
Cyber Security Body of
Knowledge
Formal Methods for Security
3.09.2021

David Basin
ETH Zurich

© Crown Copyright, The National Cyber Security Centre
2021. This information is licensed under the Open
Government Licence v3.0. To view this licence, visit
http://www.nationalarchives.gov.uk/doc/open-
government-licence/.

When you use this information under the Open
Government Licence, you should include the following
attribution: CyBOK Applied Cryptography Knowledge Area
Version 1.0 © Crown Copyright, The National Cyber
Security Centre 2021, licensed under the Open
Government Licence
http://www.nationalarchives.gov.uk/doc/open-
government-licence/.

The CyBOK project would like to understand how the
CyBOK is being used and its uptake. The project would
like organisations using, or intending to use, CyBOK for
the purposes of education, training, course development,
professional development etc. to contact it at
contact@cybok.org to let the project know how they are
using CyBOK.

About the Presenter
Biography sketch:

• Ph.D. in Computer Science 1989,
Cornell University

• Postdoctoral researcher, 1990-1996 at
U. Edinburgh and MPI Saarbrücken

• Professor of Computer Science, 1997-2002,
University of Freiburg Germany

• Professor of Computer Science, ETH Zurich,
2003 – present

Research group: Information Security Group

Founder: Anapaya Systems

Formal Methods for Security – Overview

 Introduction and Motivation

 Foundations, Methods, and Tools

 Hardware

 Cryptographic Protocols

 Software and Large-Scale Systems

 Configurations

Formal Methods for Security – Overview

 Introduction and Motivation

 Foundations, Methods, and Tools

 Hardware

 Cryptographic Protocols

 Software and Large-Scale Systems

 Configurations

What are Formal Methods?

 Foundations, methods, and tools for rigorously developing and reasoning
about systems and their components

 Emphasis on firm mathematical basis: predict, calculate, and prove!

 Particularly attractive for critical systems
Security is critical!

Focus on Modelling and Proof

 Prove system satisfies its specification in an adversarial environment

Requires precise specification of:

– System at some appropriate level of abstraction

– Adversarial environment that the system operates in

– Properties e.g., security properties that system should satisfy

 Example: information on a disk may be secure against a network

adversary, but not one with physical access to the disk

 Adversary or properties sometimes left implicit

Example: in static analysis the properties may simply be absence of

certain bug classes like buffer overflows or injection attacks

Scope is Wide

 Systems: hardware, software, modules, protocols, …

 Abstraction: design versus code

 Kinds of properties/thoroughness: “shallow properties” like type
correctness versus “deeper properties” like functional correctness

f(x) = x + 1: function from N to N versus successor function

 Approaches: interactive versus automatic

Substantial overlap with formal methods for correctness
–But also new challenges for security

–Differences in system detail, properties, and environment

Why Bother?

 Inadequacy of conventional development methods

–Test and fix penetrate and patch

–Adversaries are not typical users.

Highly skilled at finding obscure bugs

–Conventional development methods not up to task

 Quest for more scientific development methods

–Programs are mathematical objects

–Place security on a firm mathematical footing

–Progress from an Art to a Science

Limitations

 Models of systems & adversaries

versus the real thing

–Does system model accurately capture system’s behaviours?

–Could adversary do more in practice?

 Are properties appropriate for the given usages?

 Complexity: most security questions are undecidable.

So:

–approximate behaviours

–use effective semi-decision procedures

–humans provide input, like invariants, proof steps, etc.

