
Formal Methods for
Security
Knowledge Area
Version 1.0.0
David Basin ETH Zurich

EDITOR
Steve Schneider University of Surrey

REVIEWERS
Rod Chapman Protean Code Ltd
Stephen Chong Harvard School of Engineering and Applied

Sciences
Mark Ryan University of Birmingham
Andrei Sabelfeld Chalmers University of Technology

The Cyber Security Body Of Knowledge
www.cybok.org

COPYRIGHT

© Crown Copyright, The National Cyber Security Centre 2021. This information is licensed
under the Open Government Licence v3.0. To view this licence, visit:
http://www.nationalarchives.gov.uk/doc/open-government-licence/

When you use this information under the Open Government Licence, you should include the
following attribution: CyBOK © Crown Copyright, The National Cyber Security Centre 2021,
licensed under the Open Government Licence: http://www.nationalarchives.gov.uk/doc/open-
government-licence/.

The CyBOK project would like to understand how the CyBOK is being used and its uptake.
The project would like organisations using, or intending to use, CyBOK for the purposes
of education, training, course development, professional development etc. to contact it at
contact@cybok.org to let the project know how they are using CyBOK.

Version 1.0.0 is a stable public release of the Formal Methods for Security Knowledge Area.

KA Formal Methods for Security | July 2021 Page 1

https://www.cybok.org
http://www.nationalarchives.gov.uk/doc/open-government-licence/
http://www.nationalarchives.gov.uk/doc/open-government-licence/
http://www.nationalarchives.gov.uk/doc/open-government-licence/
mailto:contact@cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

CHANGELOG

Version date Version number Changes made
July 2021 1.0

KA Formal Methods for Security | July 2021 Page 2

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

INTRODUCTION

This Knowledge Area surveys the most relevant topics in formal methods for security. As a
discipline, formal methods address foundations, methods and tools, based on mathematics
and logic, for rigorously developing and reasoning about computer systems, whether they
be software, hardware, or a combination of the two. The application of formal methods to
security has emerged over recent decades as a well-established research area focused on the
specification and proof of security properties of systems, their components, and protocols.
This requires a precise specification of:

• the system at an appropriate level of abstraction, such as design or code,

• the adversarial environment that the system operates in, and

• the properties, including the security properties, that the system should satisfy.

Formal reasoning allows us to prove that a system satisfies the specified properties in an
adversarial environment or, alternatively, to identify vulnerabilities in the context of a well-
defined class of adversaries.

Formal methods have a wide scope of applicability. Hence this Knowledge Area is relevant
to many other KAs as it encompasses general approaches to modelling, analysis, and verifi-
cation that relate to many technical aspects of cybersecurity. Moreover, as formal methods
for security have applications across the entire system stack, this KA leverages background
knowledge of hardware and software security from other chapters. As specific prerequisites,
this KA benefits from background knowledge of logic, discrete mathematics, theorem proving,
formal languages, and programming semantics, at a Computer Science undergraduate level,
and provides references covering these topics; some relevant text books include [1, 2, 3]. Mod-
elling and abstraction are cornerstones of formal methods. This KA covers their application
across security topics, including access control, secure information flow, security protocols,
and program correctness. These can be considered with respect to requirements such as
authentication, confidentiality, anonymity, and integrity, and in the context of specific attacker
models that capture different classes of attacker capabilities, giving rise to threats to the
system.

We cover a variety of approaches to formal analysis and verification, including those founded
on semantics, games, simulation, equivalence, and refinement. This includes both logic-based
approaches (where requirements are expressed as logical statements) and behavioural ap-
proaches (given by models of secure behaviour). Our emphasis is on state-of-the-art practical
applications of formal methods, enabled by tool support. Hence, the KA covers representative
examples of mature tools for these approaches as applied in practice, including general-
purpose theorem provers such as Isabelle/HOL and Coq, satisfiability solvers such as Z3,
model checkers such as SPIN, FDR, and PRISM, and more specialised security-specific verifica-
tion tools such as Tamarin, ProVerif, CryptoVerif, and EasyCrypt. We also cover representative
examples of tool support for program development and code analysis.

Finally, we provide real-world examples where formal methods have been effective in verifying
the security of systems and their components or where analysis has been instrumental in
identifying vulnerabilities.

KA Formal Methods for Security | July 2021 Page 3

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

Structure. We have structured this KA along three dimensions: foundations and methods
for modelling systems, types of systems, and level of abstraction. After motivating the use of
formal methods for security, we survey the different foundations and methods, along with
associated tools. We subsequently consider their application to different kinds of systems,
as well as differentiating between levels of abstraction, such as programs versus designs.
In particular, we explore hardware, protocols, software and large-scale systems, and system
configuration. These categories overlap, of course (e.g., systems are built from hardware
and software) and a formal method may be used across multiple categories (e.g., methods
for the analysis of side-channels or secure information flow are used for both hardware and
software). Nevertheless, these categories serve as a convenient structure to introduce the
different approaches, and to highlight their scope and reach with respect to different formal
analysis problems.

CONTENT

1 MOTIVATION

Formal methods have come a long way since the pioneering work of Floyd, Dijkstra, and Hoare
on assigning meaning to programs and using deductive methods for the formal verification
of small imperative programs.

Despite the undecidability of the underlying verification problems, formal methods are being
used with increasing success to improve the security of large-scale, real-world systems.
Examples of the successful industrial usage of formal methods are found at companies such
as Microsoft [4], Amazon [5, 6], and Google [7]. Concrete examples are given later in this KA.

There are several motivations for the use of formal methods in security, as discussed next.

1.1 Inadequacy of Traditional Development Methods

System development often follows the traditional cycle of code, test and fix. For security-
critical systems, “test and fix” becomes “penetrate and patch” as errors can lead to security
vulnerabilities. For example, a program missing a check when writing into memory can be
exploited by a buffer-overflow attack. Alternatively, a design that fails to check all access
requests can lead to unauthorised resource usage. The effects of even small errors can
be disastrous in practice. As explained in the Secure Software Lifecycle CyBOK Knowledge
Area [8], some attackers are very skilled at finding and exploiting even obscure bugs. Formal
methods offer the possibility of improving this cycle by rigorously establishing that systems
meet their specification or are free of certain kinds of bugs.

As we shall see, formal methods can be used during different phases of system development
and operation, and can be applied to different kinds of system artifacts.

• System design: They can be used to specify and verify (or find errors in) designs of
all kinds. A good example is security protocols, considered in Section 4, where formal
methods have made great strides in improving their security.

• Code level: As explained in the Software Security CyBOK Knowledge Area [9], programs
have bugs, which often represent security vulnerabilities. Indeed, with the right tools,
finding bugs is easy [10, 11]. As we describe in Section 2.3, formal methods tools for

KA Formal Methods for Security | July 2021 Page 4

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

code range from simple static analysers that verify “shallow” properties (e.g., ensuring
the absence of specific kinds of security bugs) in very large code bases, to full-fledged in-
teractive verification that can verify deep properties, but usually in smaller programs. We
consider the application of formal methods to programs of different kinds in Section 5.

• Configuration level: The security of systems also depends on how they are configured.
For example, access control mechanisms require a specification of who is authorised to
do what. We address the application of formal methods to configurations in Section 6.

1.2 Towards More Scientific Development Methods

The previous discussion positions formal methods as a way to reduce security-relevant
bugs. However, one can approach the problem from the other end: as a quest to place the
development of secure systems on a firm mathematical ground. This quest for mathematical
methods to develop programs (more generally, systems) that behave as they should, rather
than merely to catch bugs, was a driving motivation for the early pioneers in formal methods.
The essence of this position is that programs and systems can be viewed as mathematical
objects that can be specified and reasoned about using mathematics and logic. For example,
imperative programs can be given semantics — operational, denotational, or axiomatic [12] —
which can be embedded in a theorem prover and used to formalise and reason about programs
and their properties [3]. Under this view, specifications are essential for documenting what
programs should do and proofs are essential for ensuring that the programs do it.

Both motivations for formal methods, in this subsection and the previous one, are standard
and independent of security. But security adds several challenges. First and foremost, the
environment is adversarial: one assumes it contains adversaries (also known as attackers)
who try to attack the system and possibly violate its intended security properties. See the
Adversarial Behaviours CyBOK Knowledge Area [13] for a discussion on the kinds of adver-
saries and adversarial behaviours one finds in practice. Indeed, security is only meaningfully
understood with respect to an adversary model that specifies a class of attackers in terms
of their capabilities or behaviours. To underscore this point, consider protecting information
on a computer’s disk. Network and file system access control might protect the information
on the disk against a remote network attacker, but fail to protect it against an attacker with
physical access to the computer who can remove the disk, read out its contents, and even
forensically analyse it to reconstruct deleted files. Hence when reasoning about systems
and their security, part of the specification must include a model of the adversary; either this
is made explicit (for example, when reasoning about security protocol in Section 4), or it is
implicit and part of the argument used to justify the analysis method.

Second, some security properties differ from those properties considered in traditional pro-
gram correctness in that they are not trace properties. A trace property is a property (or set)
of individual system executions. In contrast, some security properties are hyperproperties [14]
defined as properties of sets of executions. Note that interest in hyperproperties is not unique
to security; hyperproperties have been studied in other contexts such as process calculi.
However, hyperproperties play a particularly prominent role in security in specifying central
notions like confidentiality or integrity. We will return to the distinction between properties
and hyperproperties in Section 2.

In the quest to raise the level of rigour for security arguments, some researchers have called
for the development of a science of security. Such a science could embrace not only rich
specifications and verification methods, but also laws for reasoning about security that relate

KA Formal Methods for Security | July 2021 Page 5

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

systems and adversaries with security properties (or policies). Taking an example from [15]:

“For generality, we should prefer laws that relate classes of attacks, classes of
defenses, and classes of policies, where the classification exposes essential
characteristics. Then we can look forward to having laws like “Defenses in class
D enforce policies in class P despite attacks from class A” or “By composing
defenses from class D′ and class D′′, a defense is constructed that resists the
same attacks as defenses from class D.”

The question is still open on how such a science should look and how it would relate to
traditional sciences, with their notions of theories about the empirical world and refutation
via experimentation and observation. Indeed, an in-depth analysis and critique of different
approaches to developing a science of security was provided by [16] who note, for example,
that the history lessons from other sciences first need to be better accounted for. In addition,
formal verification, while unquestionably valuable, is only one part of a security rationale. One
often fails to validate the mapping between models and assumptions to actual systems and
adversaries in the real world [17]; in fact, this validation between mathematical abstractions
and the real world falls outside of the domain of formal proof [18]. A real-world adversary will
not be deterred from attacking a system just because a mathematical theorem apparently
rules this out.

1.3 Limitations

Section 1.2 touches upon a central limitation of formal methods: the faithfulness of the
models. Namely, one verifies properties of models, not the actual systems used. Hence the
quality of the results depends on the quality of the model. This is a general problem for all
formal methods, although runtime verification methods, discussed in Section 2.3.4, partially
mitigate this problem as they analyse the actual running system rather than a separate
model of the system. The use of executable system models, supporting simulation and
model animation, can also help uncover system formalisation errors. For security, adversary
modelling is particularly critical and the capabilities of adversaries are notoriously difficult to
model accurately given human skill and creativity in attacking systems.

A second limitation of formal methods is that one may simply fail to specify all relevant system
requirements, including relevant security requirements. Requirements may also be specified
incorrectly. Formal methods that return counter examples, such as model checkers, can to
some extent help counter the problem of incorrect property specifications (or mistakes in
the system model), but they will not help in revealing overlooked system properties. Bridging
requirements, which are in the heads of the different system stakeholders, with formal models
is a difficult problem that is ultimately outside of the domain of formal methods themselves.

To illustrate the above two points, consider full-stack verification, where the idea is to verify
as much of the entire system as possible, rather than just fragments of it. In particular, the
aim is to bridge layers of the software-hardware stack such as high-level programs, low-level
assembly programs, the operating system that programs run on, and the underlying hardware.
In Section 5.6 we give an example of such a system stack where all levels are linked by
theorems about the translations provided by compilers and assemblers. The theorems and
their proofs provide rigourous mathematical guarantees about the stack’s contents (e.g.,
programs, assembly code, operating system, and hardware) and the relationships between
the stack’s layers. But the two limitations mentioned above, concerning the top and bottom
of the stack, remain. That is, are the relevant properties correctly specified for the high-level

KA Formal Methods for Security | July 2021 Page 6

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

programs and does the low-level hardware actually conform to its model?

Finally, there are theoretical and practical limitations regarding the verification methods and
tools themselves. Rice’s theorem tells us that any nontrivial property about Turing complete
languages is undecidable. So we should not hope for a push-button verification tool that
will always terminate and can verify all relevant properties of arbitrary systems in a sound
and complete way. In practice, compromises must be made. The tools may approximate
behaviours (giving false negatives or false positives depending on the approximation, while
still being useful), or target only specific classes of programs or properties, or require human
interaction, as is the case of interactive theorem proving. Another drawback is that many
tools are demanding in terms of the expertise and effort required, and these demands may be
hard to satisfy in projects with limited resources for quality assurance.

2 FOUNDATIONS, METHODS, AND TOOLS

[14, 19, 20, 21, 22, 23]

In this section we will take a broad, high-level view of approaches to reason about the security
of systems. Note that by system, we include hardware and software at all levels of the system
stack, and at different levels of abstraction. In some cases, we will move between the terms
system, program, and process, to reflect the terminology used in the relevant literature.

2.1 Properties of Systems and Their Executions

2.1.1 Trace Properties

In formal methods, it is common to take an abstract view of systems and their behaviours.
System executions are modelled as finite or (for non-terminating systems) infinite sequences

π , s0 s1 s2 · · · ,

where the si belong to an alphabet Σ. Possible interpretations of the si are system states,
atomic actions, or even state-action pairs. Such a sequence is called a trace.

Under this view, a system defines a set of traces. A property can also be defined by a set of
traces, and is, unsurprisingly, called a trace property. System correctness can then be defined
in terms of set inclusion: the traces of the system are included in the traces of the property,
i.e., the system’s behaviour satisfies the property.

In security, many relevant properties are safety properties. Informally they stipulate that
something “bad” or “undesirable” does not happen during system execution [24, 19]. An
invariant is a standard example of a safety property, expressing that the system never reaches
an undesired state. In more detail, an invariant is a property of states that should hold of every
reachable system state. It is defined by a subset of Σ (the “good” states) and can be extended
to traces s0 s1 s2 · · · , whereby a trace satisfies an invariant when every si satisfies it. An
example is the invariant “only the owner of a file may view its content”; this is a safety property
where the bad thing is reaching a system state where a file is being viewed by someone
other than its owner. Another example of a safety property, expressed directly as a trace
property and formalisable in a temporal logic like linear temporal logic (LTL), would be that
“withdrawing funds requires first entering a PIN.” In temporal logic this might be expressed as:

�(FundsWithdraw→ �EnterPIN) ,

KA Formal Methods for Security | July 2021 Page 7

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

where the two propositions are interpreted as the actions of withdrawing funds and PIN entry
and � and � are the LTL operators for “always” and “sometime in the past”, respectively. Note
that this safety property is not an invariant as it is not a property of states.

The notion that something bad never happens seems to be a good fit for many security
properties, where the bad thing might be some unauthorised action. Safety properties also
have the attractive feature that, when they are violated, they are finitely falsifiable. Namely, a
finite trace is enough to witness a violation since once a safety property is violated, the breach
can never be rectified by some extension of the trace.

Not all trace properties are safety properties. In particular, liveness properties do not constrain
the finite behaviour of a system but rather impose requirements on its infinite behaviours.
A typical example is that some event occurs infinitely often or that, possibly under some
conditions, something “good” eventually happens. In practice, liveness properties are much
less common in security than safety properties as they abstract from when events occur.
Although this is meaningful in verification, e.g., to rule out infinite loops, in security we often
need more concrete guarantees. For example, if an authentication server should respond to
requests, it is not that helpful to know that it will eventually do so. In practice some upper bound
on the response time is required, which thereby turns the property into a safety property. Finally,
note that some trace properties are neither safety nor liveness, but rather the conjunction of a
safety and liveness property [19].

Trace properties can be established using model checkers, notably when the systems gen-
erating them are finite-state, or using theorem provers. For safety properties, their finite
falsifiability also makes them well-suited to runtime monitoring. We describe this in more
detail in Section 2.3.

2.1.2 Hyperproperties

Some security properties are not properties of traces but rather hyperproperties, which are
properties of sets of traces. To determine whether a system satisfies a hyperproperty it is
no longer sufficient to examine each of the system’s traces individually, one must instead
examine the entire set of traces.

