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Introduction

This SageMath sheet is intended to provide a practical guide for working with lattice-based
computations. It covers fundamental operations, including vector and matrix manipulations,
polynomial arithmetic, random element generation, and various lattice-related tasks. The goal
is to offer a hands-on approach to exploring lattice-based cryptography and other lattice-related
mathematical concepts, utilising SageMath’s powerful computational tools.

It assumes that the reader has basic familiarity with SageMath and its syntax.
SageMath is a free, open-source, and powerful mathematics software system licensed under

the GPL. It combines many existing open-source packages into a common Python-based interface.
For the remainder of this document, we will refer to it simply as Sage.

You can work with Sage in different ways:

• Sage Cell: Run Sage code online instantly via https://sagecell.sagemath.org/.

• CoCalc: Use an online collaborative platform at https://cocalc.com/, which provides
Sage alongside Jupyter notebooks and other tools.

• Local Installation: Install Sage on your computer by downloading it from https://www.

sagemath.org/, allowing for offline use and better performance.

For more information about Sage, please refer to https://doc.sagemath.org/html/en/

tutorial/index.html.

CyBOK Mapping

The material in this sheet maps to the following knowledge areas of the CyBOK:

• Systems Security → Cryptography

• Infrastructure Security → Applied Cryptography
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1 Prime Numbers

Sage provides several functions for working with prime numbers.

Random Primes

The function random prime(n) generates a random prime number ≤ n.

# Returns a random prime <= 1000
p = random prime (1000)
p r in t (p)

We can also specify a lower bound using the lbound parameter:

# Random prime from the i n t e g e r range [ 500 , 1000 ]
p = random prime (1000 , lbound=500)
p r in t (p)
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Checking for Primality

To check whether an integer x is prime, use the function is prime().

x = 13
# Check i f x i s a prime
x . i s p r ime ( )

Finding the Next or Previous Prime

To find the smallest prime number greater than x:

x . next pr ime ( )

To find the largest prime number smaller than x:

x . prev ious pr ime ( )

2 Zn, Z×n , and Finite Fields

The Ring of Integers Modulo n and the Multiplicative Group Z×
n

The ring Zn, which consists of the set {0, 1, 2, . . . , n−1} with modular addition and multiplication,
can be defined in Sage using the command IntegerModRing(n). Below is an example that lists
the elements of Z10:

Z10 = IntegerModRing (10)
# Perform 5∗3 in t h i s r i ng
Z10 (5) ∗ Z10 (3)
Z10 . l i s t ( )

The set Z×n consists of the elements of Zn that are coprime to n, i.e., the units of the ring.
The following example lists the elements of Z×10:

# Def ine the r ing Z {10} ( i n t e g e r s modulo 10)
# Al t e rna t i v e method to do t h i s i s : Z10 = Zmod(10)
Z10 = IntegerModRing (10)

# L i s t a l l e lements in the mu l t i p l i c a t i v e group Z {10}ˆ∗
Z10 . l i s t o f e l em e n t s o f mu l t i p l i c a t i v e g r o u p ( )

# The group o f mu l t i p l i c a t i v e un i t s ( i n v e r t i b l e e lements )
Z10S = Z10 . un i t group ( )

Finite Fields

A finite field (or Galois field) is a field with a finite number of elements. The simplest example
is Zp where p is a prime number, which forms a field under modular arithmetic.

We can define a finite field using GF(q), where q is a prime power. For example, F13 (the
finite field with 13 elements) can be defined as follows:

F13 = GF(13)

Elements of the field can be used for arithmetic operations just like integers:

F13 (15) ∗ F13 (11)
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Finding the Multiplicative Group

The multiplicative group of a finite field consists of all nonzero elements. The following command
lists its elements:

F13 . mu l t i p l i c a t i v e g r oup ( ) . l i s t ( )

This returns the elements of F∗13, i.e., all nonzero elements of the field.