Formal Methods for Security – Overview

 Introduction and Motivation

 Foundations, Methods, and Tools

 Hardware

 Cryptographic Protocols

 Software and Large-Scale Systems

 Configurations

No Canonical Best Method

 Specification options

–Code or executable specifications

–Variants of transition systems / automata

–Logics like FOL, HOL, temporal logic, …

 Verification options: algorithms and tools

–Automatic: BDDs, SMT, model checkers, …

– Interactive: higher-order logics, type theories, also tools for

weaker logics that benefit from lemmas or hints

 Mature tools exist for many relevant analysis problems

Foundations: Trace Properties

 Abstract view: semantics given by behaviours

 si may be states, actions, state/action pairs, …

 Set of traces define system semantics
Given by automaton or program with a transition-system semantics

⇡ , s0 s1 s2 · · ·

Foundations: Trace Properties

 Also define system properties, e.g., using temporal logics

 Correctness then reduces to language containment

Possible Traces
(given mechanism)

(given policy)

Unauthorized

R

P

S
Traces

All Traces

Authorized Traces

□(FundsWithdraw ♦EnterPIN)

Foundations: Hyperproperties

 Properties of sets of traces.

–Membership not determined by considering individual system traces

–One must examine the entire set of traces.

Hyperproperties
Example: Timing Side-Channel Analysis

 Adversaries observe system I/O + time taken for function execution

 Modelled using timed traces: events modelling function computation
augmented with computation time

 If a function has no timing side-channel, then its computation time
should be independent of any secret input.

The time taken to execute on any secret is the same as the
time taken to execute on any other secret.

 Analysing any individual trace is insufficient.
One must examine the set of all of the system’s traces.

 In this example, it would suffice to examine all pairs of system traces
(a 2-safety hyperproperty).

Foundations: other Options

 Focus on processes and process interactions

– Numerous relationships between processes exist capturing notions

like ”interchangeable”, “observationally equivalent” or “refines”

–Some come with decision procedures, e.g., FDR2/3/4 for CSP

 Richer semantics that incorporates time or probabilities

 Use of general purpose logics to formalize semantics

–Weak logics that are easy to automate, like propositional logic

– Expressive logics like HOL

Property Checking

 Interactive Theorem Proving

–E.g., Isabelle/HOL, Coq

 Decision Procedures

–E.g., Chaff or Grasp (PL) or Z3, CVC4, or Yices (SMT)

–Model checkers for LTL and CTL, like NuSMV

 Static analysis

–Automated procedures for particular classes of properties

–May approximate behaviours

 Dynamic analysis

–Check property on execution trace arising at runtime

Property Checking

Example: Dynamic Analysis
(Runtime Verification)

System

Instrumentation

−−−−−!
time

Trace/log/stream

extract

Specification

Monitor Verdict

Example tools: Java PathExplorer, MonPoly, QEA, …

Formal Methods for Security – Overview

 Introduction and Motivation

 Foundations, Methods, and Tools

 Hardware

 Cryptographic Protocols

 Software and Large-Scale Systems

 Configurations

Hardware

 Great success for Formal Methods, e.g. model checking

–Development since 1980s: core algorithms, BDDs, SAT-based

–Successful use by semiconductor and design automation companies

–Industrial temporal logics standardized and widely used

 Security-specific applications

–Common Criteria certification of hardware or microcode

–Verified stacks: OS, compiler, assembler, machine code, hardware, …

– Side channel analysis, e.g., show branchings’ timing behaviour does

not leak information about secrets

–API attacks on security tokens

Formal Methods for Security – Overview

 Introduction and Motivation

 Foundations, Methods, and Tools

 Hardware

 Cryptographic Protocols

 Software and Large-Scale Systems

 Configurations

FM Success Story for Security
Dramatic Change in How We Think About Security Protocols

Model Checkers and Theorem Provers

 Provide formal specifications (important itself!)

–Clarify protocol, environment, properties

 Tool support to debug, verify, and explore alternatives

 Substantial progress made for many protocols that matter

–ISO/IEC 9798, EMV, 5G, TLS 1.3, HSMs, …

 Companies are slowly coming on board as tool users

In following, I discuss symbolic methods. Enc(m,k)

For computational approaches, see chapter. 0100101…

Example: Symbolic Analysis
Interleaving Trace Models

Symbolic Analysis (cont.)