Let us start with a simple illustrating example, from the domain of side-channel analysis, also
discussed in Section 3.2. Consider timing side-channels in a setting where adversaries cannot
only observe system input and output, but also how much time functions, like encryption, take
to be executed on their input. This could be modelled using timed traces: events modelling
function computations are augmented with the time required for the computation. If a func-
tion’s computation does not admit a timing side-channel, then the time required to compute
the function should be independent of any secret input. In other words, the time taken to
execute on any secret is the same as the time taken to execute on any other secret. Analysing
any individual trace π would be insufficient to establish this. One must examine the set of
all of the system’s traces. Actually, in this particular example, it would suffice to examine all
pairs of system traces. This is an example of what is known as a 2-safety hyperproperty [14].

Hyperproperties were first studied, without being so named, in the 1980s when researchers
started investigating noninterference [20] and related secure information flow properties [25,
26]. Hyperproperties emerged almost 30 years later [14] as a general formalism capable of
specifying such notions. As such, hyperproperties represent a generally useful contribution
from the security community to the formal methods community. Let us consider this in more

KA Formal Methods for Security | July 2021 Page 8

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

detail focusing on noninterference, the prevailing semantic notion for secure information flow
[27]; see also Section 5.1 for more on this topic.

Noninterference is studied in a setting where users and the data they input into systems have
different classifications and the actions of privileged users should not affect, or influence,
those of less privileged users. In other words, the secret (or high) inputs of privileged users
should not interfere with the public (low) outputs observed by non-privileged users. Put more
simply, the public outputs are independent of the secret inputs.

To see how this can be formulated as a hyperproperty, consider a system with inputs I that
receives high inputs h and low inputs i ∈ I\{h} and produces low outputs o. In this context, we
might formalise noninterference by requiring that all system traces π and π′ whose inputs differ
only in h, have, at all times, the same outputs o. This is a hyperproperty whose formalization
involves two traces (technically, it is another example of a 2-safety hyperproperty) and it can
be formalised in a hyper-temporal logic supporting explicit quantification over traces, like
hyperLTL [28, 29] as follows:1

∀π.∀π′.�(
∧

i∈I\{h}

iπ = iπ′)⇒ �(oπ = oπ′) .

The original formalisation of noninterference by Goguen and Meseguer [20] was in the spirit
of the above definition, although somewhat different in its details. It was stated in terms of
deterministic state-transition systems and the purging of high inputs. Namely, the commands
entered by users with high clearances can be removed without affecting the outputs learned by
those users with low clearances. Since this original formulation, researchers have proposed
numerous generalisations and variants [27], which can naturally be cast as hyperproperties.
These include observational determinism [30] (stating that every pair of traces π and π′

with the same initial low observation are indistinguishable for low users, i.e., the system
appears deterministic to these users), generalised noninterference [31] (which allows for
nondeterminism in the low outputs, but requires that they are unaffected by high inputs)
and numerous variants of noninterference based on interleavings of traces, such as those
considered by McLean [32] and other researchers.

Hyperproperties have their own associated theory with notions like hypersafety, which gener-
alises safety properties to sets of traces, and hyperliveness. For example, a hyperproperty
is hypersafety when, to disprove it, it suffices to show a counterexample set of finite traces.
There are also model checkers explicitly built for hyper-temporal logics, discussed further in
Section 2.3.

1In this hyperLTL formulation, taken from [29], the π and π′ are path variables (semantically, they range over
the infinite traces of a given Kripke structure) and atomic formulas of the form aπ refer to the occurrence of an
atomic proposition a at the current (starting) position of the path π.

KA Formal Methods for Security | July 2021 Page 9

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

2.1.3 Relations on Systems

The previous notions focused on properties expressed in terms of system behaviours, i.e., their
execution traces. One may alternatively define relations directly between systems themselves.
A standard setting for this is where a system, possibly concurrent or distributed, is represented
as a labelled transition system (LTS) or some variant thereof. In its simplest form, an LTS is a
triple 〈Q,A,→〉 consisting of a set of states Q, a set of actions (or events) A, and a transition
relation → ⊆ Q × A × Q, where q a→ q′ represents the transition from state q to q′ taking
place when the action a occurs. An LTS may be extended to a labelled Kripke structure by
additionally labelling states by predicates, from a given set P , that hold in that state. When P
is a singleton (or omitted) then the labelled Kripke structure is simply called a Kripke structure.
Moreover, when the labelled Kripke structure has an initial state, it is sometimes called a
process graph. Finally, it is called a (nondeterministic) finite automaton when the states and
set of actions are finite and the single predicate denotes acceptance.

There has been substantial research in the formal methods community on process theory: how
to represent systems by processes and define and verify statements about the relationship
between processes. In addition to directly representing processes as variants of labelled
transition systems, one can use richer or more specialised languages that emphasise aspects
like concurrency or communication. Options here include structures such as Petri nets, event
structures, or process calculi like CCS and CSP.

Numerous relations have been defined and studied to compare processes. They capture
different notions like two processes are interchangeable or one process implements another,
for instance. Such relations range from being very strong, like the isomorphism of process
graphs, to being much weaker, like the equivalence of their traces, viewing them as automata,
as well as relations in between like simulation and bisimulation [33, 34, 35]. Demanding that
two systems have the same structure (isomorphism) is usually too strong in practice as this is
not something that a system’s user, or an attacker, can directly observe. The weaker properties
of trace equivalence or trace containment are relevant for checking safety properties, where
one LTS represents an implementation and the other a specification. Bisimulation is stronger
than trace equivalence as it additionally identifies systems with the same branching structure.

Formalising properties as process equivalences is common in security. Different equivalences
are used, such as observational equivalence (discussed below), testing equivalence, and
trace equivalence [36, 37, 38]. A standard cryptographic notion is indistinguishability, which
formalises that an adversary cannot distinguish between two protocols, usually either the
same protocol using different secrets, or a real protocol and a simulation of the protocol
using random data. Observational equivalence formalises a similar notion in the context
of processes, whereby two processes P and P ′ are observationally equivalent if, intuitively
speaking, an observer, who may be an attacker, cannot tell them apart. The processes may
compute with different data and the way they compute internally may be completely different,
but they appear identical to an external observer. Observational equivalence is also attractive
as it is a congruence relation that supports compositional proofs: whenever a process P
is equivalent to another process P ′, then P can be replaced by P ′ in other, more complex
processes.

Observational equivalence for processes in the applied pi calculus [38] has been extensively
studied in the formal methods for security community. This calculus is a process calculus,
based on Milner’s pi calculus, that supports a term algebra used to model cryptographic
operations used, for example, in cryptographic protocols. It is worth noting that robust
verification tools exist for this calculus like the security protocol model checker ProVerif [39],

KA Formal Methods for Security | July 2021 Page 10

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

discussed in Section 4. For the applied pi calculus, observational equivalence amounts to
a form of labelled bisimulation, which provides proof techniques for establishing process
equivalence. Moreover, observational equivalence can be naturally used to formalise privacy-
style properties. Applications include formalising the resistance of protocols to guessing
attacks, strong secrecy (the attacker cannot distinguish between different values of a secret),
and anonymity and unlinkability properties (for example, the attacker cannot distinguish
between two processes implementing an election protocol that are otherwise identical, except
that one swaps the votes of two arbitrary voters) [40, 41, 39].

2.2 Logics and Specification Languages

Formal methods require one or more languages to specify systems and their properties. In
practice, one rarely specifies systems directly as labelled transition systems as it is easier to
use higher-level languages. Even programming languages or hardware description languages
can be used, where programs are given operational semantics in terms of transition systems
and there is support for translating between high-level and low-level descriptions. Alternatively,
one might work with a specialised language like a process calculus that emphasises partic-
ular aspects of systems, such as concurrency and interaction. We have already mentioned
examples of specialised languages, such as the applied pi calculus, which is well suited for
specifying security protocols.

In many cases, the specification language is the language of a logic (or a logical theory)
that also provides a sound way to reason about statements in the language, in particular, to
determine their validity or satisfiability. The specific language used and statements made
depend on what is being formalised and what should be proven.

There is no general agreement on what is the ideal logic or language to use for program
specification; one’s choice of logic and associated verification system is partly a matter of
taste, expressiveness, desire for automation, and education. The specification formalisms
used in practice range from weak, relatively inexpressive logics that have decision procedures,
to stronger, expressive logics that usually require interactive theorem proving. Weaker logics
include propositional logic and propositional temporal logics. Stronger expressive logics
include higher-order logics, both classical and constructive. An intermediate option would
be to use a logic based on (some fragment of) first-order logic with equality and background
theories.

The weaker logics are limited in what they can formalise. For example, propositional logic
cannot talk about relations and functions. This is possible in first-order logic, but only for
some relations and functions. For instance, one cannot formulate inductively defined relations,
which are relevant when reasoning about the operational semantics of systems or protocols,
e.g., to capture the reachable states. When the logic used is insufficiently expressive, then
such notions must be approximated. For example, using the technique of bounded model
checking, one can encode in propositional logic the traces of a system up to some given length
and then use decision procedures based on satisfiability or SMT solvers to verify properties
of these bounded-length traces [42].

A middle ground is to use a specification language based on a particular fragment of first-order
logic or a given first-order theory such as primitive recursive arithmetic or Peano arithmetic,
which would allow formalising recursive computations over the natural numbers and other
data structures. The ACL2 theorem prover [43] is an example of a theorem prover built on
such a logic that has been used to formalise algorithms and systems represented in pure Lisp.

KA Formal Methods for Security | July 2021 Page 11

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

The logic used enables a high degree of automation in constructing proofs, in particular for
proofs by mathematical induction. ACL2 has been applied to verify the functional correctness
and security properties of numerous industry-scale systems [44].

Alternatively, one might prefer a richer logic, trading off proof automation for expressiveness.
Higher-order logic is a popular example. It can either be based on classical higher-order logic,
formalised, for example, in the Isabelle/HOL [45] or HOL-light [46] systems, or a constructive
type theory like the calculus of inductive constructions, implemented in the Coq tool [47, 48].
In these richer logics, one can formalise (essentially) all mathematical and logical notions
relevant for reasoning about systems. These include systems’ operational semantics, proper-
ties, hyperproperties, and other correctness criteria, as well as relations between systems like
refinement relations. Nipkow and Klein’s textbook on concrete semantics [3] gives a good
overview of how programming language semantics, programming logics, and type systems
can be formalised in Isabelle/HOL, with applications, for example, to information flow control.

2.3 Property Checking

Arguments about systems’ security properties can be machine supported. This ranges from
tool-supported audits, used to detect potential vulnerabilities, to proofs that systems are
secure. We will explore a range of different options in this section, including those based on
proofs, static analysis, and dynamic analysis. All of these improve upon human-based system
audits or pencil-paper based security proofs in their precision, automation and (to varying
degrees) scalability.

2.3.1 Interactive Theorem Proving

Interactive theorem proving is the method of choice for proving theorems when using expres-
sive logics like higher-order logic. In general, interactive theorem proving is used for logics
and formalisms where deduction cannot easily be automated, and therefore, humans must
interactively (or in a batch mode) guide a theorem prover to construct proofs. This is often
the case when inference problems are undecidable or of sufficient computational complexity
that human assistance is required to construct proofs in practice.

In contrast with the other methods described in this section, interactive theorem proving is
substantially more labor-intensive. Some of the more tedious forms of interaction (arithmetic
reasoning, simple kinds of logical reasoning, applying lemmas, etc.) can be offset by inte-
grating decision procedures and other inference procedures into theorem provers. Moreover,
many provers are extensible in that users may write tactics, which are programs that imple-
ment proof construction strategies and thereby automate parts of proof construction [49].
Nevertheless, even with automation support, it may still be necessary to guide the theorem
prover by establishing lemmas leading up to a proof. For example, for program verification,
one may need to provide loop invariants, or appropriate generalisations for proving inductive
theorems. This effort, although time-consuming, has a side benefit: the human carrying out
the proof gains insight into why the theorem holds.

Interactive theorem proving has been applied to numerous large-scale verification projects
where the verification time is measured in person-years. We will present one example of this,
the verification of the seL4 microkernel, in Section 5.4.

KA Formal Methods for Security | July 2021 Page 12

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

2.3.2 Decision Procedures

Advances in decision procedures and other forms of algorithmic verification have played
an essential role in increasing the usage and acceptance of formal methods across a large
range of industry applications. Even humble propositional logic is relevant here, as it often
suffices to encode and reason about (finite) system behaviours, system configurations, and
other system artifacts. There now exist highly effective constraint solvers for the satisfiability
problem (SAT) in propositional logic. Due to advances in algorithms, data structures, and
heuristics such as conflict-driven backtracking, SAT solvers like Chaff [50], Grasp [51], and
MiniSAT [52] can determine the satisfiability of formulas with millions of clauses and solve
real problems in program analysis.

SAT-based procedures (as well as other procedures, such as those used for computer algebra
[53]) have also been successfully extended to reason about the satisfiability of fragments of
first-order logic, so-called satisfiability modulo theories (SMT) [54, 21] as embodied in tools
like Z3 [55], CVC4 [56], and Yices [57]. The languages that such tools handle are fragments
of first-order logic restricted syntactically or semantically, e.g., by syntactically restricting
the function or predicate symbols allowed or by fixing their interpretation. Such restrictions
can lead to decidable satisfiability problems and allow for specialised algorithms that exploit
properties of the given fragment. The resulting decision procedures may work very well in
practice, even for fragments with high worst-case computational complexity. Examples of
theories supported by SMT solvers include linear and nonlinear arithmetic (over the reals
or integers), arrays, lists, bit-vectors, IEEE standard floating-point arithmetic, and other data
structures.

SAT and SMT procedures have numerous applications for reasoning about properties of
systems. These include determining the validity of verification conditions, symbolic execution,
bounded and unbounded model checking, software model checking, predicate abstraction,
and static analysis, to name but a few examples. We shall see examples in other sections of
this chapter of how decision procedures are used to support other deduction methods.

Many security properties can be expressed as temporal properties, in particular safety proper-
ties. When systems, or their abstractions as models, are finite-state, then model checking
algorithms provide a decision procedure for determining that the system model satisfies
the specified properties [58, 59]. For small state spaces, one may explicitly represent and
exhaustively search them. For larger state spaces, more sophisticated techniques have been
developed. For example, both the system and property can be represented as automata
and efficient algorithms are used to determine if the system specification conforms to the
property, for notions of conformance that correspond to language inclusion, different re-
finement orderings, or observational equivalence. The transition systems of the automata
can be represented symbolically, e.g., using binary decision diagrams [60], and strategies
like partial-order reduction [61] can be used to reduce the search through the state-space of
concurrently executing automata.

Numerous successful model-checkers have been developed. Aside from incorporating differ-
ent algorithms and data structures, they employ different system and property specification
languages. System specification languages include variants of automata, process algebra,
and higher-level programming languages for describing concurrently executing processes.
Property specification languages include temporal logics like LTL, CTL, and probabilistic vari-
ants. Examples of effective, general purpose model checkers are the explicit-state LTL model
checker SPIN [62], the symbolic model checker NuSMV supporting both LTL and CTL [63], the
model checker FDR2 supporting programs and properties specified in the process calculus

KA Formal Methods for Security | July 2021 Page 13

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

CSP and different refinement relations [64], and the model checker PRISM for modelling and
reasoning about systems with random or probabilistic behaviours [65].

Particularly relevant for security are algorithms and tools that have been developed for model
checking systems with respect to hyperproperties [29]. Also relevant are the specialised
model checkers developed for security protocols, described in Section 4.1.2. These tools
support protocol specifications involving cryptographic functions and effectively handle the
non-determinism introduced by an active network adversary.

2.3.3 Static Analysis

Static analysis (cf. Malware & Attack Technologies CyBOK Knowledge Area [66] and Software
Security CyBOK Knowledge Area [9]) refers to a broad class of automated methods that
analyse programs statically, that is without actually executing them. Most static analysis
methods operate on a program’s source code or some kind of object code, rather than at the
level of designs. Despite the undecidability or intractability of most questions about program
behaviour, static analysis attempts to efficiently approximate this behaviour to either compute
sound guarantees or to find bugs. The behavioural properties analysed are usually limited
to specific problems like the detection of type errors or division-by-zero. For security, the
properties might focus on vulnerabilities such as injection attacks or memory corruption
problems. In contrast to verification using theorem provers, the emphasis is on completely
push-button techniques that scale to industry-sized code bases. Indeed, in the interest of
minimal user interaction (and thereby greater acceptance), many static analysis methods do
not even require a formal specification but instead target certain kinds of “generic” problems
that often lead to runtime exceptions or security vulnerabilities in practice. In other words,
they target “shallow”, but meaningful, general properties analysed on huge code bases rather
than “deep” system-specific properties analysed on relatively small programs and designs.