Finite Fields of Prime Power Order

If the field size is a prime power pk, Sage requires specifying an indeterminate (either explicitly
or implicitly) when constructing the field. The following example defines F23 , the finite field with
23 = 8 elements:

F8.<x> = GF(2ˆ3)

Elements of a finite field can be added, multiplied, and inverted:

# Get 2 random elements from F8
a = F8 . random element ( )
b = F8 . random element ( )

c = a + b
d = a ∗ b

# Mu l t i p l i c a t i v e i nv e r s e o f a
inv a = aˆ(−1)

3 Polynomial Rings

Sage has functions and tools to simplify working with polynomials.
In the below example we show how to define the ring of polynomials over the integer ring Z2,

i.e. Z2[X]. We explore several properties of a given polynomial. The operations include checking
irreducibility, factorisation, primitivity, and divisibility in the ring Z2[X]. Note Z2 itself is field
since 2 is a prime.

# The r ing Z 2 ( i n t e g e r s mod 2)
Z2 = IntegerModRing (2)

# The polynomial r i ng Z 2 [X]
R.<X> = PolynomialRing (Z2)

# c i s the polynomial X2 + X in Z 2 [X]
c = Xˆ2 + X

# Check whether the polynomial i s i r r e d u c i b l e
c . i s i r r e d u c i b l e ( )

# Factor the polynomial
c . f a c t o r ( )

# Check whether the polynomial i s p r im i t i v e
c . i s p r im i t i v e ( )

# Check whether the polynomial c d i v i d e s the polynomial X4 + 1
c . d i v i d e s (Xˆ4 + 1)

# Sample a random polynomial o f degree 3 from Z 2 [X]
p r in t (R. random element ( degree=3) )
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3.1 Quotient Polynomial Rings

A quotient polynomial ring is constructed by taking a polynomial ring over a base ring and
factoring out an ideal generated by a polynomial. This quotient ring is particularly useful in
lattice-based cryptography, where operations are performed modulo a cyclotomic polynomial
such as Xn + 1.

The below example shows how to create the ring Z[X]/(X11 + 1). This type of ring is
important in lattice-based cryptography, particularly in schemes such as those relying on Ring-
LWE.

# Def ine polynomial r i ng over i n t e g e r s
R.<X> = PolynomialRing (ZZ)

# Modulus polynomial
f = Xˆ11 + 1

# Def ine the quot i ent r ing
Q.<X> = R. quot i ent ( f )

# Example to mult ip ly e lements in the quot i ent r ing
p r in t ( (Xˆ2 + 3) ∗ (Xˆ5 + 1) )

# Sampling a random element from the quot i ent r ing
p r in t (Q. random element ( ) )

Here, the ring Q represents Z[X]/(X11 + 1), where arithmetic operations are performed
modulo X11 + 1.

4 Vectors

Sage provides built-in support for vectors, allowing easy operations such as addition, dot prod-
ucts, and norms.

4.1 Defining Vectors & Basic Vector Operations

Below are some examples of how to define a vector.

# Def ine a vec tor v with ( i n t e g e r ) components (1 , 2 , 3)
v = vector ( [ 1 , 2 , 3 ] )

# Def ine another vec tor w with ( i n t e g e r ) components (4 , 5 , 6)
w = vector ( [ 4 , 5 , 6 ] )

Vectors support addition and subtraction component-wise.

# Perform vector add i t i on : ( 1 , 2 , 3 ) + (4 , 5 , 6 ) = (5 , 7 , 9 )
v + w

# Perform vector subt rac t i on : ( 1 , 2 , 3 ) − ( 4 , 5 , 6 ) = (−3,−3,−3)
v − w

The dot product of two vectors can be computed using either the ∗ operation or by using the
dot product() function.

# Compute dot product : (1∗4 + 2∗5 + 3∗6) = 32
v ∗ w

# Compute dot product : (1∗4 + 2∗5 + 3∗6) = 32
v . dot product (w)
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4.1.1 Vectors Over Rings and Finite Fields

The default for vectors is integer coordinates. Sage allows defining vectors over various mathe-
matical structures, including integers, finite fields, and polynomial rings.

Vectors can be defined over a finite field Fq.

