongly or weakly)
serializable for consistency. More generally, a database adheres to all of the stipulated ACID
properties.

On the other hand, a number of data mining and information lookup transactions only require
weaker nuances of consistency. For example, an information lookup process can work with
physically partitioned data centers resulting in stale or inconsistent information as long as
they are eventually reconcilable within some specification of the service requirements. The
specification of the type and degree of perturbations and level of consistency the services are
designed to be resilient to determines the specific coordination schema to use. Additionally,
in the case of weaker consistency models, the user is required to deal with any stale data that
might have been retrieved from the database.

Blockchains/Cryptocurrencies

The concept of a ledger provides for consistent bookkeeping on transactions. This is problem-
atic to achieve in a distributed system where the participating entities do not trust each other
and are potentially untrustworthy. Blockchains provide a decentralised, distributed, and public
ledger that is used to record transactions across many computers so that the record cannot
be altered retroactively without also altering all subsequent blocks. Such alterations require
the consensus of the network and can therefore not be performed unilaterally by an attacker.
This also allows the participants to verify and audit transactions inexpensively. Blockchains
form the foundation for numerous cryptocurrencies, most notable Bitcoin.
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In technical terms, a Blockchain is a list of records or blocks. The aforementioned properties
arise from the fact that each block incorporates a cryptographic hash of the previous block
and a timestamp. If a block in the chain is altered without also altering all subsequent blocks,
the hash of the following block will no longer match, making the tampering on the Blockchain
detectable.

When used as distributed ledgers, Blockchains are typically managed by peer-to-peer networks.
Peers in such a network participate in a protocol for validating newly submitted blocks.
Blockchains are also examples of widely deployed systems exhibiting high tolerance to
Byzantine failures.

The generic Blockchain concept allows participation by any entity (permission-less systems,
public blockhains) and does not include any access restrictions. This is the case for the
blockchains underlying many widely used cryptocurrencies such as Bitcoin. However, a more
restrictive participation model (permissioned systems, private blockchains) is also possible,
where a “validating authority” grants permission for participation.

In order to deter denial of service attacks and other service abuses such as spam on a network,
the concept of Proof-of-Work (PoW) (i.e., spending processing time to perform computationally
expensive tasks) is specified as a requirement for participation. This is effective as a means
of preventing service abuses such as spam since the required work is typically hard to perform
but easy to verify, leading to asymmetric requirements for service requester and provider.
However, PoW schemes also lead to high energy usage and, depending on the chosen work
requirement, may lead to unreasonably high barriers of entry. This is the case, for instance, in
certain cryptocurrencies, where meaningful participation requires custom hardware designed
for the specific type of work required. To avoid these shortcomings, alternative approaches
relying on Proof-of-Stake (PoS) are in development but not as mature as PoW-based schemes
and not widely deployed.

A comprehensive discussion on Blockchain issues appears in [75, 76]. As a note, Blockchains
represent an interesting combination of decentralised resources using the P2P model for the
resource coordination and the coordination schema of consensus for its service functionality.

Overall, service integrity, in terms of consensus as supported by requisite liveness, is the key
characteristic of the service coordination model. This contrasts with the resource coordination
class where resource accessibility and availability were the dominant drivers/considerations.

Attackability Implications (and Mitigation Approaches) on Service Coordi-
nation

The services and applications constitute a very broad class to cover, both for the type of attacks
and the diversity of services where the functional specification of the service determines the
type and degree of the impact on security. In most cases the breach on Integrity, along with on
Confidentiality, is the first class impact with impact on Availability following as a consequence.
Some examples of breaches for the coordination schema and service types are mentioned
below.

Note: The mitigation schemes applicable here are the same as described in Section 5.1
that essentially result from the basic replication management and coordination concepts
presented in Sections 4 and 4.4. The very purpose of replication based coordination, at the
resource or the service level, is to prevent compromises by discrete attacks up to the threshold
of severity type and the number of disruptions the replication schema is designed to handle.
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Compromise of Key distribution in PKI: The authentication processes supporting the distribu-
tion of public keys is compromised affecting service Integrity and Confidentiality.

Compromise of Data at Rest: This is analogous to the breach of resources in the resource
coordination model as applicable to storage systems.

Compromise of Data in Motion: This has varied consistency and latency consequences that
compromise the Integrity depending on the specifications of the services. We present a very
simplistic enumeration using transactions classes as:

Short transactions: (Storage/KVS, etc.) The major driver for this class is both consistency
and low latency (e.g., linearisability). As both liveness and safety are violated, the Integrity of
the transaction is compromised. It is worth noting that a DoS attack may not affect consistency.
However, as latency is affected, the service Integrity is lost.