The methods used vary from tool to tool. As observed in the Software Security CyBOK
Knowledge Area [9] a major divide in the tools, and also in the research community, concerns
soundness. Some tools are heuristic-based checkers and explicitly reject the requirement for
soundness [11]. For other tools, soundness is imperative and, while false positives may be
tolerated, false negatives are not acceptable.

Many of the sound methods can be cast as some kind of abstract interpretation [22] where
the program’s control-flow graph is used to propagate a set of abstract values through the
different program locations. The abstract values are approximate representations of sets
of concrete values — for example, the abstract values may be given by types, intervals, or
formulas – and are determined by an abstraction function, which maps concrete values to
abstract values. The propagation of abstract values is continued until these values cease to
change. Mathematically, this can be understood as the iterative application of a monotone
function until a fixed point is reached.

Industrial-strength static analysis tools are extremely successful and widespread. Early
examples of such tools, from the 1970s, were type checkers and programs like LINT, which
enforced the typing rules of C even more strictly than C compilers would. More modern tools
leverage theoretical advances in abstract interpretation, constraint solving, and algorithms
for inter-procedural analysis. Examples of such tools include Grammatech’s CodeSonar,
Coverity’s Prevent (for an early account, see [11]), or Micro Focus’ Fortify tool.

As a concrete example of a successful tool, the Fortify tool classifies security bugs into
different categories and employs specialised analysis techniques for each category. As

KA Formal Methods for Security | July 2021 Page 14

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

an example, one category concerns input validation, and includes vulnerabilities such as
buffer overflows, command injections, cross-site scripting, HTTP response splitting, path
manipulation, reflection abuse, and improper XML validation, to name but a few. One static
analysis technique that the Fortify tool applies to these problems with considerable success
is taint analysis 2, which tracks how possibly untrusted inputs can flow unchecked through
the program and thereby affect (or taint) arguments to function calls or outputs to users.
For instance, if user input could flow through the program and be used as part of an SQL
query, then this would represent a potential SQL injection vulnerability. Other categories, with
associated analysis techniques, focus on API abuse, improper use of security features, or
encapsulation issues.

Two modern examples of the large-scale applications of formal methods are the use of
static analysis (and other) tools at Google and Amazon. Google incorporates a variety of
analysis tools into their developer workflow [7]. The tools are, by the authors’ own account,
“not complex” and include bug finding tools that extend the compiler (including abstract-
syntax-tree pattern-matching tools, type-based checks, and unused variable analysis) and
more sophisticated tools that support code audits. Unlike the compiler-based tools, the audit
tools incorporate abstract-interpretation techniques that may generate false positives, that is,
they sometimes report on potential problems that are not actual problems. The Google tools
also suggest possible fixes to the problems they report.

Amazon [6, 67] has similarly had considerable success applying formal methods to prevent
subtle but serious bugs from entering production. In contrast to Google’s practices, as
reported in [7], Amazon uses a combination of automated static analysis tools alongside
techniques based on explicit specification, model checking and theorem proving. So push-
button techniques are combined with more time-intensive specification and verification for
critical components or properties. For example, multiple Amazon teams are using TLA+ (which
is a language based on a combination of set theory and temporal logic, with associated tools)
to specify systems and carry out proofs about their properties. [68] reports that these tools
are extensively used to reason about security-critical systems and components, including
cryptographic protocols, cryptographic libraries, hypervisors, boot-loaders, firmware and
network designs.

2.3.4 Dynamic Analysis

Runtime verification (cf. Malware & Attack Technologies CyBOK Knowledge Area [66] and
Software Security CyBOK Knowledge Area [9]) is a general approach to verifying properties of
systems at runtime [23]. In this approach, one specifies the property φ that a system should
satisfy and uses a tool to verify that φ holds for the actual behaviour(s) observed during
execution. The tool may work by running alongside the system and checking that its observed
behaviour agrees with the property, or the checks may even be woven into the system itself to
be checked as the system executes [69]. When the system fails to satisfy the property φ, a
relevant part of the current execution trace may be output as a counterexample, witnessing
φ’s failure.

In more detail, runtime verification is often implemented by a monitoring program. This
program observes the behaviour of a target system, which is a finite, evolving trace π =
s0 · · · sn−1 at some level of abstraction, e.g., the program’s inputs and outputs, or perhaps

2Taint analysis is also implemented in some tools as a dynamic analysis technique where taint information
is tracked at runtime.

KA Formal Methods for Security | July 2021 Page 15

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

(parts of) its internal states. Each new event sn produced by the system extends the trace π to
s0 · · · sn and the monitor determines whether this extended trace satisfies or violates φ, and
violations are output to the user. Depending on φ’s structure, violations can be determined
immediately once they occur (e.g., for formulas in past-time temporal logics). Alternatively,
for other formulas (e.g., those involving future-time operators), the monitor may not be able to
report a violation caused by the current event sn until some time in the future.

Runtime verification has trade-offs compared with other techniques like model checking and
theorem proving. Rather than checking whether all system behaviours satisfy the desired
property φ, one checks just that the observed behaviour satisfies φ. In this sense, runtime
verification amounts to model checking a trace. Unlike the previously discussed verification
approaches, runtime verification methods produce relatively weak verification guarantees: they
can only establish φ for the executions they witness. However, in contrast to model checking
and theorem proving, these are guarantees with respect to the actual system executing in its
real environment, rather than with respect to some model of the system and its environment.
Moreover, at least for safety properties, runtime verification does not produce false positives
like static analysis does. Finally, the methods used are completely automated and often
efficient and scalable in practice.

Recently, progress has been made on runtime monitoring techniques for hyperproperties [70].
In this setting, one may need to give up some of the advantages of runtime verification for
trace properties. In particular, since the monitor observes just one trace, but a hyperproperty
refers to sets of traces, the monitor may have false positives due to the need to approximate
the other unobserved traces.

Runtime verification has been successfully deployed in numerous safety and security-critical
settings. NASA is a case in point, where different approaches to runtime verification have been
used for the real-time monitoring of Java programs [71]. [72, 73] provide examples of using
the MonPoly tool [74] to monitor security policies and data protection policies of distributed
systems.

3 HARDWARE

[75, 76, 77, 78]

Hardware security and attacks on hardware were presented in the Hardware Security CyBOK
Knowledge Area [79]. Formal methods are now widely used when developing hardware [75]
and are indispensable for assurance. As explained in the Hardware Security CyBOK Knowledge
Area [79], the Common Criteria standard can be used to guide hardware security evaluations,
and its higher Evaluation Assurance Levels mandate the use of formal models and formal
methods in this process. More generally, hardware verification is a well-developed research
area, see for example the surveys [80, 81]. We highlight here some security-relevant topics in
this field.

KA Formal Methods for Security | July 2021 Page 16

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

3.1 Hardware Verification

Microprocessors and other hardware components can be formulated at different levels of
abstraction ranging from high-level Hardware Description Languages (HDLs) at the register
transfer level (e.g., in HDLs like Verilog or VHDL) to low-level descriptions at the transistor
level. Once the description languages used are given a semantics, one may use decision
procedures and theorem provers for property verification.

Historically, much of the progress in decision procedures and model checking was driven
by hardware verification problems. For example, equivalence checking for combinational
circuits led to advances in propositional satisfiability procedures, e.g., data structures like
ordered binary decision diagrams [60]. Verifying temporal properties of sequential circuits
was a central motivation behind the development of efficient model checking algorithms.
Moreover, by giving HDLs a semantics in a language for which verification tools exist, one can
directly utilise existing tools for those languages. For example, [82] shows how designs in
the Verilog HDL can be translated into equivalent ANSI-C programs. The property of interest
is later instrumented into the C program as an assertion. Standard verification techniques
can be used to validate the assertion such as bounded model checking, path-based symbolic
execution, and abstract interpretation.

For large-scale hardware systems, some form of semi-automated or interactive theorem
proving is usually required. For example, ACL2 has been used to verify a number of micropro-
cessors due to its support for automated inductive reasoning (useful to establish invariants
about system behaviour) and because designs can be efficiently executed (useful both for
simulation and for proofs). The ACL2 verification of a microprocessor is described in [83],
which features complex control mechanisms such as out-of-order issue and completion of
instructions, speculative execution with branch prediction, and memory optimisation such as
load-bypassing and load-forwarding. Such verification can be part of a Common Criteria certi-
fication. For example, [84] reports on the certification of the AAMP7G Microprocessor, where
the ACL2 theorem prover was used to verify that its microcode, implementing a separation
microkernel, was in accordance with EAL 7 requirements (the highest evaluation level in the
Common Criteria) and guarantees security-relevant aspects such as space partitioning.

3.2 Side-Channels

Particularly relevant from the standpoint of hardware security is the detection and removal of
side-channels. A side-channel is an unintended communication channel where information
presumed secret, such as cryptographic keys, can be leaked. Examples of hardware side-
channels are presented in the Hardware Security CyBOK Knowledge Area [79], including
side-channels and attacks based on timing and power analysis.

Abstractly, detecting side-channels requires analysing hardware (or programs) to determine if
one can observe differences in behaviour, depending on values of secret data. This amounts to
checking noninterference of secret values on observable outputs, where the observations can
include measurements like timing or power usage. Note that analysis of noninterference and
other secure information flow notions are typically studied for software (see Section 5.1 for
more on this) but some techniques are cross-cutting and have also been applied to hardware.
One challenge in reasoning about noninterference for both hardware and software is that,
even in well-designed and well-implemented algorithms, often some information can leak. For
instance, the failure to decrypt a message or the failure to log-in with a guessed password
reveals some limited information about the secret, namely that the guessed key or password

KA Formal Methods for Security | July 2021 Page 17

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

was incorrect. One option here is to explicitly specify where information is allowed to leak in
controlled ways. This is called declassification [85]. Another option, which we explore further
below, is to measure how much information can be leaked through a side-channel.

There is a large body of work on side-channel analysis, focusing on foundations and analysis
methods as well as attacks and countermeasures. Early research, like [86, 87], developed
generic models and frameworks for proving that hardware implementations are free of side-
channels, for measuring the amount of information that can be leaked when side-channels
exist, and for exploring possible countermeasures to eliminate leakages. As an example,
[88] proposes a mathematical model, based on abstract virtual-memory computers, that can
be used to develop provably secure cryptography in the presence of bounded side-channel
leakage. This model was further specialised into a framework for evaluating side-channel
attacks by [76], which measures information-theoretic leakage with respect to adversaries
who interact with the system in non-adaptive ways.

While the above research focused more on foundations, subsequent research moved closer
to tool-supported formal methods. In [89], Köpf et. al. propose a framework that, like [76],
uses information-theoretic metrics to measure side-channel leakage. However in this work,
the metrics are used to quantify the information revealed to an adaptive adversary who
can make timing or power measurements, based on the number of interactions with the
system under attack. The essential idea is to search over all adversary attack strategies,
which are the adaptive decisions that the adversary can make, and use information-theoretic
entropy measures to express the adversary’s expected uncertainty about the secret after
interacting with the system using each strategy. This framework is instantiated with a hardware
description environment, thereby supporting the automated detection and quantification of
information leakages in hardware algorithms, like those implementing cryptography.

More recent research incorporates ideas from program analysis to track the observations
that can be made by adversaries. For example, for reasoning about micro-architectural side-
channels, the cache audit tool [77] uses an abstract interpretation framework, with a suitable
abstract domain, to track information about the possible cache states. This is used to quantify
the information leakage possible by measuring the timings associated with cache hits and
misses that can occur during execution on different control flow paths. The tool takes as
input a program binary and a cache configuration and derives formal, quantitative security
guarantees against adversaries that can observe cache states, traces of hits and misses, and
execution times.

Researchers have also developed techniques that use formal models and program analysis
to either generate programs that are, guaranteed to execute in constant time (independent of
secret data) or repair programs with timing leaks by ensuring that all branches take the same
time [90, 91, 92, 93]. There is, however, still considerable research left to do. Most current
work stops at the level of intermediate representation languages, rather than going all the
way down to machine code. Another deficit lies in the fact that the models are not detailed
enough to say what happens under speculative or out-of-order execution at the hardware level.
Overcoming these limitations remains an important challenge.

KA Formal Methods for Security | July 2021 Page 18

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

3.3 API Attacks on Security Hardware

Even when hardware implements the ”right” functionality and is free of side-channels, it may
still be vulnerable to attacks that leak secrets. An active research area has been on attacking
security hardware by abusing its API, effectively by sending the hardware valid commands but
in an unanticipated sequence that violates the designer’s intended security policy [78]. Such
attacks have been carried out against a wide variety of security-critical hardware including
cryptographic co-processors and more specialised processors designed for automated teller
machines, pay-TV, and utility metering. The problem of API attacks is cross-cutting as they
are also applicable to software libraries. API attacks can also be seen as a protocol problem
in how the API is used; hence formal methods and tools for security protocols, described in
Section 4, are relevant for their analysis.

One particularly successful application of formal methods has been the use of protocol model
checkers to detect attacks on security tokens over their RSA PKCS#11 APIs. As [94] shows,
given a token it is possible to reverse-engineer a model of its API in an automated way. This
model can then be input to a security protocol model checker to search for attacks where
sensitive keys are exposed to the adversary.

4 CRYPTOGRAPHIC PROTOCOLS

[95, 96, 97, 98, 99, 100]

Security protocols are a superb showcase for formal methods and how their use can improve
the security of critical systems and their components. As noted in [99], security protocols
play a role analogous to fruit flies for genetic research: they are small and seemingly simple.
However, for protocols, this simplicity is deceptive as they are easy to get wrong. A classic
example of this is the attack that Lowe found in the 1990s on a simple three step entity
authentication protocol that is part of the Needham Schroeder Public Key protocol [98].

Formal methods for security protocols have been the subject of considerable research for
over four decades; see [101] for a survey on security protocol model checking and [102] for a
more general survey on computer-aided cryptography. Our focus in this section is primarily
on using formal methods to analyse security protocol designs; we return to implementations,
in particular of cryptography, in Section 5.2. Design verification has high practical relevance
as if designs are not secure, then no (design-conform) implementation will be secure either.
In the past, this issue was not taken seriously enough and most protocols were standardised
without a clear formulation of either their properties or the intended adversary [103]. This
situation is now improving, albeit slowly. Protocol verification tools are having a practical
impact on the design of security protocols that matter, such as ISO/IEC Protocols for Entity
Authentication [104], TLS 1.3 [105, 106, 107], 5G [108], and the EMV standard for credit-card
payments [109, 110].

KA Formal Methods for Security | July 2021 Page 19

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

4.1 Symbolic Methods

Symbolic models are the basis of many successful formal methods approaches to reasoning
about protocols and applications that use cryptography. In the symbolic setting, messages
are represented by terms in a term algebra containing cryptographic operators. The adversary
is modelled as being active: he controls all network traffic and can manipulate terms, e.g.,
he can concatenate terms together or decompose concatenated terms into their subterms.
Properties of cryptography are typically formalised with equations or inference rules. For
example, for symmetric encryption the equation

decrypt(encrypt(m, k), k) = m

would formalise that all parties (including the adversary) can decrypt any messagem encrypted
with a key k, by using the same key for decryption. Cryptography is assumed to work perfectly,
in an idealised way, in that the adversary cannot do anything more than is specified by such
equations. So either the adversary can decrypt a cipher text c = encrypt(m, k) yielding the
plain text message m, if he possesses the right decryption key k, or no information about the
plain text is leaked. This kind of model of an active network adversary who has access to all
message terms, can manipulate them, but cannot ”break” cryptography is sometimes called
the “Dolev-Yao adversary” after the seminal work of Dolev and Yao [111].

A security protocol is specified by a set of parameterised processes, called roles, that describe
the actions taken by the agents executing the role. For example, in a key agreement protocol
there might be an initiator role, a responder role, and a key-server role. Protocols are given an
operational semantics where agents may play in multiple roles. For example, Alice may be
the initiator in one protocol run and a responder in a second run. So in general there may be
arbitrarily many role instances. This setup gives rise to a transition-system semantics with
an associated notion of trace. The transition system is given by the parallel composition of
unboundedly many role instances together with a process describing the Dolev-Yao adversary.
The transition system is infinite-state as there can be arbitrarily many processes. Also note
that the adversary himself is an infinite-state process; this reflects that he is very prolific
in that he can produce and send infinitely many different messages to the other agents
running in the different roles. For example, if the adversary has seen a message m, he can
always concatenate it with itself (or other messages he has seen) arbitrarily many times,
hash it, repeatedly encrypt it, etc. Finally, security definitions are formulated in terms of trace
properties, which are often simple invariants. For example, the adversary never learns a key
presumed to be secret.