# Def ine the f i n i t e f i e l d GF(7)
F = GF(7)

# Vector v over GF(7) ( i t s e n t r i e s are e lements o f GF(7) )
v = vector (F , [ 3 , 4 , 5 ] )

Vectors can also have entries from a polynomial ring.

# Polynomial r i ng over the i n t e g e r s in the indeterminate X ( i . e . ZZ [X] )
R.<X> = ZZ [ ]

# Vector with polynomial e n t r i e s
v = vector (R, [X, Xˆ2 + 1 , Xˆ2 − X] )

One can find the parent of an object (e.g. a vector) by using the .parent() method. The
parent refers to the mathematical structure/set to which the object belongs.

# Pr int s the name o f the parent s t r u c tu r e o f v
p r in t ( v . parent ( ) )

4.2 Vector Norm

The pth norm (length ‖·‖p) of a vector can be computed by calling the norm(p) function, where p
specifies the norm to compute. For example, setting p = 2 yields the Euclidean norm, p = 1 gives
the Manhattan norm, and p = infinity produces the L∞ norm. If no parameter is provided,
the Euclidean norm is used by default.

# Def ine a vec tor v with ( i n t e g e r ) components (1 , 2 , 3)
v = vector ( [ 1 , 2 , 3 ] )

# Compute the Eucl idean norm | | v | | = sqr t (1ˆ2 + 2ˆ2 + 3ˆ2) = sq r t (14)
v . norm (2)

# Computes L∞−norm = max ( | 1 | , | 2 | , | 3 | ) = 3
v . norm( i n f i n i t y )

4.3 Random Vectors

One can generate random vectors using the function random vector. In the example below, the
last two parameters of random vector (which are optional) can be used to specify the range from
which the random values are drawn. Here, x represents the minimum value and y represents the
maximum value.

# v i s a randomly generated vec tor with 3 coo rd ina t e s and va lues drawn from
the r ing o f i n t e g e r s .

# The random va lues are drawn from the range [0, 19] .

v = random vector (ZZ , 3 , x=0, y=19)
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5 Matrices

We can define a matrix using the Matrix() data structure. Some examples are below.

# Def ine a 2x2 matrix ( with i n t e g e r va lues )
A = Matrix ( [ [ 1 , 2 ] , [ 3 , 4 ] ] )

# Show the matrix
A

This defines the matrix:

A =

[
1 2
3 4

]
You can create matrices over a variety of rings and structures, such as finite fields, integer

rings, and polynomial rings. Below is an example of creating a matrix over a polynomial ring.

# Def ine a polynomial r i ng over the i n t e g e r s ( i . e . Z [X] )
R.<X> = ZZ [ ]

# Def ine a 2x2 matrix with polynomial e n t r i e s
M = Matrix (R, [ [X+1, Xˆ2 ] , [Xˆ3 , Xˆ 4 ] ] )

# Display the matrix
p r in t (M)

In this example, the matrix M is a 2× 2 matrix where the entries are polynomials in X with
integer coefficients. You can perform matrix operations such as addition, multiplication, and
finding the determinant, all of which will be computed in the context of the polynomial ring.

5.1 Matrix Operations

Addition

Matrix addition is performed element-wise.

# Def ine a 2x2 matrix A
A = Matrix ( [ [ 1 , 2 ] , [ 3 , 4 ] ] )

# Def ine a 2x2 matrix B
B = Matrix ( [ [ 5 , 6 ] , [ 7 , 8 ] ] )

# Matrix add i t i on
C = A + B

C = A + B =

[
1 + 5 2 + 6
3 + 7 4 + 8

]
=

[
6 8
10 12

]
Multiplication

We can multiply matrices as long as they are compatible: the number of columns of the first
must be equal to the number of rows of the second.

# Matrix mu l t i p l i c a t i o n
C = A ∗ B

C = A×B =

[
(1 · 5 + 2 · 7) (1 · 6 + 2 · 8)
(3 · 5 + 4 · 7) (3 · 6 + 4 · 8)

]
=

[
19 22
43 50

]
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Matrix-Vector Multiplication

Vectors can be multiplied by matrices when dimensions align.