Large transactions: Ledgers (Blockchain, etc.) lie in this category where, although latency
is important, it is the Integrity (as defined by the consistency of the ledger) that is the primary
property to preserve. As Ledgers constitute a popular service, we discuss it to illustrate
aspects of both attack surfaces and assumptions.

To recapitulate from Section 5.2, Blockchains constitute a ledger of information that is dis-
persed across a distributed system. Blockchains ensure the security of data by not providing a
single point of attack. The ledger is stored in multiple copies on a network of computers. Each
time an authorised participant (for example in a permissioned system) submits a transaction
to the ledger, the other participants conduct checks to ensure that the transaction is valid,
and such valid transactions (as blocks) are added to the ledger chain. Consensus ensures a
consistent view of the sequence of transactions and the collated outcome. The cryptographic
basis of the hash, on each block, is expected to avoid tampering, and the Proof of Work notion
is designed to mitigate the effect of DoS attacks.

What makes this system theoretically tamper proof are two aspects: (a) an unforgeable cryp-
tographic hash linking the blocks, and (b) attack-resilient consensus by which the distributed
participants agree on a shared history of transactions.

Compromising these involves the compromise of stored cryptographic keys and the hash.
While theoretically safe, such systems may turn out to be vulnerable to emergent technolo-
gies such as quantum computing. Moreover, while Proof of Work requirements (i.e., “to
demonstrate” a greater than 50% participant agreement) can make collusion attacks pro-
hibitively expensive in sufficiently large systems, they can be feasible on systems with fewer
participants.

Similarly, the consensus property can be compromised via an Eclipse attack [77] for Bitcoin,
and also in general cases where there exists the potential to trick nodes into wasting computing
power. Nodes on the Blockchain must remain in constant communication in order to compare
data. An attacker that can take control of a node’s communication and spoof other nodes
into accepting false data to result in wasted computing or confirming fake transactions can
potentially breach consensus. The work in [76] provides useful reading on such compromises.

Mixed transactions: As implied in the label, this combines short and large transactions. The
security implications depend on the type of services. As an example, we outline two service
groups, namely:

- E-commerce supporting transactions: The core requirements here are ACID properties
that entail strong consistency and no partitions. Any compromises affect the Integrity of the
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service.

- Informational systems: Services such as Webcrawlers, Data Retrieval for applications such
as Uber or informational queries for shopping can handle (both network and data) partitions
of data to operate on stale cached data. The attack may lead to redundant computations on
the searches or slightly stale information but Integrity is not violated as long as the semantics
of Weak, Relaxed, or Eventual consistency, as applicable for the service specification, are
sustained. Also informational queries have mixed latency requirements. For example, the
small latency within a local data center and higher-tolerable latency across geo-dispersed
data centers may define the degree of attack tolerance until both Availability and Integrity are
compromised.

CONCLUSIONS

The intent of this chapter has been to outline how distributed systems work, and how the
mechanisms supporting the operations of such systems open security issues in them. Very
often the expectation is that classical security techniques will directly apply in a distributed
systems context as well. However, this is often not the case and the better one understands
the conceptual basis of a distributed system, the better one can understand and provide for
its security. The KA discussed the functional categorisation of distributed systems into two
major classes: decentralised and coordinated control. The operations for each class were
elaborated leading to the security implications resulting from the different specifics underlying
distributed systems.
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FURTHER READING

The following books are recommended for a deeper coverage of the distributed system and
security concepts.
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Distributed Algorithms Concepts Lynch [12] — The book lays out the essential concepts of
distributed systems. The focus is on synchronisation and consensus though it provides a
comprehensive and mathematically rigorous coverage of distributed systems concepts from
an algorithms viewpoint.

Reliable & Secure Distributed Programming Cachin, Guerraoui, Rodrigues [1] — Coming
from a distributed programming viewpoint, this is another rigorous book that covers both
fault tolerance and security. It also provides an excellent coverage of cryptographic primitives.
Although it predates the development of Ledgers, most of the concepts behind them are
covered in this book.

Group Communication & Replication Birman [2] — This is an excellent book that combines
concepts with an emphasis on the actual development of distributed systems. The case
studies provide valuable insights on practical issues and solutions. An insightful coverage of
P2P systems also appears in this book.

Security Engineering Anderson [7] — This book makes for excellent reading on the realisation
of distributed system from a security perspective especially for naming services and multi-
level security. The reader is also encouraged to read the texts [42, 8] that detail complementary
coverage on CORBA and Web services.