4.1.1 Theorem Proving

One way to establish a safety property P about the traces of an infinite-state transition system
is to show that P is inductive: it holds for the empty trace and, assuming it holds for an
arbitrary (finite) trace π, it holds for all extensions of π by an event s, i.e., P (π s) follows from
P (π).

This is the essence of the approach taken by Paulson [97] where protocols and the actions
of the Dolev-Yao adversary are encoded as inductive definitions in higher-order logic. The
properties of protocols are also formalised in higher-order logic as properties of finite traces.3

3The restriction to finite traces is necessary as protocols are defined inductively as sets of finite traces (rather
than co-inductively as infinite traces). However, this is not a restriction in practice, unless one wishes to reason
about liveness properties, which is rarely the case for security protocols.

KA Formal Methods for Security | July 2021 Page 20

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

For example, a common class of properties is that one event s always precedes another
event s′. This is relevant for authentication and agreement properties [112], for example, when
Bob finishes a protocol run in his role then Alice previously finished in her role. Another
important class of properties are secrecy properties, e.g., that a session key established in a
key exchange protocol is secret even after the subsequent compromise of any long-term keys
(perfect forward secrecy).

Given a specification of a protocol, including the adversary and the protocol’s intended proper-
ties, Paulson then proves by induction, for each property P , that every trace in the protocol’s
inductive definition satisfies P . The inductive proofs are constructed using Isabelle/HOL [45].
Theorems are proven interactively, which may require considerable work, say to establish
the auxiliary invariants needed for proofs. [97] reports that the time needed for an expert to
construct proofs ranged from several days for small academic protocols to several weeks for
a protocol like the handshake of TLS v1.3. Despite this effort, numerous nontrivial protocol
were proven this way, such as the TLS v1.3 handshake, Kerberos v1.4, and sub-protocols of
SET (Secure Electronic Transactions [113]).

This inductive method was further refined by [114, 115], who use derived proof rules to mimic
the backwards search from an attack state to an initial state. Proofs are again constructed in
Isabelle/HOL, but the proof rules also support substantial automation. The method reduces
the time required for proofs in comparison to [97] by several orders of magnitude, whereby
the security of ”academic” protocols can often be proven completely automatically.

In contrast to post-hoc verification, one can use theorem provers to develop protocols hand-
in-hand with their correctness proofs using step-wise refinement. Refinement [116, 117] allows
one to decompose the complexity of verifying properties of a complex (transition) system into
verifying the properties of much simpler, more abstract systems, and establishing refinement
relationships between them. Namely, one starts with a very abstract transition system model
M0 of the desired (distributed) system and refines it into a sequence of increasingly concrete
models M1,M2, . . .Mn, proving properties of the system at the highest possible level of
abstraction, and establishing a refinement relation between each pair of models Mi and Mi+1,
for i ∈ {0, . . . n− 1}. The existence of transitive refinement relations ensure that properties
proven for the more abstract models also hold for the more concrete models.

The refinement approach has been applied to security protocols in [118, 119], where a refine-
ment strategy is given that transforms abstract security goals about secrecy and authen-
tication into protocols that are secure when operating in an environment controlled by a
Dolev-Yao-style adversary. This approach simplifies the proofs of properties and provides
insights on why protocols are secure via the proven invariants. Furthermore, since a model
may be refined in multiple ways, the refinement steps can be structured as a tree, rather than
as a sequence. This fosters the development of families of protocols, given by the models
at the leaves of the tree, which share common structure and properties. The refinement
method is implemented in Isabelle/HOL and used, for example, to develop a family of entity
authentication and key establishment protocols that include practically relevant features such
as key confirmation, replay caches, and encrypted tickets.

KA Formal Methods for Security | July 2021 Page 21

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

4.1.2 Model Checking Trace Properties

Despite the undecidability of the underlying question of whether a protocol is secure in
the symbolic model [120], it is still possible to build effective analysis tools. Early tools,
such as Millen’s Interrogator [121], the Longley-Rigby search tool [122], and the NRL Protocol
Analyzer [123], were search procedures that exhaustively searched the problem space or some
part of it. While this would normally not provide correctness guarantees, these tools were still
very effective in finding subtle attacks on security protocols.

One way to approach model checking is to reduce it to a problem that can be tackled using
standard algorithmic-verification tools. We give two examples of this. The first is exemplified
by the use of CSP and FDR [99]. CSP is a general language and theory for modelling systems
consisting of interacting processes and FDR (and its more recent incarnations like FDR2) is a
model checker for CSP. The basic idea is that the system analysed consists of processes
describing the different protocol roles which are run in parallel with a process describing the
adversary. These processes are either formalised directly in CSP or, compiled from a more
abstract description [124]. The security property is also formalised as a CSP process. FDR is
then used to establish, via trace refinement, that the language of the system is contained in the
language of the property. Since the FDR tool only handles processes with finite alphabets and
finite state spaces, these must be bounded, e.g., by bounding the number of role instances
and the size of messages that agents and the adversary can generate. This is a practical
limitation since by introducing bounds, one may miss attacks.

A second example of using standard deductive tools is the SATMC model checker [125].
SATMC takes as input a protocol and property description, given in a high-level input lan-
guage [126], and translates them into a propositional logic satisfiability problem, essentially
encoding a bounded reachability (or planning) problem: can the adversary drive the protocol
into an attack state? This is then solved using an off-the-shelf SAT solver. As with the use of
CSP and FDR, the main challenge and limitation is the restriction to a finite state space.

More recent state-of-the-art tools, such as ProVerif [96, 39] and Tamarin [100, 127], use spe-
cialised algorithms to efficiently manage and search the infinite state space defined by the
protocol and adversary. Both tools support user-defined cryptographic primitives specified by
equations and the verification of trace properties and privacy properties, the latter specified
using observational equivalence. ProVerif takes as input a protocol description in a process
calculus, called the applied pi calculus, cf.Section 2.1.3. It then translates the protocol descrip-
tion into a set of Horn clauses, applying domain specific approximations and abstractions
in the process. For example, individual fresh values (used for modelling secrets) are ab-
stracted into sets of fresh values and each action in a process can be executed multiple times.
Given the abstracted protocol model, ProVerif uses resolution to determine whether relevant
properties hold; these include secrecy and correspondence properties [128] or observational
equivalence [129]. The ProVerif tool is widely used and is also part of other tool chains. For
example, it is used in [130] to analyse protocol implementations written in F#, which can be
directly executed.

In Tamarin, protocols are specified using multiset rewriting rules and properties are specified in
a fragment of first-order logic that supports specifications over traces. Proofs are constructed
by a backwards search using constraint solving to perform an exhaustive, symbolic search
for executions with satisfying traces. The states of the search are constraint systems and
one starts with a system specifying the negation of the desired properties; hence one uses
Tamarin to systematically find attacks. More generally, a constraint can express that some
multiset rewriting step occurs in an execution or that one step occurs before another step.

KA Formal Methods for Security | July 2021 Page 22

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

Formulas can also be used as constraints to express that some behaviour does not occur
in an execution. Applications of constraint reduction rules, such as simplifications or case
distinctions, correspond to the incremental construction of a satisfying trace.

Tamarin’s constraint reduction rules are sound and complete. This means that if one arrives at
contradictions in all leaves of the derivation, then no satisfying trace exists; so we have a proof
that there is no counterexample to the desired property, i.e, the property holds. Alternatively, if
no further rule can be applied, but there is no contradiction in a leaf, then we can construct a
trace that represents a counterexample to the desired property, i.e., we have an attack. Rule
application can be carried out automatically or with user guidance, which may be necessary
when automated rule application fails to terminate. Tamarin has special built-in support for
equational theories relevant to security protocols, such as Diffie-Hellman exponentiation.
Tamarin also supports, in contrast to ProVerif, the specification of protocols with persistent
global state, e.g., counters, memory cells, etc., that are shared between protocol participants.
Finally, Tamarin’s specification language can be used to specify a wide variety of adversary
models in the symbolic setting [131].

4.1.3 Model Checking Non-trace Properties

As described in Sections 2.1.2 and 2.1.3, privacy-style properties are typically not trace prop-
erties, but can be expressed as hyperproperties or as observational equivalences between
processes. Several model checkers support proving limited kinds of equivalences between
protocols.

In the ProVerif model checker, one can formulate and prove a special kind of equivalence
called diff-equivalence between processes [132, 38, 133]. Diff-equivalence is a property that
is stronger than observational equivalence and hence proofs of diff-equivalence suffice to
establish observational equivalence and can be used to verify many privacy-style properties.
The key insight is that diff-equivalence limits the structural differences between processes,
which simplifies automating equivalence proofs. In more detail: two processes, P and Q, are
specified by a new kind of process B, called a biprocess, which is a process in the applied
pi calculus except that it may contain subterms of the form diff[M,M ′] (where M and M ′

are terms or expressions) called diff-terms. P is then the process, where each diff-term in B
is replaced by its first projection (e.g., M in the above example). Similarly Q is the process
constructed by replacing each diff-term with its second projection (e.g., M ′). Hence P and
Q have the same structure but differ just in those places distinguished by a diff-term in B.
ProVerif contains support to automatically establish the diff-equivalence of P and Q. Both
Tamarin [134] and Maude-NPA [135] have subsequently also added support to verify variants
of diff-equivalence.

Static equivalence [38] is another property, related to indistinguishability, which is supported
by different tools. Static equivalence is defined with respect to an underlying equational theory.
It states, roughly speaking, that two terms are statically equivalent when they satisfy the same
equations. This essentially amounts to a special case of observational equivalence that does
not allow for the continued interaction between a system and an observer: the observer gets
data once and conducts experiments on its own. Decision procedures for static equivalence
have been implemented by tools including YAPA [136], KISS [137], and FAST [138].

Static equivalence is useful for a variety of modelling problems in computer security. For
example, it can be used to model off-line guessing attacks, where the adversary tries to guess
a secret and verify his guess, without further communication with the system. This problem

KA Formal Methods for Security | July 2021 Page 23

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

is studied in [139, 140], who formulate the absence of off-line guessing attacks by using static
equivalence to express that the adversary cannot distinguish between two versions of the
same symbolic trace: one corresponding to a correct guess and the other corresponding to
an incorrect guess. Decision procedures, like those listed above, are then used to answer this
question.

4.2 Stochastic Methods

In the symbolic setting, there are no probabilities, only non-determinism, and security defi-
nitions are possibilistic (the adversary cannot do something bad) rather than probabilistic
(he can do something bad only with negligible probability). Probabilities, however, are part
of standard cryptographic definitions of security, cf. Section 4.3. They also arise when pro-
tocols are based on randomised algorithms or the guarantees themselves are probabilistic.
Different options exist for augmenting both transition systems [141] and logics with probabili-
ties, and the corresponding model checking algorithms combine methods from conventional
model checking, methods for numerical linear algebra, and standard methods for Markov
chains [142].

An example of a popular and powerful model checking tool is PRISM [65, 143, 144], which
supports the specification and analysis of a different type of probabilistic models. These
include discrete and continuous-time Markov chains, Markov decision processes, and proba-
bilistic automata and timed variants thereof. PRISM supports different property specification
languages including Probabilistic Computation Tree Logic (PCTL) and Continuous Stochastic
Logic (CSL), both based on the temporal logic CTL.

Probabilistic model checking has been successfully applied to a variety of protocols for
security and privacy, where the protocols incorporate randomisation and the properties are
probabilistic. For example, [145] used PRISM to model the protocol underlying the Crowds
anonymity system [146], which is a peer-to-peer protocol for anonymous group communication
based on random message routing among members of a “crowd”. [145] models the behaviour
of the group members and the adversary as a discrete-time Markov chain and the system’s
anonymity properties are formalised in PCTL. PRISM is used to analyse the system, showing,
for example, how certain forms of probabilistic anonymity change as the group size increases
or random routing paths are rebuilt. A second example is the use of PRISM to analyse
a probabilistic model of a randomised non-repudiation protocol that guarantees fairness
without resorting to a trusted third party [147]. Here the model checker is used to estimate
the probability of a malicious user breaking the non-repudiation property, as a function of
different protocol parameters. Two additional examples are the use of PRISM to analyse the
probabilistic fairness guarantees provided by a randomised contract signing protocol [148]
and the probabilistic modeling and analysis of security-performance trade-offs in Software
Defined Networking [149].

In Section 2.1.2 we discussed the relevance of hyperproperties for security. Model checkers
have also been developed to support the verification of such properties. Namely, hyperproper-
ties are specified in the logics HyperLTL or HyperCTL∗ and automata-based algorithms are
used to check finite-state systems with respect to these specifications [28, 29]. Recent work
has also shown how to specify and reason about hyperproperties in the context of Markov
Decision Processes [150, 151]. For example, in [150], a specification language is given called
Probabilistic Hyper Logic that combines a classic probabilistic logic with quantification over
schedulers and traces. This logic can express a variety of security-relevant properties such as

KA Formal Methods for Security | July 2021 Page 24

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

probabilistic noninterference and even differential privacy. Although the model checking prob-
lem is undecidable in this case, it is nevertheless possible to provide methods for both proving
and refuting formulas in relevant fragments of the logic that include many hyperproperties of
practical interest.

4.3 Computational Methods

Cryptography has a history going back thousands of years. However, until the last century
it was approached more as an art than a science. This changed with the development of
public key cryptography and the idea of provable security, where reduction arguments are
used to put the security of cryptographic schemes on a firm scientific footing. In contrast to
symbolic models, the definitions and proofs involved are at a much lower level of abstraction,
sometimes called the computational model. In this model, agents manipulate bit strings rather
than terms and the adversary’s capabilities are modelled by a probabilistic polynomial-time
Turing machine rather than a process in a process calculus or an inductive definition in higher-
order logic. Additionally, security definitions are probabilistic rather than possibilistic. For
example, they are formulated in terms of the adversary’s chances of winning some game,
cf. Cryptography CyBOK Knowledge Area [152].

There is a trade-off between computational and symbolic models: the computational models
are more detailed and accurate, but substantially more effort is involved in formalising pro-
tocols and in proving their properties. This trade-off is not surprising. In fact it is standard
from both the formal methods and the security perspective: concrete models provide a more
precise description of how a system works and what the adversary can do, but formalisation
and proof construction is correspondingly more difficult. The difficulty in applying these ideas
in practice is substantial and some researchers have even questioned whether the gains are
worth it or, given the complexity, whether one can trust the results. [153] contains a brief
history of the topic and surveys some of the past controversies around this question.

To increase confidence in the validity of cryptographic proofs in the computational setting,
various proposals have been made. For instance different structuring techniques and ab-
stractions were proposed to simplify constructing proofs and understanding the resulting
security arguments. Prominent examples are game-based proofs [154, 155], Canetti’s universal
composability framework [156], and Maurer’s constructive cryptography [157]. In addition, in
response to Halevi’s call [158] for increased rigour in cryptographic proofs, formal-methods
tools were developed to help cryptographers make the transition from pen-and-paper proofs
to mechanically checked security proofs in the computational setting. There has also been
some success in bridging symbolic models and computational models via computational
soundness results for symbolic abstractions [159, 160, 161, 162, 163]; these results enable
symbolic proofs, but with stronger, computational guarantees.

In the following, we expand on representative approaches and associated tools for carrying
out game-based and simulation-based proofs.

KA Formal Methods for Security | July 2021 Page 25

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

4.3.1 Game-based Proofs

Games and game transformations can be used to structure cryptographic proofs. A game
describes the interaction between different parties (typically the adversary and some other
entity), which are modelled as probabilistic processes. Proofs are structured as a sequence of
games where the initial game represents the security goal (for example, formalising indistin-
guishability under chosen-ciphertext attacks) and the final game is one where the adversary’s
advantage is zero by inspection. The transitions between games are based on small trans-
formations that preserve, or only slightly alter, the overall security, e.g., by transforming one
expression into an equivalent one or applying a transformation based on some computational
hardness assumption (cf. Cryptography CyBOK Knowledge Area [152]). This is expressed in
terms of the probability of events occurring in each of the games; for example, the probability
of an event A happening in a game Gi is close to the probability of some event A′ happening
in game Gi+1. A good overview and tutorial on constructing such proofs is [155].