 Verification: define set of interleavings inductively

–Protocol semantics corresponds to a set of traces

–So do properties

–So correctness well defined

 Induction used to establish set containment

–Key idea behind “Paulson’s Inductive Method”

–Proofs in Isabelle/HOL

 Many protocols analyzed: TLS, SET, Kerberos IV, …

–Typically takes a few days of work

–Flaws come out in terms of unprovable goals, suggesting attacks

Symbolic Analysis (cont.)

 Alternative: algorithmic verification

Recast inductive definition as search tree

 Attacks: traces falsifying desired property

 If no attacks: protocol is secure (undecidable problem!)

 Efficient Model-checking tools exist: Tamarin, ProVerif, …
E.g., Tamarin does backword search from set of attack states, constructing symbolic

traces with constraints to finitely represent infinite sets of ground instances

Formal Methods for Security – Overview

 Introduction and Motivation

 Foundations, Methods, and Tools

 Hardware

 Cryptographic Protocols

 Software and Large-Scale Systems

 Configurations

Information Flow Control

 Enforcement of confidentiality and integrity guarantees during

system execution.

–Confidentiality: no information flow from high to low

–Integrity: dually, no flow from low to high

 Example of (indirect) information flow

–Observing l reveals parity of h

–Security relevant, e.g., h is a secret password

h := h mod
l : =
i f (h =)

then l : =
e lse sk ip

Information Flow Control (cont.)

 Variety of techniques designed to prevent such leaks

 Static: via type systems, static analysis, …

E.g., Jif, Flow Caml, SPARK, JOANA

 Dynamic: e.g., tracking “taint” at runtime

 e : low [low] |- b e : high [high] |- b
 --------------------- -----------------------
 [low] |- if e { b } [high] |- if e { b }

Application: Cryptographic Libraries

 Involves many challenging problems
–Freedom from side channels due to assignment, branching, memory

access patterns, cache behaviour, power consumption

–Memory safety: only valid memory locations written and read

–Cryptographic security: code implements a function secure WRT
standard security notion, possibly under assumptions on its building
blocks

 Variety of approaches
–High-level strongly typed languages like F*, which support verification of

both functional and security properties

–Lower-level assembly-like languages, e.g., VALE

–In both cases, SMT solvers help automate proofs about Pre-conditions,
post-conditions, and invariants

Application: Kernel Components

 OS critical for security of overall systems
– Data separation: processes cannot read each other’s data

– Temporal separation: processes use resources sequentially, and these
resources are properly sanitized before being passed on

– Damage limitation: effects of compromises limited

 SeL4 microkernel verification
– 8,700 LoC (C) + 600 LoC assembler

– Fully verified from abstract specification down to implementation
Uses two large refinement steps between functional and C specs.

– Safety properties: kernel doesn’t crash, perform unsafe operations, …

– 20 person/years. A showcase for formal methods

Application: Web

 Web Programming with JavaScript

–Use FM to provide a semantics

–Develop compilers from languages with more easily provable

properties, like F*, to Javascript

–Explore alternatives, like WebAssembly, w/ formal semantics and

associated verification tools

 Components and their interaction

–Semantics for browsers, web servers, HTML, …

–Proofs about mechanisms preventing injection, scripting, other attacks

–Verification of properties of different web protocols, e.g., for SSO

Formal Methods for Security – Overview

 Introduction and Motivation

 Foundations, Methods, and Tools

 Hardware

 Cryptographic Protocols

 Software and Large-Scale Systems

 Configurations

Configurations

 Relevant for security when systems are deployed and used

 Security analysis of configurations

–Does my (RBAC / ABAC / …) configuration satisfy some high-level

policy or have some desired properties?

–Change-impact analysis

–Such problems can be reduced to logical inference problem in

appropriate logical fragments (FOL or an SMT fragment)

 Configuration Synthesis

–Translate policy to a configuration or even a runtime monitor

–Methods based on logical inference and program synthesis techniques

Contact:
Professor David Basin
Information Security Group
basin@inf.ethz.ch

ETH Zurich
Universitätstrasse 6
8092 Zurich, Swizterland

https://infsec.ethz.ch