Threat Modeling Swiderski, Snyder [23] — The coverage is on the basics of threat modeling
from a software life cycle and application security viewpoint. While not a distributed systems
book, it still provides valuable insights on how threat modeling is conducted in practice.
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ACRONYMS

2PC Two-Phase Commit.

ACID Atomic, Consistent, Isolated and Durable.

ASN Autonmous System.

AWS Amazon Web Services.

BFT Byzantine Fault Tolerance.

CAN Controller Area Network.

CAP Consistency, Availability and Partition.

CIA Confidentiality, Integrity and Availability.

DDoS Distributed Denial of Service.

DHT Distributed Hash Table.

DoS Denial of Service.

ENISA European Union Agency for Cybersecurity.

IaaS Infrastructure as a Service.

IDS Intrusion Detection System.

ISO International Organization for Standardization.

KVS Key Value Store.

LEA Localised Eclipse Attacks.

MITM Man In the Middle (attack).

MMOG Massive Multiplayer Online Games.

NIST National Institute of Standards and Technology.

OEA Outgoing Eclipse Attacks.

P-DS P2P Data Structures.

P-OP P2P Operations.

P2P Peer-to-Peer System.

PaaS Platform as a Service.

PKI Public-Key Infrastructure.
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PoS Proof-of-Stake.

PoW Proof-of-Work.

RPC Remote Procedure Call.

RTP Routing Table Poisoning.

SCADA Supervisory Control and Data Acquisition.

SLA Service Level Agreement.

SQL Structured Query Language.

taLEA Topology Aware Localised Eclipse Attacks.

TCB Trusted Computing Base.

VM Virtual Machine.

GLOSSARY

attack surface The set of entry points where an attacker can attempt unauthorised access.
Security approaches endeavor to keep the attack surface as small as possible.

authentication The process of verifying the identity of an individual or entity.

Byzantine Anomalous behavior when an entity/attacker sends different (albeit valid) infor-
mation to different recipients. The reader is referred to [59] for the technical definition.

confidentiality The property that ensures that information is not made available or disclosed
to unauthorised individuals, entities, or processes.

consensus Consensus (and similarly for Consistency) refers to mechanisms and the property
of achieving varied types of agreement on values or coordination of state/entities, typi-
cally in the presence of specified failures. As there are precise technical specifications
involved for consensus and different types of consistency, the reader is referred to the
section on Coordination Properties and to the references [2, 12, 1].

coordination schema The mechanisms that help orchestrate the actions of the involved
entities.

Covert Channel Attack An attack that results in the unauthorised capability to glean or trans-
fer information between entities that are not specified to be able to communicate as per
the security policy.

CyBOK Refers to the Cyber Security Body of Knowledge.

integrity The property that ensures that data is real, accurate and safeguarded from unautho-
rised user modification.
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leader election Following the replacement of an existing leader, on failure of a leader or for
fairness or load balancing, the process of electing a new entity to perform the leadership
activities of coordination.

middleware A software layer between the Operating System and the Application Layer de-
signed to facilitate the interconnection and interaction between distributed components.
Often referred to as the ”software glue” that binds components together.

overlay Refers to the overlay network in peer-to-peer systems that is a virtual network linking
a specified set of nodes as built on top of the nodes of the physical network.

replication The aspect of adding physical or logical copies of a resource.

Side Channel Attack Side Channel Attack An attack based on information gained from the
implementation of a system (e.g., that of a cryptographic algorithm) rather than weak-
nesses in the algorithm (e.g., those discovered via cryptanalysis). Side Channel attacks
can be mounted based on monitoring data or key dependent variations in execution
time, power consumption or electromagnetic radiation of integrated circuits.
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bandwidth provisioning, 12
banking services, 28
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breadth-first search, 9
buffer map cheating attack, 12–14
bully algorithm, 20
butterfly graph, 9
byzantine attack, 23
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byzantine fault tolerance, 21
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cached content, 10
car-to-car communication, 8
causal consistency, 19
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censorship attack, 12–14
censorship resistance, 8
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certificate authority, 14
Chord, 9
Chubby file system, 21
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churn attack, 14
client-server models, 4, 7, 10, 13, 15, 24–26, 28
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collusion attack, 12, 13, 30
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communication model, 4
communication processes, 4
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composite attack, 12, 13
computation cycles, 10
concurrency, 25
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conflict resolution, 19
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consistency model, 18, 19, 28
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content manipulation attack, 23
content pollution, 14
controller area network, 9
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coordination abstraction, 15
coordination group, 15
coordination mechanism, 5, 15
coordination model, 15
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coordination schema, 19
coordination service, 7, 15
coordinator failure, 22
correctness, 7, 17
covert channel, 7, 23, 26
covert channel attack, 7, 23, 26
crash fault, 18, 20–23
credentials, 17, 20
cryptocurrency, 28, 29
cryptographic primitives, 23, 32
cryptographic protocols, 28
cryptographic scheme, 15
cryptography, 14, 15, 17, 27, 28, 30, 32

data centre, 7, 25, 28, 31
data chain, 7
data consistency, 3, 4, 7, 15, 18–20, 23, 24, 27,