CryptoVerif [164, 95] was the first tool developed to support game-based proofs. In CryptoVerif,
games are modelled as processes in a language inspired by the pi calculus and transitions
are justified by process-algebraic notions like bisimulations. The tool can prove secrecy
and correspondence properties, which are relevant, for example, for authentication and key
agreement protocols. Moreover, CryptoVerif is highly automated: the tool can automatically
decompose games into reductions and oracles and even discover intermediate games, rather
than having them given explicitly by the user. To achieve this, CryptoVerif imposes various
restrictions. For example, the game transformation strategies are hard-coded and users must
trust that CryptoVerif correctly implements them and that the transformations’ pen-and-paper
justifications are correct. The tool also lacks extensibility as it supports just a fixed set of
language primitives and game transformations. Nevertheless, CryptoVerif is quite powerful
and has been applied to both protocols and primitives, including Kerberos, and the Full-Domain
Hash signature scheme.

An alternative approach to mechanising game-based proofs is to build the foundations for
these proofs directly within an expressive logic like a type theory (for example, the calculus
of inductive constructions) or higher-order logic. This is the approach taken by tools like
CertiCrypt [165] and FCF [166], which are implemented in Coq, and CryptHol [167], implemented
in Isabelle/HOL. These approaches are considered foundational in that they start with a
formalised semantics. In particular, the tools provide a language for probabilistic programs
with a semantics formalised within the logic. On top of this, one can

express relevant concepts for game-based proofs like discrete probability distributions, failure
events, games, reductions, oracles, and adversaries. The semantics is used to formally
derive proof rules for reasoning about probabilistic programs and game transformations,
e.g., to replace subprograms by equivalent subprograms. Deriving these rules ensures the
consistency of the resulting theory and one thereby has stronger guarantees than is possible
by directly axiomatising proof rules. Moreover, the underlying logic (e.g., HOL) can directly be
used to formulate and prove the correctness of arbitrary games and transformations between
them. Examples of the kinds of theorems proven using the above tools are the semantic
security of OAEP (with a bound that improves upon existing published results) and a proof
of the existential unforgeability of FDH signatures (in CertiCrypt), the security of an efficient
scheme for searchable semantic encryption (in FCF), and the IND-CCA security argument for
a symmetric encryption scheme (in CryptHol).

Proof construction using these tools usually requires significant manual effort since the user
has a free hand in structuring games, their transformations, and justifications. The EasyCrypt

KA Formal Methods for Security | July 2021 Page 26

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

tool [168] shows, however, that some automation is possible by using appropriate program-
ming logics and deductive machinery. EasyCrypt provides a language for formalising the
probabilistic programs used to model security goals and hardness assumptions, as well as
a probabilistic Hoare logic and a relational version thereof for reasoning about procedures
(games) and pairs of procedures (game transformations). Proof construction can be auto-
mated using tactics, which are programs that build proofs, along with SMT solvers. EasyCrypt
users interact with the system by providing proof sketches for game-hopping proofs and the
above deductive machinery is then used to construct the resulting proofs.

4.3.2 Simulation-based Proofs

Simulation-based security proofs are based on a general paradigm for formalising security
definitions and establishing the correctness of systems with respect to them. The main idea is
that the security of a real system (or protocol) is abstractly defined in terms of an ideal system,
otherwise known as an ideal functionality. For example, semantic security for encryption could
be formalised by comparing what an adversary can learn when receiving a real ciphertext
with what the adversary can learn when receiving just a random value. A real system securely
realises the ideal system if every attack on it can be translated into an “equivalent” attack
on the ideal system. Here, the notion of equivalence is specified based on the environment
that tries to distinguish the real attack from the ideal one. This approach is attractive due to
the general way that security can be defined and also because it yields strong composability
properties. Security is preserved even if the systems are used as components of an arbitrary
(polynomially bounded) distributed system. This supports the modular design and analysis of
secure systems. A good overview and a tutorial on constructing such proofs is [169].

Numerous proposals have been made for formalizing simulation-based security, see e.g.,
[170], all with different scopes and properties. These include universal composability [156],
black box simulatability [171], inexhaustible interactive Turing machines [172], constructive
cryptography [157], and notions found in process calculi, both with [173] and without [174]
probabilities. Support for formalising proofs in these frameworks is, however, not yet as
advanced as it is for game-based proofs and progress has been more modest. For example,
[175] formalised a computationally-sound symbolic version of blackbox simulatability in
Isabelle/HOL and used it to verify simple authentication protocols. [176, 177] have carried out
simulation proofs in Isabelle/HOL, building on CryptHOL, for example verifying multi-party
computation protocols. There has also been some progress on automating simulation-based
proofs using the EasyCrypt system to mechanise protocol security proofs within a variant of
the universally composable security framework [178].

5 SOFTWARE AND LARGE-SCALE SYSTEMS

[179, 180, 181, 182, 183, 184, 185]

There are many well-established methods and tools for verifying functional properties of
programs, for example, verifying that a program has a given input/output relation or satisfies
a given trace property. As explained in Section 2.1, this is relevant for security. Also of direct
relevance are the numerous tools employing both sound and unsound analysis procedures that
can help identify common security problems, such as memory corruptions, injection attacks
and race conditions. We refer to [186] for a general survey of formal methods techniques,
[187] for a survey on automated methods, and to [188] for an excellent overview of some of the

KA Formal Methods for Security | July 2021 Page 27

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

h : = h mod 2
l : = 0
i f (h = 1)

then l : = 1
e lse sk ip

Figure 1: Example of Information Flow

successes and challenges in applying formal methods to large-scale systems like operating
systems and distributed systems.

In the following subsections we examine methods, tools, and applications in the context of
general software, cryptographic libraries, and other kinds of systems. We start with information
flow control, as it provides a foundation for enforcing end-to-end security policies.

5.1 Information Flow Control

Information flow control (IFC) concerns the enforcement of confidentiality or integrity guar-
antees during a system’s execution. The basic setup distinguishes different security levels,
such as high and low or, more generally, a lattice of levels. For confidentiality policies, infor-
mation should not flow from high to low and dually for integrity properties, cf. the Biba model
from the Operating Systems & Virtualisation CyBOK Knowledge Area [189] or taint tracking,
where information should not flow from tainted to untainted. As explained in Section 2.1.2,
noninterference and related hyperproperties can often be used to formulate such policies.

Figure 1, taken from [179], contains a simple example of a program that violates a secure
information flow policy for confidentiality that prohibits information from the high variable h
from flowing to the low variable l. Due to the if-branching in this example there is an implicit
flow where the value of h may flow to l.

Information flow control is of particular importance for program and system verification
addressing end-to-end security guarantees: information flows must be restricted throughout
the entire system, from start to finish, to prevent violations of confidentiality or integrity
policies. Real-world programs are of course much more complex than this and it may not be
so trivial to determine whether the high variable affects the value of low variables anywhere
throughout the program. When the property holds, the guarantee is a strong one. This is
in contrast to what is normally achieved by conventional security mechanisms like access
control, which controls the context in which data can be released, but not how the data is
used after its release.

Below we give examples of popular approaches to verifying that programs ensure secure
information flow in practice.

KA Formal Methods for Security | July 2021 Page 28

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

5.1.1 Static Analysis and Typing

Early work on IFC focused on preventing information flows using static analysis [190] and
specialised typing disciplines [191]. Specifically, in [191], a type system was developed that
soundly enforces a secure information flow property inspired by noninterference. The rough
idea is that each program expression has a type, which includes not just a conventional type,
like Int or Bool, but also a security label. Typing rules associate types with expressions and
make statements about expressions being well typed based on the types of their subexpres-
sions. For example, in a lattice with just the labels high and low, any expression can have the
type high, whereas it has type low if all its variables are associated with the type low. Moreover,
an expression e can only be assigned to a low variable l, representing a direct information
flow, if e has type low. The typing rules also prevent indirect information flows by making sure
that low variables cannot be updated in high contexts. For example, an if-then-else expression
branching on a Boolean bwould allow low assignments in its branches only if b is low typeable.
This rules out programs like that in Figure 1. For further details see, e.g., [192, 179].

Various languages and compilers now support security type systems. These include Jif (Java
+ Information Flow) [180, 193], Flow Caml [194, 195], which is an information flow analyser for
the Caml language, the SPARK programming language built on top of Ada [196] (based in part
on the seminal work of [197]), and JOANA for Java [198]. For example, Jif extends Java with
security types to support information flow control and access control, enforced both statically
at compile time and at run time. In Jif, the variable declaration

int {Alice→ Bob} x;

expresses both that x is an integer and that Alice requires that the information in x can only
be seen by Bob. In contrast,

int {Alice← Bob} x;

expresses Alice’s requirement that information in x can only be influenced by Bob, which is an
integrity policy. The Jif compiler analyses these labels to determine whether the given Java
program respects them.

The research of [198] illustrates how richer secure information flow properties can be handled
in full Java with concurrency. Traditional information flow control focuses on possibilistic
leaks: can secret (high) data directly or indirectly leak to non-secret (low) data. However, this
is insufficient when programs have parts that may execute concurrently since the schedul-
ing of their threads can effect which values are output or their ordering. [198] investigates
probabilistic noninterference, which is relevant for concurrent programs as it accounts for
probabilistic leaks where, for some scheduling strategies, the probability of some publicly
visible behaviour depends on secret data. In particular, [198] develops sophisticated program
analysis techniques to enforce a version of probabilistic noninterference, called low-security
observational determinism, which requires that execution order conflicts between low events
are disallowed if they may be influenced by high events. The resulting tool, JOANA, takes Java
programs, where all inputs and outputs are labelled high or low and determines whether this
property holds. JOANA can handle full Java byte code, it scales to programs with an arbitrary
number of threads and 50k+ lines of code, and its (conservative) analysis is of high precision.

KA Formal Methods for Security | July 2021 Page 29

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

5.1.2 Self-composition and Product Programs

As explained in Section 2.1.2, information flow properties are hyperproperties that relate pairs
of executions of a program P . A natural idea, rather than reasoning about pairs of executions,
is to reason about a single execution of a program P ′, derived by composing P with a renaming
of itself [199]. Depending on the programming language and the properties involved, this
self-composition may be just the sequential composition of programs. Namely P ′ is simply
P ;R(P), where R(P) is a version of P with renamed variable. Alternatively P ′ may be a more
complex product construction, for example, based on P ’s transition system representation
[200].

This idea is powerful and has wide scope. For example, one can systematically reduce different
notions of secure information flow for a program P to establishing a safety property for the
self-composition of P . Furthermore, the idea generalises beyond secure information flow:
hyperproperties covering both safety and liveness can be formalised and reasoned about
using forms of self-composition [201, 14].

From the deductive perspective, a strong advantage of both self-composition and product
programs is that one can reuse off-the-shelf verifiers to reason about the resulting program.
This includes using weakest-precondition calculi and Hoare logics [202, 203], separation
logics, and temporal logics. When the program is finite-state, temporal logic model checkers
can also be employed as decision procedures. Indeed, self-composition provides a basis
for LTL model checking for hyperproperties [28]. Note that an alternative proposal is not to
combine programs but to use a specialised relational logic to explicitly reason about pairs of
programs [204, 205].

Overall, the above ideas have seen wide applicability: from reasoning about secure information
flow to detecting, or proving the absence of, timing and other side-channels, cf. the example
with timed traces in Section 2.1.2. An example of the practical application of these ideas is [181].
The authors present a state-of-the-art theorem proving environment for realistic programming
languages and extend it to support the verification of arbitrary safety hyperproperties, including
secure information flow. The key idea is a specialised product construction that supports
the specification of procedures and the modular (compositional) reasoning about procedure
calls. This product construction is implemented within the Viper verification framework [206],
which is an off-the-shelf verifier supporting different language front-ends (such as Java,
Rust, and Python), an intermediate language (that is a simple imperative language with a
mutable heap and built-in support for specifications) and automation backends that leverage
symbolic execution, verification condition generation, and SMT solvers. The tool has been
used to reason about information flow properties, including those involving declassification, of
challenging programs. The programs combine complex language features, including mutable
state on the heap, arrays, procedure calls, as well as timing and termination channels. User
interaction with Viper is mainly limited to adding pre-conditions, post-conditions, and loop
invariants and Viper completes the proofs in reasonable time.

KA Formal Methods for Security | July 2021 Page 30

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

5.2 Cryptographic Libraries

Reasoning about the implementations of cryptographic primitives and protocols involves chal-
lenges that go beyond the verification of their designs, as discussed in Section 4. Specifically,
the methods and tools for code-level verification must work directly with the implementations
themselves. Moreover, the properties to be verified must also account for new problems that
can arise in the implementation [182], such as the following.

• Freedom from side-channel attacks: This includes that secrets are not revealed (secure
information flow) by software or hardware artifacts including assignment, branching,
memory access patterns, cache behaviour, or power consumption.

• Memory safety: Only valid memory locations are read and written, for example there
are no dangling pointers that reference memory that has been deallocated.

• Cryptographic security: The code for each cryptographic construction implements a
function that is secure with respect to some standard (computational or information-
theoretic) security definition, possibly under cryptographic assumptions on its building
blocks.

Note that for programs written in low-level languages like C or assembler, memory safety
is particularly important since a memory error in any part of the code could compromise
the secrets it computes with or lead to the adversary taking control of the application. This
necessitates the ability to reason effectively about low-level code.

One approach to the verification of cryptographic libraries is that taken by HACL∗ [182], which
is a verified version of the C cryptographic library NaCL. The NaCL library is a minimalistic,
but fully-functional library of modern cryptographic primitives including those for encryption,
signatures, hashing and MACs. Since C is difficult to reason about, the library is reimple-
mented in F∗ [207], which is a functional programming language designed to support program
verification. F∗ features a rich type system and supports dependent types and refinement
types, which can be used to specify both functional correctness and security properties. Type
checking is mechanised using an SMT solver and manual proofs. The NaCL library is written
in a subset of F∗ that can be translated to C and subsequently to assembler using either
conventional or verified compilers. The NaCL library is verified with respect to its functional
correctness, memory safety, and the absence of timing side-channels where secrets could
be leaked; cryptographic security was not covered however. For example, memory safety is
proven by explicitly formulating properties of programs that manipulate heap-allocated data
structures. Functional correctness is proven with respect to executable specifications that
are themselves checked using test vectors.

An alternative to working with a high-level language like F∗ is to work with a lower-level language
that is an assembly language or reasonably close to one. This eliminates or reduces the need
to trust that compilers will respect the properties proven of the high-level code. Moreover, the
implementations can be highly optimised, which is often a requirement for cryptography in
practice. Two representative examples of this are Vale and Jasmin.

The Vale tool [208] is used to verify cryptographic functions written in a low-level language, also
called Vale, designed for expressing and verifying high-performance assembly code. The Vale
language is generic, but targets assembly code by providing suitable language constructions
such as operations on registers and memory locations. Moreover, Vale programs can be
annotated with pre-conditions, post-conditions, assertions, and loop invariants to aid proofs.
Vale code is translated into the Dafny logical framework [209] and the operational semantics of

KA Formal Methods for Security | July 2021 Page 31

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

the assembly language, e.g., x86, is written directly in Dafny. Since the operational semantics
can account for the timing of operations and memory accesses, one can establish the absence
of (i) timing and (ii) cache side-channels by showing that (i) no operations with variable latency
depend on secrets and that (ii) there is no secret-dependent memory access, respectively. The
Vale tool implements a specialised static analysis procedure to verify this noninterference.
Dafny’s off-the-shelf verification tool is additionally used to verify functional correctness,
where proofs are partially automated using the Z3 SMT solver.

Jasmin [210] (and also CT-Verif [211]) is an alternative approach based on a low-level language
for writing portable assembler programs, also called Jasmin, and a compiler for this language.
The Jasmin language was designed as a generic assembly language and the compiler platform
(currently limited to produce x86 64 assembly) has been verified in Coq. The language and
compiler are designed to allow fast implementations, where precise guarantees can be made
about the timing of instructions. This enables verifying the absence of timing and cache-based
attacks, in addition to functional correctness and memory safety. Verification leverages a
tool chain similarly to Vale, using Dafny and the Z3 SMT solver. Jasmin has been used, for
example, to verify assembler code for Curve25519, an elliptic-curve variant of Diffie-Hellman
key exchange.

Finally, we mention Cryptol4, an industrial-strength domain-specific language for formalising
and reasoning about efficiently-implementable hardware. Cryptol features an executable
specification language, a refinement methodology for bridging high-level specifications with
low-level implementations, e.g., on FPGAs, verification tools involving SAT and SMT solvers,
as well as a verifying compiler that generates code along with a formal proof that the output
is functionally equivalent to the input.

5.3 Low-level Code

Cryptographic libraries are just one example of security-critical software, often written in
assembler for performance reasons. Operating systems and device drivers typically also
contain assembly code and similar verification techniques are needed to those just described.
Here, we briefly survey some additional, representative, approaches and tools that have been
used to verify low-level code.