# Def ine a 2−dimens iona l vec to r
v = vector ( [ 5 , 6 ] )

# Def ine a 2x2 matrix M
A = Matrix ( [ [ 1 , 2 ] , [ 3 , 4 ] ] )

# Mult ip ly matrix M by vector v ( as a column vector )
M ∗ v

M× v =

[
1 2
3 4

] [
5
6

]
=

[
17
39

]

5.2 Matrix Transpose

The transpose of a matrix swaps its rows and columns.

# Def ine a 2x2 matrix M
M = Matrix ( [ [ 1 , 2 ] , [ 3 , 4 ] ] )

# Compute matrix M’ s t ranspose
M. t ranspose ( )

This should print: [
1 3
2 4

]

5.3 Matrix Determinant

The determinant of a matrix is computed using the determinant() function.

# Def ine a 2x2 matrix M
M = Matrix ( [ [ 1 , 2 ] , [ 3 , 4 ] ] )

# Compute determinant o f matrix M
M. determinant ( )

det(M) = (1 · 4)− (2 · 3) = −2

5.4 Matrix Inversion

If a matrix is invertible (its determinant 6= 0), we can compute its inverse.

# Def ine a 2x2 matrix M
M = Matrix ( [ [ 1 , 2 ] , [ 3 , 4 ] ] )

# Compute matrix M’ s i nv e r s e
M. i nv e r s e ( )

M−1 =

[
−2 1
3
2 − 1

2

]
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5.5 Random Matrices

You can generate a random matrix over a specified ring/field using the function random matrix.
Below are some examples.

# Create a random 2 x 1 matrix over GF(2) ( f i e l d o f s i z e 2)
A = random matrix (GF(2) , 2 , 1)
p r in t (A)

# Generate a random 3 x 3 matrix over i n t eg e r s , with e n t r i e s in the range
[−10 , 10 ]

B = random matrix (ZZ , 3 , 3 , x=−10, y=10)
p r in t (B)

In this example the first matrix, A, is a random 2 × 1 matrix over Z2, where each entry
is randomly chosen from {0, 1}. The second matrix, B, is a random 3 × 3 matrix with integer
entries, each between −10 and 10.

6 Sampling Distributions

A key component of many lattice-based cryptosystems is the concept of sampling from specific
distributions, which introduces noise to ensure security, such as in LWE-based systems.

6.1 Discrete Gaussian Sampling Over the Integers

The Discrete Gaussian Distribution (centred around 0) is a probability distribution defined over
integers, where the probability of each integer is weighted by a Gaussian function. Mathemati-
cally, it is defined as:

P (x) =
e
−x2

2σ2

Z(σ)

where:

• x ∈ Z is an integer.

• σ is the standard deviation, which controls how spread out the distribution is from the
center.

• Z(σ) is the normalization factor to ensure the total probability sums to 1.

Sage provides functions for sampling from discrete Gaussian distributions. Below is an ex-
ample of how to generate samples from a discrete Gaussian distribution with standard deviation
2.5 and mean 0.

# Import the module
from sage . s t a t s . d i s t r i b u t i o n s . d i s c r e t e g a u s s i a n i n t e g e r import

D i s c r e t eGaus s i anDi s t r ibut i on In tege rSample r

# Def ine the d i s t r i b u t i o n with sigma=2.5 and mean 0 ( centred around 0)
D = Disc r e t eGaus s i anDi s t r ibut i on Intege rSample r ( 2 . 5 )

# Sample 2ˆ20 samples from the d i s t r i b u t i o n and draw a histogram
histogram ( [D( ) f o r in range (2ˆ20) ] , c o l o r="grey")

Figure 1 shows visualisation of the histogram for 220 samples.
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Figure 1: Visualization of a discrete Gaussian histogram with σ = 2.5 for 220 samples.