28, 30, 31
data discovery, 8–10
data dissemination, 8–11
data flow, 3
data in transit, 7, 26, 28, 30
data mining, 25, 28
data modification, 6, 14
data source, 6, 7
data storage, 7
data storage and retrieval, 7
data structure, 9, 11
data transport, 3, 6, 7, 22
database, 3–5, 15, 17, 18, 20, 22, 25, 27, 28
decentralised, 3–5, 7, 10, 11, 15, 16, 28, 29, 31
decentralised control, 4, 15
denial of service, 6, 11, 13, 26, 30
depth-first search, 9
deterministic algorithm, 18
development, 32
digital signature, 15
direct routing table, 9
discrete coordinator, 15
dispersion, 3
disruption, 11
disruption attack, 11
distance function, 9
distributed application, 3, 5
distributed database, 5
distributed denial of service, 11, 13, 23
distributed file system, 4, 5
distributed hash table, 9, 12, 13
distributed ledger, 8, 15, 23, 29
distributed object platform, 4, 5

distributed programming, 32
distributed resource, 3, 4, 6, 15–17, 19, 20, 22,

24, 27
distributed systems, 3–7, 15, 16, 18–20, 22–24,

31, 32
divergent lookup, 15
diversity, 4, 8, 15, 21, 24, 28, 29
durability, 27, 28, 30
dynamic membership, 18
DynamoDB, 19

Eclipse attack, 12
ecommerce, 30
eDonkey, 10
elastic resources, 4
eMule, 8
encryption, 25, 26
end-to-end security, 5
endpoint authentication, 6
ENISA, 25
Ethereum, 3
event based response triggering, 6
eventual consistency, 19, 28
expanding ring search, 9
exploit, 3, 5, 11, 13

failure handling, 3
failure semantics, 18
fake block, 12
fake reporting, 12
fault handling, 25
fault tolerance, 13, 21, 25, 32
file sharing, 8, 10
file system, 4, 5, 21, 25
firewall, 26
fixed-degree graph, 9
FLP impossibility result, 21
fly-by-wire, 17
Freenet, 8
functional block, 5, 25

geo-dispersed resource, 3, 4, 15, 16, 24, 25, 31
geo-location, 24
GitHub, 12
Gnutella, 3, 4, 8
Google, 4, 18, 21
Google File System, 4, 21
group communication, 17, 20, 23
group membership, 18

hardware performance counter, 26
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hash function, 9, 12, 13, 29, 30
health monitoring, 24
heterogeneity, 15
hierarchical P2P, 10
high performance computing, 4
hypervisor, 26

index poisoning, 12
information leakage, 7, 23, 24, 26
information server, 28
infrastructure, 7, 15, 20, 22, 24–26
infrastructure as a service, 25
instant messaging, 8
integrity, 3, 7, 8, 11–13, 18, 22–24, 26, 27, 29–31
internet, 8, 19, 25
internet telephony, 8
intrusion detection system, 26
intrusion tolerant systems, 21
IoT, 8
ISO, 25
isolation, 5, 16, 24, 25

KAD network crawler, 14
KAD P2P network, 14
Kademlia, 4, 9, 14
KaZaA, 8, 10
Kerberos, 28
key value store, 4, 27, 28, 30
key-value pair, 28

latency, 3, 8, 10, 24, 25, 27, 28, 30, 31
leader-election protocol, 20
legal entities, 13
likelihood, 5
linearisability, 7, 18, 27, 30
liveness detection, 9
load balancer, 25
local network, 25
localised eclipse attacks, 13, 14
lock step, 17
log-in, 6
logging, 22
logging protocol, 22
logistics application, 15
lookup algorithm, 10
low-latency, 3, 24