As with HACL∗, Vale, and Jasmin, a common starting point is a generic low-level language
that can be specialised to different platforms, rather than starting with a concrete assembly
language like x86. The language chosen can then be given a formal semantics, by embedding
it in a higher-order logic like Coq, e.g., as was done with Jasmin. Such an embedding enables
one to (1) prove that the translation to assembler preserves desired functional or security
properties5 and (2) derive proof rules for reasoning about low-level programs. For example,
[214] builds on separation logic [215], which is a powerful logic for reasoning about imperative
programs that manipulate pointers, to build a verification environment for low-level code.
Namely, on top of a formalisation of separation logic in Coq, the authors of [214] formalise an
assembler and derive proof rules for the verification of assembly code. The Bedrock project
[183, 216, 217] provides another Coq framework for verifying low-level code using separation
logics. A final example is given by the Igloo project [218], which links a refinement-based
formalism for developing programs in Isabelle/HOL with the Viper verification environment,

4https://www.cryptol.net/
5More generally, one may employ techniques for secure compilation [212, 213], whereby compilers are guar-

anteed to preserve security properties of the source program in the target compiled program.

KA Formal Methods for Security | July 2021 Page 32

https://www.cybok.org
https://www.cryptol.net/

The Cyber Security Body Of Knowledge
www.cybok.org

which also supports the verification of low-level code using a separation logic.

In contrast, one may proceed in the reverse direction, by translating assembler into a higher-
level programming language for which verification tools already exist. This is the approach
taken by Vx86 [219]. It takes as input x86 assembler code that has been manually annotated
with verification conditions — pre-conditions, post-conditions, and loop invariants — and
translates it to annotated C code, which makes the machine model explicit. The C code is then
analysed by VCC, Microsoft’s Verifying C Compiler [220], which employs its own verification
tool chain involving Z3.

5.4 Operating Systems

Operating systems are critical for security as they provide services that applications rely on,
such as I/O and networking, file system access, and process isolation. Security bugs in the
operating system can therefore undermine the security of everything running at higher layers
of the software stack. Moreover, operating systems are ubiquitous and control everything
from small embedded devices to supercomputers. Formal methods are important in ensuring
their functional correctness as well as the absence of different classes of security problems.

5.4.1 Functional Correctness of Kernel Components

Verification of functional correctness is an essential part of verifying the security of kernel
components. If parts of the kernel do not do their job properly, then it will be impossible to
secure applications running on top. For example, it is essential that a multitasking kernel
enforces data separation so that applications in one partition cannot read or modify the
data in other partitions. There is also temporal separation where processes use resources
sequentially and resources assigned to one application are properly sanitised before being
assigned to another. Also important is damage limitation whereby the kernel limits the effect
of compromises so that the compromise of one component does not impact others, or the
operating system itself. These requirements are mandated by standards like the Common
Criteria and ISO/IEC 15408 and are therefore demanded for certifying high-assurance systems
like operating systems. Establishing them is an important part of functional verification.

We note in this regard that the distinction between functional requirements and non-functional
requirements, which typically include security requirements (such as information flow control
or absence of particular bug classes), is somewhat fuzzy. Functional requirements describe
what the system should do. Generally they can be described via goal or I/O-oriented descrip-
tions defining the system’s purpose, or in terms of system states and traces. In contrast,
non-functional requirements are usually seen as constraints, pertaining to aspects like usabil-
ity, scalability, maintainability and testability. But the boundary is particularly blurred when
it comes to security. As an example, memory safety is not the goal of an operating system.
However, without memory safety the functions that the operating system should perform will
not always work correctly, especially in the presence of an adversary who can find and exploit
memory corruption vulnerabilities.

The seL4 project is the first, and probably best known, operating system verification effort,
which formally verified a complete, general-purpose operating system kernel. The seL4
microkernel is a member of the L4 family, comprising 8,700 lines of C code and 600 lines
of assembler. It was verified [184] from its abstract specification all the way down to its
C implementation. Functional correctness for seL4 states that the implementation strictly

KA Formal Methods for Security | July 2021 Page 33

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

follows the abstract specification that precisely describes the kernel’s behaviour. This includes
standard safety properties such as requiring that the kernel will never crash or perform unsafe
operations.

The verification of seL4 was carried out in Isabelle/HOL and uses refinement to establish
a formal correspondence between three specifications of the system at different levels of
abstraction. The first specification is an abstract specification that completely describes
the kernel’s behaviour by specifying the kernel’s outer interface, e.g., system calls and their
effects, as well as the effects of interrupts and system faults. The second specification
is an executable specification written in a functional programming language and the third
specification is seL4’s actual C implementation. All three specifications are given in higher-
order logic and for the third specification this necessitates also specifying a formal semantics
for the subset of C used. At the heart of the proof are the refinement steps, showing that
the executable specification refines the abstract specification and that the C specification
refines the executable one. This guarantees that all Hoare logic properties established for the
abstract specification also hold for the refined models, in particular the kernel’s source code.

Verifying seL4 was a major effort, requiring roughly 20 person-years. This included ca. 9
person-years for developing formal language frameworks, proof tools, support for proof
automation, and libraries. The seL4-specific proof took ca. 11 person-years. Subsequent work
later extended the formalisation to also prove strong information flow control properties [221].

While seL4 is exemplary, it is by no means a lone example of what is possible with enough
time and sweat. There have been dozens of formal methods projects that specify and verify
substantial parts of operating systems and different variants thereof, e.g., hypervisors, sepa-
ration kernels, partitioning kernels, security kernels, and microkernels [222]. Other projects
that have proved the correctness of simple hypervisor-like OS kernels are CertiKOS [223] and
ExpressOS [224]. In contrast, other projects focus on functional correctness for just selected
critical parts of the kernel. For example, Jitk [225] is an infrastructure for building in-kernel
interpreters using a just-in-time (JIT) compiler that translates high-level languages into native
code like x86. Jitk uses CompCert, a verified compiler infrastructure [226] to guarantee that
the translation is semantics-preserving. Other examples are FSCQ [227] and Cogent [228],
which focus on the verification of file systems, and Microsoft’s SLAM model checker [4], which
uses predicate abstraction techniques to verify the correctness of Windows device drivers.

5.4.2 Absence of Bug Classes

Rather than verifying all or parts of an operating system (or any program, for that matter),
formal methods may instead target eliminating specific kinds of security-critical vulnera-
bilities. Important examples, formulated positively in terms of desirable properties (which
guarantee the absence of the vulnerabilities) are ensuring type and memory safety, or control
flow integrity. We shall give examples of each of these below. These properties are non-
negotiable prerequisites for software that needs any sort of integrity or reliability at all. One
gets considerable benefits proving such properties, even if one is not aiming for full functional
correctness.

Both type and memory safety guarantees are provided for the Verve operating system [229].
Type safety ensures that all operations are well typed; for example a stored Boolean value
is not later retrieved as an integer. Memory safety, discussed in Section 5.2 ensures that
the operations do not overflow assigned memory or deference dangling pointers. These
properties rule out common security problems such as buffer overflows. All of Verge’s

KA Formal Methods for Security | July 2021 Page 34

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

assembly language instructions (except those for the boot loader) are mechanically verified
for safety; this includes device drivers, garbage collectors, schedulers, etc. To achieve this,
Verve is written in a safe dialect of C# that is compiled to a typed assembly language (TAL)
that runs on x86 hardware, and verification is based on a Hoare verifier (Boogie) that leverages
the Z3 SMT solver for automation. Verve was later used as part of the Ironclad project [230]
to build secure applications.

Control-Flow Integrity (CFI) was discussed in the Operating Systems & Virtualisation CyBOK
Knowledge Area [189] and the Software Security CyBOK Knowledge Area [9]. CFI techniques
are a form of dynamic analysis (cf. Section 2.3.4) where at runtime a program is monitored
and regulated to prevent adversaries from altering a program’s control flow to execute code
of their choosing, e.g., for return-oriented programming. Efficient algorithms for dynamic
analysis have made their way into modern compiler tool chains like GCC and LLVM [231].
Additionally, in the SVA [232] and KCoFI [233] projects, CFI and memory safety protection
have been implemented into execution environments that can be used to protect commodity
operating systems.

5.5 Web-based Applications

The Web & Mobile Security CyBOK Knowledge Area [234] introduces Web and mobile security.
One key takeaway is that the Web ecosystem is tremendously complex. It comprises browsers,
browser extensions, servers, protocols, and specialised languages, all of which interact in
complex ways. Hence an important role of formal methods is to formalise these different parts
of the Web and provide analysis techniques to help understand the properties of the individual
components and their interaction. In light of the Web’s complexity, various approaches have
emerged to tackle different aspects of this problem; see [235] for a survey of the scope and
applications of formal methods in this domain.

5.5.1 Web Programming

The JavaScript programming language is a core Web technology that runs in browsers and
supports interactive Web pages. JavaScript is known to be rather quirky [236] and a source of
security bugs. Given this complexity, an important application of formal methods is to provide
JavaScript with a formal semantics. This was accomplished by [237], who formalised the
JavaScript (ECMA) standard in the Coq proof assistant. Using this formalization, they verified
reference interpreter in Coq, from which they extracted an executable OCaml interpreter.
Moreover, by running the interpreter on existing JavaScript test suites, they were able to clarify
and improve ambiguous parts of the standard.

Formal methods can also be used to provide support for developing JavaScript applications
in a disciplined way. This idea is pursued in [238] who propose developing secure JavaScript
applications in F∗ and using a verified compiler to produce JavaScript. As previously explained,
F∗ is a dependently typed language with a clear semantics and verification support. The
authors of [238] verify a full-abstraction result that allows programmers to reason about
their programs with respect to F∗’s semantics, rather than that of JavaScript. An alternative
approach to improving the security of JavaScript is to enhance JavaScript interpreters to
enforce information flow control and thereby ensure that sensitive data does not leave the
browser [239].

Finally, one can use formal methods to explore alternative programming languages for the

KA Formal Methods for Security | July 2021 Page 35

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

Web. WebAssembly is a prominent example [240, 241]. This language features a formal
semantics and there is support for verifying functional properties, information flow security,
and timing side-channel resistance of WebAssembly programs.

5.5.2 Web Components

Formal methods can be used to analyse the properties of individual Web components and
improve their security. We give two examples: Web browsers and Web protocols.

An executable, operational semantics of the core functionality of a web browser is presented
in [242]. Their model accurate captures asynchronous execution within the browser, browser
windows, DOM trees, cookies, HTTP requests and responses, and a scripting language with
first-class functions, dynamic evaluation, and AJAX requests. Such a model provides a valu-
able basis for formalizing and experimenting with different security policies and mechanisms,
such as solutions to web-script security problems like cross-site scripting.

One may also focus on the security of the underlying protocols. For example, [243] modelled
a Web-based single sign-on protocol given by the OASIS Security Assertion Markup Language
(SAML) 2.0 Web Browser SSO Profile. This protocol is used by identity providers such as
Google for single sign-on, on the Web. However, analysis of the protocol’s authenticity proper-
ties using the SATMC model checker revealed severe flaws that allowed a dishonest service
provider to impersonate users [243]. Here, as is often the case when using formal methods,
the attack suggested a fix, which was subsequently verified.

5.5.3 Component Interaction

In contrast to focusing on individual Web components, one may consider the interaction of
the Web’s components by modelling subsets of the Web ecosystem, at an appropriate level of
abstraction. [244] create a model of key Web components and their interactions in Alloy, a
modelling tool based on first-order logic. The components include browsers, servers, scripts,
HTTP, and DNS. Additionally they model different adversary capabilities like Web attackers
who can create malicious web-sites or active network attackers. Finally, they specify different
invariants and properties that are typically required for secure browsing; for example, when a
server receives an HTTP request, it often wishes to ensure that the request was generated by
a trusted principal and not an attacker.

Specifications like the above bring us into the standard setting of formal methods for security:
given a model of the system and an attacker, one wishes to verify that all behaviours satisfy
the given property. [244] uses Alloy’s analyser to answer this and thereby find bugs in existing
security mechanisms and analyse proposed improvements to the Web. For example, they
analyze and find attacks on: a proposed cross-site request forgery defense based on the
Origin header, Cross-Origin Resource Sharing; a proposal to use Referrer validation to prevent
cross-site scripting; a new functionality in the HTML5 form element; and WebAuth, a Kerberos-
based single sign-on system. An analogous approach is taken by [245], who provide a detailed
model of core security aspects of the Web infrastructure, staying as close as possible to the
underlying Web standards. The model was used to provide a rigourous security analysis of
the BrowserID system.

KA Formal Methods for Security | July 2021 Page 36

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

5.6 Full-stack Verification

We have considered various options for using formal methods to improve security across the
system stack. Ideally, the entire stack, or as much of it as is possible, comes with guarantees
that are linked across levels.

The first such stack was specified in pure Lisp and verified with the Boyer-Moore (NQTHM)
prover, a predecessor of the ACL2 theorem prover. The focus was on the hardware and
operating system layers [185] and establishing functional correctness, not security per se.
The components verified included a code generator for a high-level language, an assembler
and linking loader, a simple operating system, and a microprocessor. These layers were
connected by downward and upward functions, mapping down and up the system stack.
The downward functions formalised that: the compiler maps high-level language states to
assembly language states; an assembler, linker and loader that, when composed, map the
assembly language states to states of their machine architecture; and a function that maps
architecture states to register transfer level (RTL) states. The upward maps formalised the
high-level data represented by a region of a low-level state. Theorems were proved in NQTHM
that related these layers. Finally, pre-conditions and post-conditions for the applications
programs were defined and the programs were proved correct with respect to the high-level
language semantics. All these parts were put together in a “warranty theorem” that informally
states the following [185]:

“Suppose one has a high-level language state satisfying the pre-condition of a
given application program [...]. Construct the RTL state obtained from the high-level
state by successively compiling, assembling, linking, and loading. Run the RTL
machine on the constructed state. Map certain data regions up, using the partial
inverse functions, producing some high-level data objects. Then the postcondition
holds of that high-level data.”

This theorem was formalised and proved using the NQTHM theorem prover, thereby linking
all the layers. This stack, albeit somewhat simplistic, captures the essence of full-stack
verification.

The vision of full-stack verification is being pursued on a larger scale within the DeepSpec [246]
project. This project has the goal of developing fully-verified software and hardware, includ-
ing operating system kernels [223], cryptographic primitives and protocols [247], a mes-
sage system [248], and a networked server [249]. Verification uses the Verified Software
Toolchain (VST) [250], which is a framework for verifying C programs via a separation logic
embedded in Coq.

6 CONFIGURATION

[251, 252, 253]

The security of a system depends not only on its implementation, but also its configuration and
operation. When configuring a system, accounts must be created, credentials and certificates
must be distributed or configured, and authorisation policies must be specified for numerous
systems at different levels of the stack, e.g., the operating system, middleware, applications,
and network devices. Clearly this must also be done correctly and formal methods can help to
determine whether this is the case, or even assist with the configuration process, for example,
by compiling high-level policies to low-level configurations.

KA Formal Methods for Security | July 2021 Page 37

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

We will expand on this in the following subsections, with a primary focus on the correctness
(with respect to high-level properties) of the authorisations (also called the policy) configured
to enforce access control. This problem is important as access control mechanisms are
ubiquitous, the specification and management of access control policies is challenging, and
misconfiguration is the source of many security problems in practice. See the Authentication,
Authorisation & Accountability CyBOK Knowledge Area [254] for more on the challenges in
this regard, as well as for a discussion on logics for access control and delegation.

6.1 Policy Analysis

As observed in the Authentication, Authorisation & Accountability CyBOK Knowledge Area [254],
there is a wide spectrum of policy languages in which administrators can specify access
control policies. Many of these languages are low-level and not particularly user friendly.
Moreover, organisations and their IT setup can be complex, which is reflected in their access
control policies. A large-scale organisation may have millions of users and access may need
to be regulated across numerous and diverse resources including applications, files and data
sets. Even when industry-standard policy languages are used, such as for role-based access
control (RBAC) or attribute-based access control (ABAC), the resulting policies are voluminous
and detailed. Take an RBAC setup in a typical organisation: there may be hundreds of roles and
thousands of rules and it is extremely challenging to get this right, especially as authorisations
evolve over time. The problem here is analogous to program verification: how does one know
whether what is written is really what is wanted?

Early research on formalising access control, like the Harrison, Ruzzo, Ullman (HRU) model
described in the Authentication, Authorisation & Accountability CyBOK Knowledge Area [254],
investigated notions of safety within the context of access control matrices and updates to
them. The authors of this seminal work posed the problem of safety analysis, asking whether
access rights can be leaked in undesirable ways. Since then, researchers have looked into
both:

1. handling different, more realistic policy languages than those based on the access-
control matrices used in HRU, and

2. reasoning about more general properties (safety is interesting, albeit rather specialised).