6.2 Discrete Gaussian over Lattices

Sage also provides discrete Gaussian distribution functionalities over lattices, allowing us to
sample lattice vectors. We can use the class DiscreteGaussianDistributionLatticeSampler

[6].
In the example below, we demonstrate how to use the sampling algorithm from [1] to sample

a 2-dimensional lattice over Z, which is generated by the 2×2 identity matrix. That is, the basis
of the lattice is b1 = (1, 0) and b2 = (0, 1), where the distribution has a standard deviation of
3.0.

Figure 2 shows a plot for 220 samples, illustrating the distribution of sampled lattice points.

# Import the module
from sage . s t a t s . d i s t r i b u t i o n s . d i s c r e t e g a u s s i a n l a t t i c e import

D i s c r e t eGaus s i anDi s t r ibut i onLat t i c eSample r

# Def ine the d i s t r i b u t i o n with sigma=3 over the l a t t i c e generated by ba s i s
( 1 , 0 ) and (0 , 1 )

D = Disc r e t eGaus s i anDi s t r ibut i onLat t i c eSample r ( i d en t i t y mat r i x (2 ) , 3 . 0 )

# Draw 2ˆ20 samples from D
sampleList = [D( ) f o r in range (2ˆ20) ]

# Prepare f o r p l o t t i n g
vcountLis t = [ vec to r ( x . l i s t ( ) + [ sampleList . count (x ) ] ) f o r x in s e t ( sampleList

) ]

# Plot the graph
l i s t p l o t 3 d ( vcountList , p o i n t l i s t=True , i n t e r p o l a t i o n="nn")

7 Lattices

In this section we explain some methods that you can use to create lattices.
We now proceed to showing some example ways of defining lattices in Sage.
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Figure 2: Visualization plot for 220 samples from the lattice.

7.1 Creating Lattice using IntegerLattice

To create an integer Lattice from a basis matrix, you can use the IntegerLattice module [7]
which needs to be imported from sage.modules.free module integer. Below is an example of
how to use this.

# Import the module
from sage . modules . f r e e modu l e i n t e g e r import I n t e g e rLa t t i c e

# Def ine a matrix ( ba s i s ) f o r the l a t t i c e
B = Matrix ( [ [ 1 , 2 ] , [ 3 , 5 ] ]

# Def ine the l a t t i c e L(B)
L=In t e g e rLa t t i c e (B)

# Display L(B)
L

#Display the ba s i s matrix o f the l a t t i c e
L . ba s i s mat r i x ( )

The above example creates a lattice using the matrix B as its basis. In the above code, we
used a 2 × 2 matrix for the basis as an example. Note that the basis you will get in the above
example will be: [

0 −1
1 0

]
which is different from our matrix B. The reason is that Sage, by default, reduces the basis. To
force Sage not to reduce the basis, you can use: L = IntegerLattice(B, lll reduce=False)

to prevent Sage from reducing the basis.
Below is another example for creating a lattice whose basis is 50 × 50 random matrix over

the integers.

# Import the module
from sage . modules . f r e e modu l e i n t e g e r import I n t e g e rLa t t i c e

# Generate a random 50x50 matrix with i n t e g e r e n t r i e s between −500 and 500
B = random matrix (ZZ , 50 , 50 , x=−500, y=500)

# Create an i n t e g e r l a t t i c e from the matrix B
L = In t e g e rLa t t i c e (B)

# Compute the norm of the sho r t e s t vec to r in the l a t t i c e
r e s u l t = L . s h o r t e s t v e c t o r ( ) . norm ( ) . l og (2 ) . n ( )
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7.2 Creating Lattices using gen lattice

Alternatively, one can use sage.crypto.lattice.gen lattice [5], which by default returns a
random matrix basis for the lattice rather than a lattice object. If one wishes to obtain a lattice
object instead of just a basis matrix, one can add the parameter lattice=True.

We show below some examples of how to use this method.

7.2.1 Creating a Primal Lattice

The below example shows how to create a lattice object (rather than just a basis matrix) for the
Primal q-ary lattice L(A) for A ∈ Zm×n

q where

L(A) =
{
x ∈ Zm

∣∣ ∃y ∈ Zn
q , x ≡ Ay mod q

}
The parameter m specifies the dimension of the lattice, while n specifies the volume of the

lattice (its determinant), which will be an integer (i.e., the volume is qn).