malicious intent, 23
malware, 7
man-in-the-middle attack, 6
manipulation, 23

masquerading, 6, 26
massive multiplayer online games, 14
mathematics, 32
media streaming, 8, 12
message delivery, 23
message exchange, 8, 11, 21, 22
message forwarding, 14
message passing, 4–6, 8, 9, 12, 22
Microsoft, 18
middleware, 3–7, 21, 22
middleware protocol, 7
mimicking attack, 23
mitigation strategy, 29
mobile computing, 4
modulated information, 23
modulation, 23
MongoDB, 18
monolithic, 25
multi-cloud, 4
multi-tenancy, 4, 25
multi-torus, 9
multimedia content distribution, 8
music sharing, 4
MySQL, 18

n-tier multi-tenancy model, 4
NACK scheme, 17, 27
name server, 25
Napster, 4, 10
neighbour selection, 12
network address, 9, 10
network edge, 8
network partition, 11, 12, 19, 20, 22, 23, 26
network topology, 8, 9, 13
NIST, 25
node/peer insertion attacks, 12
non-repudiation, 16
NoSQL, 18

omission fault, 12, 14, 18, 21, 22
online gaming, 4, 8, 14
Operating System, 5
operational issue, 23
outgoing eclipse attack, 13
outgoing traffic, 12
overlay network, 11, 13

P2P data structures, 13
P2P operations, 13
parallelised queries, 10
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partially synchronous system, 17
passive attack, 6, 19
password, 6
Pastry, 9, 12
Paxos protocols, 20–22
peer index table, 14
peer-to-peer system, 3, 4, 7–15, 29, 32
permission-less system, 29
permissioned systems, 29, 30
platform as a service, 25
point-to-point interaction, 4, 17
pollution attack, 12
practical byzantine fault tolerance, 21
private blockchain, 29
process id, 18
proof-of-stake, 14, 29
proof-of-work, 29
public blockchain, 29
public key, 14, 20, 28, 30
public key cryptography, 14, 17
public key infrastructure, 17, 20, 28, 30
publish-subscribe, 4–6, 17, 22

quantum computing, 30
quorum membership, 18
quorum system, 21

RAFT protocol, 21
random walk, 9
recursive algorithms, 10
redundant channel, 17
register transfer level, 28
relational database, 18
reliability, 3, 17, 19, 24, 25
remote procedure call, 5
replication, 3, 4, 7, 8, 15, 16, 19, 21, 22, 24, 25,

27, 29
replication schema, 3, 24, 29
reputation, 12
reputation systems, 12
resilience, 7, 15, 28, 30
resource brokering, 25
resource exhaustion, 11
resource failure, 3
resource frugality, 15
resource identifier, 6, 9
resource manager, 15, 27
resource partitioning, 19
resource provisioning, 7, 12

resource-coordination, 15
resources platform, 24, 25
ring algorithm, 20
routing attack, 12, 14, 15
routing disruption, 11
routing schema, 8
routing table, 9–14
routing table poisoning, 12

safety-critical system, 17
sandboxing, 26
SCADA, 8, 17
scalability, 7–10, 13, 24, 25
search algorithm, 9
search engine, 27
secure admission, 14
secure routing, 14
secure storage, 14
security breaches, 3, 29, 30
security mechanism, 5, 14, 15
security requirements, 16
sequential consistency, 19
service coordination class, 24, 27, 29
service level agreement, 25
service level objectives, 25
service orchestration, 3
service-coordination, 15, 23
side channel attack, 7, 23, 26
social network, 8, 12
spoofing, 6, 12, 13, 22, 23, 26, 30
SQL Server, 18
state consistency scheme, 27
state machine, 18, 19
static membership, 18
storage system, 4, 30
strict consistency, 18, 28
strong consistency model, 18
structured P2P, 8–10
structured topologies, 9
super P2P model, 10
Sybil attacks, 12–14
symmetric cryptography, 17
synchronisation, 5, 7, 17, 18, 20, 21, 32

taint analysis, 26
taLEA, 13–15
tamper resistance, 30
tampering, 6, 29, 30
Tapestry, 9
task scheduling, 24
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time/event ordering, 7
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Tor, 13
Tor network, 13
traceable auditing, 27
tracker servers, 10
transactional commit, 7
transactional database, 15, 27
transactional processing, 3, 4, 7, 28
transactional stock system, 17
trapdoor, 22
trust, 12, 26, 28
trust management, 12
trusted computing base, 26
two-phase commit, 22
typhoid ad-ware attack, 12

Uber, 31
unstructured P2P, 8–10
usage policy, 5
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user interface, 25
username, 6

view changes, 7
virtual machine, 24
virtualisation, 3, 24, 25
virus, 7, 17, 22, 23
vulnerabilities, 3, 5, 15, 21, 23

weak consistency model, 18
web browser, 6
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