One generalisation of safety analysis is security analysis [255], where the property concerns
whether an access control system preserves invariants that encode desired security properties,
i.e., whether these properties are preserved across state changes. [256] explores this problem
in the context of role-based access control. The authors study the complexity of this problem
(showing it is in PSPACE) and provide algorithmic solutions based, for example, on model
checking.

In [251], the authors show how to generalise both (1) the policy language and (2) the properties,
simultaneously. They show that many policy languages, including various RBAC extensions
and ABAC, can be directly expressed in a fragment of first-order logic, which the authors
identify and call FORBAC. Moreover, the properties that one expects configurations to satisfy
can also be formalised within FORBAC. Hence one can use first-order deduction to analyse
whether configurations satisfy their desired properties. For FORBAC, [251] shows that SMT
solvers suffice, that this approach scales in practice, and it can be used to verify or find errors
in industrial-scale access control configurations.

A related problem to policy analysis is understanding policy changes, given that policies are

KA Formal Methods for Security | July 2021 Page 38

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

maintained and evolve over time. This problem is known as change-impact analysis. [252]
presents Margrave, which is such an analysis tool for access-control policies written in the
XACML standard and another version of Margrave handles firewall policy languages [257]. Like
the tools mentioned above, given an XACML policy and a property, Margrave can determine
whether the policy satisfies the property. In addition, for change-impact analysis, it can take
two policies and summarise the semantic differences between them — what is allowed in one
but not the other — by computing a compact representation in the form of a multi-terminal
Binary Decision Diagram.

Another approach to finding errors in policies, in the context of network firewalls, is taken by
[258]. Firewall rules are generally written in low level, platform-specific languages, their control
flow may be non-trivial, and they are further complicated by Network Address Translation (NAT).
Unsurprisingly, it is easy for administrators to make mistakes when specifying configurations.
The idea behind [258] is to reverse the compilation procedure and use decompilation to obtain
a more high-level description of a given firewall configuration. Specifically, their tool, called
FireWall Synthesizer, translates configurations from different popular firewall systems into a
common intermediate language; from configurations in the intermediate language, the Z3
SMT solver is used to synthesise an abstract firewall policy, in tabular form. The generated
specification plays the role of a property, in that it is much easier for system administrators
to understand than the original policy. The tool also supports the comparison of different
configuration versions.

6.2 Specification-based Synthesis

Rather than having administrators directly configure policies and afterwards, if at all, prove that
they satisfy desired properties, an alternative is to specify the properties and synthesise policy
configurations from them. The advantage of this approach is that if the property language is
sufficiently high-level, then it is presumably easier to express correctly the property than the
policy that implements it. This is analogous to the advantages of using high-level programming
languages over assembler, or the synthesis of controllers from declarative specifications of
their properties.

One example of this is the tool [253] that translates policies written in a high-level policy
language to policies in XACML, which is a low-level, machine-oriented, industrial standard
policy language. The high-level language used is a first-order policy specification language
that allows authorisation rules to be defined based on arbitrary conditions. The translation to
XACML combines syntax-driven translation with query answering. It exemplifies a common
translation-oriented approach of using simple deductive reasoning to expand a policy written
succinctly in a high-level language to a more verbose one written in a lower-level (but, equally
expressive) language.

A second, rather different example is found in [259] and [260], both of which provide methods
to construct runtime monitors for workflow enforcement engines that enforce access control
policies involving separation of duty, which is the security principle that requires different
users to carry out different tasks in a work flow. For example, the user who is responsible for
financial transactions in a bank should be different from the user who audits the transactions.
Roughly speaking, both approaches require that one specifies which pairs (or sets) of tasks in
a workflow must be handled by different users, along with other access-control constraints.
The problem is then to generate a runtime monitor that enforces all these constraints, while
being as liberal as possible so that the workflow can successfully complete. [259] solves

KA Formal Methods for Security | July 2021 Page 39

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

the problem using techniques based on symbolic model checking. In contrast, [260] tackles
the problem by providing a specification language for access-control and separation of duty
constraints based on the process algebra CSP. Namely, given a CSP specification φ, an
execution monitor (cf. Authentication, Authorisation & Accountability CyBOK Knowledge
Area [254]) is synthesised corresponding to the transition system for φ defined by CSP’s
operational semantics.

CROSS-REFERENCE OF TOPICS VS REFERENCE MATERIAL

Topics Cites

1 Motivation
2 Foundations, Methods and Tools [14, 19, 20, 21, 22, 23]
3 Hardware [75, 76, 77, 78]
4 Cryptographic Protocols [95, 96, 97, 98, 99, 100]
5 Software and Large-Scale Systems [179, 180, 181, 182, 183, 184, 185]
6 Configuration [251, 252, 253]

ACKNOWLEDGEMENTS

The author would like to specially thank Christoph Sprenger and Kenny Paterson for their
valuable input.

REFERENCES

[1] W. Conradie and V. Goranko, Logic and Discrete Mathematics - A Concise Intro-
duction. Wiley, 2015. [Online]. Available: http://eu.wiley.com/WileyCDA/WileyTitle/
productCd-1118751272.html

[2] J. Harrison, Handbook of Practical Logic and Automated Reasoning. Cambridge Uni-
versity Press, 2009.

[3] T. Nipkow and G. Klein, Concrete Semantics: With Isabelle/HOL. Springer Publishing
Company, Incorporated, 2014.

[4] T. Ball, B. Cook, V. Levin, and S. K. Rajamani, “SLAM and static driver verifier: Technology
transfer of formal methods inside microsoft,” in Integrated Formal Methods, E. A. Boiten,
J. Derrick, and G. Smith, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp.
1–20.

[5] A. Chudnov, N. Collins, B. Cook, J. Dodds, B. Huffman, C. MacCárthaigh, S. Magill,
E. Mertens, E. Mullen, S. Tasiran, A. Tomb, and E. Westbrook, “Continuous formal verifica-
tion of Amazon s2n,” in Computer Aided Verification, H. Chockler and G. Weissenbacher,
Eds. Cham: Springer International Publishing, 2018, pp. 430–446.

[6] C. Newcombe, T. Rath, F. Zhang, B. Munteanu, M. Brooker, and M. Deardeuff, “How
Amazon Web Services uses formal methods,” Commun. ACM, vol. 58, no. 4, p. 66–73,
Mar. 2015. [Online]. Available: https://doi.org/10.1145/2699417

[7] C. Sadowski, E. Aftandilian, A. Eagle, L. Miller-Cushon, and C. Jaspan, “Lessons from
building static analysis tools at Google,” Commun. ACM, vol. 61, no. 4, p. 58–66, Mar.
2018. [Online]. Available: https://doi.org/10.1145/3188720

KA Formal Methods for Security | July 2021 Page 40

https://www.cybok.org
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-1118751272.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-1118751272.html
https://doi.org/10.1145/2699417
https://doi.org/10.1145/3188720

The Cyber Security Body Of Knowledge
www.cybok.org

[8] L. Williams, The Cyber Security Body of Knowledge. University of Bristol, 2021, ch.
Secure Software Lifecycle, version 1.0.2. [Online]. Available: https://www.cybok.org/

[9] F. Piessens, The Cyber Security Body of Knowledge. University of Bristol, 2021, ch.
Software Security, version 1.0.1. [Online]. Available: https://www.cybok.org/

[10] D. Hovemeyer and W. Pugh, “Finding bugs is easy,” SIGPLAN Not., vol. 39, no. 12, p.
92–106, Dec. 2004. [Online]. Available: https://doi.org/10.1145/1052883.1052895

[11] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C. Henri-Gros, A. Kamsky,
S. McPeak, and D. Engler, “A few billion lines of code later: Using static analysis to
find bugs in the real world,” Commun. ACM, vol. 53, no. 2, p. 66–75, Feb. 2010. [Online].
Available: https://doi.org/10.1145/1646353.1646374

[12] G. Winskel, The Formal Semantics of Programming Languages: An Introduction. Cam-
bridge, MA, USA: MIT Press, 1993.

[13] G. Stringhini, The Cyber Security Body of Knowledge. University of Bristol, 2021, ch.
Adversarial Behaviours, version 1.0.1. [Online]. Available: https://www.cybok.org/

[14] M. R. Clarkson and F. B. Schneider, “Hyperproperties,” J. Comput. Secur., vol. 18, no. 6, p.
1157–1210, Sep. 2010.

[15] F. Schneider, “Blueprint for a science of cybersecurity,” The Next Wave, vol. 19, no. 2, pp.
47–57, 2012.

[16] C. Herley and P. C. Van Oorschot, “SoK: Science, security and the elusive goal of security
as a scientific pursuit,” in 2017 IEEE Symposium on Security and Privacy, 2017, pp. 99–
120.

[17] D. Basin and S. Capkun, “The research value of publishing attacks,” Commun.
ACM, vol. 55, no. 11, pp. 22–24, November 2012. [Online]. Available: http:
//doi.acm.org/10.1145/2366316.2366324

[18] M. T. Dashti and D. A. Basin, “Security testing beyond functional tests,” in
Engineering Secure Software and Systems - 8th International Symposium, ESSoS
2016, London, UK, April 6-8, 2016. Proceedings, 2016, pp. 1–19. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-30806-7 1

[19] B. Alpern and F. B. Schneider, “Recognizing safety and liveness,” Distrib. Comput., vol. 2,
no. 3, p. 117–126, Sep. 1987. [Online]. Available: https://doi.org/10.1007/BF01782772

[20] J. A. Goguen and J. Meseguer, “Security policies and security models,” in 1982 IEEE
Symposium on Security and Privacy, 1982, pp. 11–20.

[21] C. Barrett and C. Tinelli, Satisfiability Modulo Theories. Cham: Springer
International Publishing, 2018, pp. 305–343. [Online]. Available: https:
//doi.org/10.1007/978-3-319-10575-8-11

[22] P. Cousot and R. Cousot, “Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints,” in Proceedings of
the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages,
ser. POPL ’77. New York, NY, USA: Association for Computing Machinery, 1977, p.
238–252. [Online]. Available: https://doi.org/10.1145/512950.512973

[23] M. Leucker and C. Schallhart, “A brief account of runtime verification,” The Journal of
Logic and Algebraic Programming, vol. 78, no. 5, pp. 293 – 303, 2009, the 1st Workshop
on Formal Languages and Analysis of Contract-Oriented Software (FLACOS’07). [Online].
Available: http://www.sciencedirect.com/science/article/pii/S1567832608000775

[24] L. Lamport, “Proving the correctness of multiprocess programs,” IEEE Transactions on
Software Engineering, vol. SE-3, no. 2, pp. 125–143, 1977.

[25] D. E. Bell and L. J. L. Padula, “Secure computer system: Unified exposition and multics
interpretation,” 1976.

[26] D. E. Denning, “A lattice model of secure information flow,” Commun. ACM, vol. 19, no. 5,

KA Formal Methods for Security | July 2021 Page 41

https://www.cybok.org
https://www.cybok.org/
https://www.cybok.org/
https://doi.org/10.1145/1052883.1052895
https://doi.org/10.1145/1646353.1646374
https://www.cybok.org/
http://doi.acm.org/10.1145/2366316.2366324
http://doi.acm.org/10.1145/2366316.2366324
http://dx.doi.org/10.1007/978-3-319-30806-7_1
https://doi.org/10.1007/BF01782772
https://doi.org/10.1007/978-3-319-10575-8-11
https://doi.org/10.1007/978-3-319-10575-8-11
https://doi.org/10.1145/512950.512973
http://www.sciencedirect.com/science/article/pii/S1567832608000775

The Cyber Security Body Of Knowledge
www.cybok.org

p. 236–243, May 1976. [Online]. Available: https://doi.org/10.1145/360051.360056
[27] D. Hedin and A. Sabelfeld, “A perspective on information-flow control,” in Software Safety

and Security - Tools for Analysis and Verification, ser. NATO Science for Peace and
Security Series - D: Information and Communication Security, T. Nipkow, O. Grumberg,
and B. Hauptmann, Eds. IOS Press, 2012, vol. 33, pp. 319–347. [Online]. Available:
https://doi.org/10.3233/978-1-61499-028-4-319

[28] M. R. Clarkson, B. Finkbeiner, M. Koleini, K. K. Micinski, M. N. Rabe, and C. Sánchez,
“Temporal logics for hyperproperties,” CoRR, vol. abs/1401.4492, 2014. [Online].
Available: http://arxiv.org/abs/1401.4492

[29] B. Finkbeiner, M. N. Rabe, and C. Sánchez, “Algorithms for model checking HyperLTL
and HyperCTL*,” in Computer Aided Verification, D. Kroening and C. S. Păsăreanu, Eds.
Cham: Springer International Publishing, 2015, pp. 30–48.

[30] S. Zdancewic and A. C. Myers, “Observational determinism for concurrent program
security,” in 16th IEEE Computer Security Foundations Workshop, 2003. Proceedings.,
2003, pp. 29–43.

[31] D. McCullough, “Noninterference and the composability of security properties,” in 2012
IEEE Symposium on Security and Privacy. Los Alamitos, CA, USA: IEEE Computer
Society, apr 1988, p. 177. [Online]. Available: https://doi.ieeecomputersociety.org/10.
1109/SECPRI.1988.8110

[32] J. McLean, “A general theory of composition for a class of ”possibilistic” properties,”
IEEE Transactions on Software Engineering, vol. 22, no. 1, pp. 53–67, 1996.

[33] D. Park, “Concurrency and automata on infinite sequences,” in Proceedings of the 5th
GI-Conference on Theoretical Computer Science. Berlin, Heidelberg: Springer-Verlag,
1981, p. 167–183.

[34] R. Milner, Communication and Concurrency. USA: Prentice-Hall, Inc., 1989.
[35] R. Gorrieri and C. Versari, Introduction to Concurrency Theory: Transition Systems and

CCS, 1st ed. Springer Publishing Company, Incorporated, 2015.
[36] M. Abadi and A. D. Gordon, “A calculus for cryptographic protocols: The spi calculus,”

in Proceedings of the 4th ACM Conference on Computer and Communications Security,
ser. CCS ’97. New York, NY, USA: Association for Computing Machinery, 1997, p.
36–47. [Online]. Available: https://doi.org/10.1145/266420.266432

[37] ——, “A bisimulation method for cryptographic protocols,” Nordic J. of Computing, vol. 5,
no. 4, p. 267–303, Dec. 1998.

[38] M. Abadi and C. Fournet, “Mobile values, new names, and secure communication,”
SIGPLAN Not., vol. 36, no. 3, p. 104–115, Jan. 2001. [Online]. Available: https:
//doi.org/10.1145/373243.360213

[39] B. Blanchet, “Modeling and verifying security protocols with the applied pi calculus
and ProVerif,” Found. Trends Priv. Secur., vol. 1, no. 1–2, p. 1–135, Oct. 2016. [Online].
Available: https://doi.org/10.1561/3300000004

[40] B. Blanchet, “Automatic proof of strong secrecy for security protocols,” in IEEE Sympo-
sium on Security and Privacy, 2004. Proceedings. 2004, 2004, pp. 86–100.

[41] V. Cheval, “Automatic verification of cryptographic protocols: privacy-type properties,”
PhD Thesis, Laboratoire Spécification et Vérification, ENS Cachan, France, Dec. 2012.

[42] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu, “Bounded model
checking,” Adv. Comput., vol. 58, pp. 117–148, 2003. [Online]. Available: https:
//doi.org/10.1016/S0065-2458(03)58003-2

[43] M. Kaufmann and J. S. Moore, “An industrial strength theorem prover for a logic based on
Common Lisp,” IEEE Transactions on Software Engineering, vol. 23, no. 4, pp. 203–213,
1997.

KA Formal Methods for Security | July 2021 Page 42

https://www.cybok.org
https://doi.org/10.1145/360051.360056
https://doi.org/10.3233/978-1-61499-028-4-319
http://arxiv.org/abs/1401.4492
https://doi.ieeecomputersociety.org/10.1109/SECPRI.1988.8110
https://doi.ieeecomputersociety.org/10.1109/SECPRI.1988.8110
https://doi.org/10.1145/266420.266432
https://doi.org/10.1145/373243.360213
https://doi.org/10.1145/373243.360213
https://doi.org/10.1561/3300000004
https://doi.org/10.1016/S0065-2458(03)58003-2
https://doi.org/10.1016/S0065-2458(03)58003-2

The Cyber Security Body Of Knowledge
www.cybok.org

[44] J. S. Moore, “Milestones from the pure lisp theorem prover to ACL2,” Formal
Aspects Comput., vol. 31, no. 6, pp. 699–732, 2019. [Online]. Available: https:
//doi.org/10.1007/s00165-019-00490-3

[45] T. Nipkow, L. C. Paulson, and M. Wenzel, Isabelle/HOL – A Proof Assistant for
Higher-Order Logic, ser. Lecture Notes in Computer Science. Springer, 2002, vol. 2283.
[Online]. Available: https://doi.org/10.1007/3-540-45949-9

[46] J. Harrison, “HOL Light: An overview,” in Theorem Proving in Higher Order Logics,
S. Berghofer, T. Nipkow, C. Urban, and M. Wenzel, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2009, pp. 60–66.