# Import the module
from sage . crypto . l a t t i c e import g e n l a t t i c e

# Create the random l a t t i c e over Zˆ5
L = g e n l a t t i c e (m=5, n=3, q=17, seed=41, dual=False , l a t t i c e=True )

# Print the l a t t i c e volume
pr in t (L . volume ( ) )

# Choose a random element from the l a t t i c e
p r in t (L . random element ( ) )

# Check i f the vec to r (1 , 2 , 3 , 4 , 5 ) i s in the l a t t i c e
p r in t ( vec to r ( [ 1 , 2 , 3 , 4 , 5 ] ) in L)

7.2.2 Creating a Dual Lattice

The below example shows how to create the dual q-ary lattice L⊥(AT) for A ∈ Zm×n
q . This is

defined as:
L⊥(AT) =

{
x ∈ Zm | ATx ≡ 0 mod q

}
The parameter m specifies the dimension of the lattice, while n specifies the volume of the

lattice (its determinant), which will be an integer (i.e., the volume is qm−n).

# Import the module
from sage . crypto . l a t t i c e import g e n l a t t i c e

# Create the random dual l a t t i c e over Zˆ5
LDual = g e n l a t t i c e (m=5,n=3, q=17, seed=41, dual=True , l a t t i c e=True )

# Print the l a t t i c e volume
pr in t (LDual . volume ( ) )

# Choose a random element from the l a t t i c e
p r in t (LDual . random element ( ) )

# Check i f the vec to r (1 , 2 , 3 , 4 , 5 ) i s in the l a t t i c e
p r in t ( vec to r ( [ 1 , 2 , 3 , 4 , 5 ] ) in LDual )

7.2.3 Creating an Ideal Lattice

sage.crypto.lattice.gen lattice can also be used to create ideal lattices, which are ideals
in the polynomial ring Z[x]/(f(x)), such as those use used for Ring-SIS and Ring-LWE. Below
is an example where the quotient polynomial is f(x) = x4− 1. Note that when using this mode,
if the parameter n is not omitted, it must match the degree of f(x).
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# Import the module
from sage . crypto . l a t t i c e import g e n l a t t i c e

# Def ine the polynomial r i ng ZZ [ x ]
R.<x> = PolynomialRing (ZZ)

# Generate an i d e a l l a t t i c e where f ( x ) = xˆ4 − 1
LX = g e n l a t t i c e ( type=" i d e a l " , seed=27, quot i ent=xˆ4 − 1 , l a t t i c e=True )

# Print the l a t t i c e volume
pr in t (LX. volume ( ) )

# Choose a random element from the l a t t i c e
p r in t (LX. random element ( ) )

7.2.4 Additional Examples of Using gen lattice

Below are two examples demonstrating other uses of the sage.crypto.lattice.gen lattice.
In these examples, the parameters are interpreted as follows:

• m is the dimension of the lattice (i.e., the lattice is a subset of Zm).

• n specifies the exponent in the volume (determinant) of the lattice, so that the volume is
qn.

• q is the modulus (coefficient size).

# Import the module
from sage . crypto . l a t t i c e import g e n l a t t i c e

# Creat ing a random 4D Lat t i c e with determinant ( volume ) ( determined by qˆn)
, and a random seed 36 i s used

L1 = g e n l a t t i c e ( type="random" , n=1, m=4, q=1013 , seed=36, l a t t i c e=True )

# Print Volume
pr in t (L1 . volume ( ) )

# Creat ing a random 5D modular dual l a t t i c e with determinant ( volume ) (
determined by qˆ{m−n}) and a random seed 39 i s used

L2 = g e n l a t t i c e ( type="modular" , n=2, m=5, q=1013 , seed=39, dual=True , l a t t i c e=
True )

# Print Volume
pr in t (L2 . volume ( ) )

7.3 Lattice Reductions

Sage has implementations of both the Lenstra-Lenstra-Lovász (LLL) [2] and Block Korkine-
Zolotarev (BKZ) [4] algorithms, which can be used to reduce matrices and lattice bases to
shorter and more orthogonal forms.

7.3.1 Using the LLL Algorithm

Consider the following 3x3 matrix:

M =

10 −50 100
37 18 20
13 105 26


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In the below example we show how to use LLL with δ = 0.65 to reduce the matrix. The
optional parameter δ where 0.25 < δ < 1 controls how strict the reduction is and it is a trade-off
between quality of reduction and efficiency. Note that parameters are optional.

# Create a 3x3 matrix
M = matrix ( [ [ 1 0 , −50, 100 ] , [ 37 , 18 , 20 ] , [ 1 3 , 105 , 2 6 ] ] )

# Reduce M using LLL
pr in t (M.LLL( de l t a = 0 .65 ) )

The above example will print the below reduced matrix. 37 18 20
−27 −68 80
−24 87 66


7.3.2 Using the BKZ Algorithm

The BKZ algorithm is another method for reducing lattice bases. For exact parameters of the
algorithm, we refer the reader to the Sage manual [8].

Below is an example of how you can call the BKZ algorithm.

# Create a random 20x20 matrix with e n t r i e s from the i n t e g e r range [−100 ,200]
M = random matrix (ZZ ,20 , 20 , x=−100, y=200)

# Reduce M using BKZ
pr in t (M.BKZ( b l o c k s i z e =12) )

The parameter block size in the above example specifies the number of blocks in the reduc-
tion, where a higher value will yield shorter vectors but at the expense of running time.

8 LWE and RingLWE Modules

The Sage LWE and RingLWE modules [9] provide tools for working with the Learning With Errors
(LWE) problem and its ring variant R-LWE, which are foundational problems in lattice-based
cryptography. LWE is widely used in creating cryptographic constructions. The module provides
various LWE and R-LWE instances, including those for a number of existing settings in the liter-
ature, e.g.,[3]. Using these tools, one can generate LWE and R-LWE instances with parameters
of their choice.

It is worth noting that in Sage, arithmetic in modular rings (Zq) is in the range [0, q − 1].
However, for many lattice-based cryptographic applications, it is beneficial to use a centred
representation in the range [−q2 ,

q
2 ]. This helps, for example, reduce noise growth, ensure correct

decryption, and maintain symmetry in error distributions.
To convert an element x ∈ [0, q − 1] to its centred equivalent xcentred, one should use the

following transformation:

xcentred =

{
x, if x ≤ q

2

x− q, if x > q
2

For instance, in Z7 in Sage, −2 corresponds to 5, whereas its centred version is −2. Similarly,
4 in Z7 is 4, whereas its centred version is −3.

One can use the sage.crypto.lwe.balance sample function when working with LWE (or
Ring-LWE) samples, which takes two parameters: the first being the sample that needs centring
and q (which is optional). If q is not provided, the sample is assumed to live in the integers. If
no q is given, the sample’s elements (the vector a and scalar b) are assumed to belong to Zq.
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Below we provide some examples of how to use the LWE module. One can also experiment
with the RingLWE module.

# Import the D i s c r e t e Gaussian D i s t r i bu t i on module
from sage . s t a t s . d i s t r i b u t i o n s . d i s c r e t e g a u s s i a n i n t e g e r import

D i s c r e t eGaus s i anDi s t r ibut i on In tege rSample r

# Import the LWE module
from sage . crypto . lwe import LWE

# Def ine the Gaussian d i s t r i b u t i o n over the i n t e g e r s with std 2 .8
D = Disc r e t eGaus s i anDi s t r ibut i on Intege rSample r ( 2 . 8 )

# Using the LWE parameters n=20, q=419 , and D f o r the no i s e d i s t r i b u t i o n
lwe = LWE(n=20, q=419 , D=D)

# Sample 1 LWE ins tance c = b s + e , where s i s the s e c r e t and e i s the e r r o r
a , c = lwe ( )

# Show me a
a

#Show me c
c

# Show me the s e c r e t s by LWE
lwe . LWE s
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