[47] Y. Bertot and P. Castran, Interactive TheoremProving and ProgramDevelopment: Coq’Art
The Calculus of Inductive Constructions, 1st ed. Springer Publishing Company, Incor-
porated, 2010.

[48] G. Huet, G. Kahn, and C. Paulin-Mohring, The Coq Proof Assistant - A tutorial - Version
7.1, Oct. 2001, http://coq.inria.fr.

[49] L. C. Paulson, Logic and Computation: Interactive Proof with Cambridge LCF, ser. Cam-
bridge Tracts in Theoretical Computer Science. Cambridge University Press, 1987.

[50] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik, “Chaff: Engineering an
efficient SAT solver,” in Proceedings of the 38th Annual Design Automation Conference,
ser. DAC ’01. New York, NY, USA: Association for Computing Machinery, 2001, p.
530–535. [Online]. Available: https://doi.org/10.1145/378239.379017

[51] J. P. Marques Silva and K. A. Sakallah, Grasp—A New Search Algorithm for
Satisfiability. Boston, MA: Springer US, 2003, pp. 73–89. [Online]. Available:
https://doi.org/10.1007/978-1-4615-0292-0 7

[52] N. Eén and N. Sörensson, “An extensible SAT-solver,” in Theory and Applications of
Satisfiability Testing, E. Giunchiglia and A. Tacchella, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2004, pp. 502–518.

[53] F. Corzilius, U. Loup, S. Junges, and E. Ábrahám, “SMT-RAT: An SMT-compliant nonlinear
real arithmetic toolbox,” in Theory and Applications of Satisfiability Testing – SAT 2012,
A. Cimatti and R. Sebastiani, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012,
pp. 442–448.

[54] L. De Moura and N. Bjørner, “Satisfiability modulo theories: Introduction and
applications,” Commun. ACM, vol. 54, no. 9, p. 69–77, Sep. 2011. [Online]. Available:
https://doi.org/10.1145/1995376.1995394

[55] L. De Moura and N. Bjørner, “Z3: An efficient SMT solver,” in International conference
on Tools and Algorithms for the Construction and Analysis of Systems. Springer, 2008,
pp. 337–340.

[56] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanović, T. King, A. Reynolds, and
C. Tinelli, “Cvc4,” in Computer Aided Verification, G. Gopalakrishnan and S. Qadeer, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 171–177.

[57] B. Dutertre, “Yices 2.2,” in Computer Aided Verification, A. Biere and R. Bloem, Eds.
Cham: Springer International Publishing, 2014, pp. 737–744.

[58] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking. Cambridge, MA, USA: MIT
Press, 2000.

[59] C. Baier and J. Katoen, Principles of model checking. MIT Press, 2008.
[60] R. E. Bryant, “Symbolic boolean manipulation with ordered binary-decision diagrams,”

ACM Comput. Surv., vol. 24, no. 3, p. 293–318, Sep. 1992. [Online]. Available:
https://doi.org/10.1145/136035.136043

[61] D. Peled, “Ten years of partial order reduction,” in Computer Aided Verification, A. J. Hu
and M. Y. Vardi, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998, pp. 17–28.

KA Formal Methods for Security | July 2021 Page 43

https://www.cybok.org
https://doi.org/10.1007/s00165-019-00490-3
https://doi.org/10.1007/s00165-019-00490-3
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1145/378239.379017
https://doi.org/10.1007/978-1-4615-0292-0_7
https://doi.org/10.1145/1995376.1995394
https://doi.org/10.1145/136035.136043

The Cyber Security Body Of Knowledge
www.cybok.org

[62] G. J. Holzmann, “The model checker SPIN,” IEEE Trans. Softw. Eng., vol. 23, no. 5, p.
279–295, May 1997. [Online]. Available: https://doi.org/10.1109/32.588521

[63] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani,
and A. Tacchella, “NuSMV 2: An opensource tool for symbolic model checking,” in
Computer Aided Verification, E. Brinksma and K. G. Larsen, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2002, pp. 359–364.

[64] P. Gardiner, M. Goldsmith, J. Hulance, D. Jackson, A. Roscoe, B. Scattergood, and
P. Armstrong, “FDR2 user manual,” 2000.

[65] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verification of probabilistic
real-time systems,” in Computer Aided Verification, G. Gopalakrishnan and S. Qadeer,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 585–591.

[66] W. Lee, The Cyber Security Body of Knowledge. University of Bristol, 2021, ch. Malware
& Attack Technology, version 1.0.1. [Online]. Available: https://www.cybok.org/

[67] A. Chudnov, N. Collins, B. Cook, J. Dodds, B. Huffman, C. MacCárthaigh, S. Magill,
E. Mertens, E. Mullen, S. Tasiran, A. Tomb, and E. Westbrook, “Continuous formal verifica-
tion of Amazon s2n,” in Computer Aided Verification, H. Chockler and G. Weissenbacher,
Eds. Cham: Springer International Publishing, 2018, pp. 430–446.

[68] B. Cook, “Formal reasoning about the security of Amazon Web Services,” in Computer
AidedVerification, H. Chockler and G. Weissenbacher, Eds. Cham: Springer International
Publishing, 2018, pp. 38–47.

[69] U. Erlingsson and F. B. Schneider, “IRM enforcement of Java stack inspection,” in Pro-
ceeding 2000 IEEE Symposium on Security and Privacy. S P 2000, 2000, pp. 246–255.

[70] B. Finkbeiner, C. Hahn, M. Stenger, and L. Tentrup, “Efficient monitoring of
hyperproperties using prefix trees,” Int. J. Softw. Tools Technol. Transf., vol. 22, no. 6,
pp. 729–740, 2020. [Online]. Available: https://doi.org/10.1007/s10009-020-00552-5

[71] K. Havelund and G. Roşu, “An overview of the runtime verification tool Java PathExplorer,”
Formal Methods in System Design, vol. 24, no. 2, pp. 189–215, Mar 2004.

[72] D. Basin, F. Klaedtke, and S. Müller, “Monitoring security policies with metric first-order
temporal logic,” in 15th ACM Symposium on Access Control Models and Technologies
(SACMAT). ACM Press, 2010, pp. 23–33.

[73] E. Arfelt, D. Basin, and S. Debois, “Monitoring the GDPR,” in Computer Security – ESORICS
2019, K. Sako, S. Schneider, and P. Y. A. Ryan, Eds. Cham: Springer International
Publishing, 2019, pp. 681–699.

[74] D. Basin, F. Klaedtke, S. Müller, and E. Zălinescu, “Monitoring metric first-order temporal
properties,” J. ACM, vol. 62, no. 2, pp. 15:1–15:45, May 2015. [Online]. Available:
http://doi.acm.org/10.1145/2699444

[75] R. Alur, T. A. Henzinger, and M. Y. Vardi, “Theory in practice for system design and
verification,” ACM SIGLOG News, vol. 2, no. 1, p. 46–51, Jan. 2015. [Online]. Available:
https://doi.org/10.1145/2728816.2728827

[76] F.-X. Standaert, T. G. Malkin, and M. Yung, “A unified framework for the analysis of side-
channel key recovery attacks,” in Advances in Cryptology - EUROCRYPT 2009, A. Joux,
Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 443–461.

[77] G. Doychev, B. Köpf, L. Mauborgne, and J. Reineke, “CacheAudit: A tool for the static
analysis of cache side channels,” ACM Trans. Inf. Syst. Secur., vol. 18, no. 1, Jun. 2015.
[Online]. Available: https://doi.org/10.1145/2756550

[78] M. Bond and R. Anderson, “API-level attacks on embedded systems,” Computer, vol. 34,
no. 10, pp. 67–75, 2001.

[79] I. Verbauwhede, The Cyber Security Body of Knowledge. University of Bristol, 2021, ch.
Hardware Security, version 1.0.1. [Online]. Available: https://www.cybok.org/

KA Formal Methods for Security | July 2021 Page 44

https://www.cybok.org
https://doi.org/10.1109/32.588521
https://www.cybok.org/
https://doi.org/10.1007/s10009-020-00552-5
http://doi.acm.org/10.1145/2699444
https://doi.org/10.1145/2728816.2728827
https://doi.org/10.1145/2756550
https://www.cybok.org/

The Cyber Security Body Of Knowledge
www.cybok.org

[80] C. Kern and M. R. Greenstreet, “Formal verification in hardware design: A survey,”
ACM Trans. Des. Autom. Electron. Syst., vol. 4, no. 2, p. 123–193, Apr. 1999. [Online].
Available: https://doi.org/10.1145/307988.307989

[81] T. Kropf, Introduction to Formal Hardware Verification: Methods and Tools for Designing
Correct Circuits and Systems, 1st ed. Berlin, Heidelberg: Springer-Verlag, 1999.

[82] E. Clarke and D. Kroening, “Hardware verification using ANSI-C programs as a reference,”
in Proceedings of the ASP-DAC Asia and South Pacific Design Automation Conference,
2003., 2003, pp. 308–311.

[83] J. Sawada and W. A. Hunt Jr., “Verification of FM9801: an out-of-order microprocessor
model with speculative execution, exceptions, and program-modifying capability,”
Formal Methods Syst. Des., vol. 20, no. 2, pp. 187–222, 2002. [Online]. Available:
https://doi.org/10.1023/A:1014122630277

[84] M. M. Wilding, D. A. Greve, R. J. Richards, and D. S. Hardin, Formal Verification of
Partition Management for the AAMP7G Microprocessor. Boston, MA: Springer US,
2010, pp. 175–191. [Online]. Available: https://doi.org/10.1007/978-1-4419-1539-9 6

[85] A. Sabelfeld and D. Sands, “Dimensions and principles of declassification,” in 18th IEEE
Computer Security Foundations Workshop (CSFW’05), 2005, pp. 255–269.

[86] S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi, “Towards sound approaches to counteract
power-analysis attacks,” in Proceedings of the 19th Annual International Cryptology Con-
ference onAdvances in Cryptology, ser. CRYPTO ’99. Berlin, Heidelberg: Springer-Verlag,
1999, p. 398–412.

[87] J. Kelsey, B. Schneier, D. Wagner, and C. Hall, “Side channel cryptanalysis of product
ciphers,” J. Comput. Secur., vol. 8, no. 2,3, p. 141–158, Aug. 2000.

[88] S. Micali and L. Reyzin, “Physically observable cryptography,” in Theory of Cryptography,
M. Naor, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 278–296.

[89] B. Köpf and D. A. Basin, “Automatically deriving information-theoretic bounds for adap-
tive side-channel attacks,” Journal of Computer Security, vol. 19, no. 1, pp. 1–31, 2011.

[90] S. Cauligi, G. Soeller, B. Johannesmeyer, F. Brown, R. S. Wahby, J. Renner,
B. Grégoire, G. Barthe, R. Jhala, and D. Stefan, “FaCT: A DSL for timing-
sensitive computation,” in Proceedings of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI 2019. New York, NY,
USA: Association for Computing Machinery, 2019, p. 174–189. [Online]. Available:
https://doi.org/10.1145/3314221.3314605

[91] M. Wu, S. Guo, P. Schaumont, and C. Wang, “Eliminating timing side-channel
leaks using program repair,” in Proceedings of the 27th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ser. ISSTA 2018. New York, NY,
USA: Association for Computing Machinery, 2018, p. 15–26. [Online]. Available:
https://doi.org/10.1145/3213846.3213851

[92] G. Barthe, B. Grégoire, and V. Laporte, “Secure compilation of side-channel countermea-
sures: The case of cryptographic “constant-time”,” in 2018 IEEE 31st Computer Security
Foundations Symposium (CSF), 2018, pp. 328–343.

[93] D. Zhang, Y. Wang, G. E. Suh, and A. C. Myers, “A hardware design language for
timing-sensitive information-flow security,” SIGPLAN Not., vol. 50, no. 4, p. 503–516,
Mar. 2015. [Online]. Available: https://doi.org/10.1145/2775054.2694372

[94] M. Bortolozzo, M. Centenaro, R. Focardi, and G. Steel, “Attacking and fixing PKCS#11
security tokens,” in Proceedings of the 17th ACM Conference on Computer and
Communications Security, ser. CCS ’10. New York, NY, USA: Association for Computing
Machinery, 2010, p. 260–269. [Online]. Available: https://doi.org/10.1145/1866307.
1866337

KA Formal Methods for Security | July 2021 Page 45

https://www.cybok.org
https://doi.org/10.1145/307988.307989
https://doi.org/10.1023/A:1014122630277
https://doi.org/10.1007/978-1-4419-1539-9_6
https://doi.org/10.1145/3314221.3314605
https://doi.org/10.1145/3213846.3213851
https://doi.org/10.1145/2775054.2694372
https://doi.org/10.1145/1866307.1866337
https://doi.org/10.1145/1866307.1866337

The Cyber Security Body Of Knowledge
www.cybok.org

[95] B. Blanchet and D. Pointcheval, “Automated security proofs with sequences of games,”
in CRYPTO’06, ser. Lecture Notes in Computer Science, C. Dwork, Ed., vol. 4117. Santa
Barbara, CA: Springer, Aug. 2006, pp. 537–554.

[96] B. Blanchet, “An efficient cryptographic protocol verifier based on prolog rules,” in Pro-
ceedings. 14th IEEE Computer Security Foundations Workshop, 2001., 2001, pp. 82–96.

[97] L. Paulson, “The inductive approach to verifying cryptographic protocols,” J. Computer
Security, vol. 6, pp. 85–128, 1998. [Online]. Available: http://www.cl.cam.ac.uk/users/
lcp/papers/Auth/jcs.pdf

[98] G. Lowe, “Breaking and fixing the Needham-Schroeder Public-Key Protocol using FDR,”
in Tools and Algorithms for the Construction and Analysis of Systems, T. Margaria and
B. Steffen, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996, pp. 147–166.

[99] P. Ryan, S. Schneider, M. Goldsmith, G. Lowe, and A. Roscoe, The Modelling and Analysis
of Security Protocols: The CSP Approach, 1st ed. Addison-Wesley Professional, 2000.

[100] B. Schmidt, S. Meier, C. Cremers, and D. Basin, “Automated analysis of Diffie-Hellman pro-
tocols and advanced security properties,” in Computer Security Foundations Symposium
(CSF), 2012 IEEE 25th, june 2012, pp. 78 –94.

[101] D. Basin, C. Cremers, and C. Meadows, Model Checking Security Protocols. Springer,
2018, ch. 24, pp. 727–762.

[102] M. Barbosa, G. Barthe, K. Bhargavan, B. Blanchet, C. Cremers, K. Liao, and B. Parno,
“SoK: Computer-aided cryptography,” Cryptology ePrint Archive, Report 2019/1393, 2019,
https://eprint.iacr.org/2019/1393.

[103] D. A. Basin, C. J. F. Cremers, K. Miyazaki, S. Radomirovic, and D. Watanabe, “Improving
the security of cryptographic protocol standards,” IEEE Security & Privacy, vol. 13, no. 3,
pp. 24–31, 2015. [Online]. Available: http://dx.doi.org/10.1109/MSP.2013.162

[104] D. Basin, C. Cremers, and S. Meier, “Provably repairing the ISO/IEC 9798 standard for
entity authentication,” in Principles of Security and Trust - First International Conference,
POST 2012, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2012, Tallinn, Estonia, March 24 - April 1, 2012, Proceedings, ser. Lecture
Notes in Computer Science, P. Degano and J. D. Guttman, Eds., vol. 710.1007/978-3-319-
40667-1 185. Springer, 2012, pp. 129–148.

[105] K. Bhargavan, B. Bond, A. Delignat-Lavaud, C. Fournet, C. Hawblitzel, C. Hritcu, S. Ishtiaq,
M. Kohlweiss, R. Leino, J. R. Lorch, K. Maillard, J. Pan, B. Parno, J. Protzenko,
T. Ramananandro, A. Rane, A. Rastogi, N. Swamy, L. Thompson, P. Wang, S. Z. Béguelin,
and J. K. Zinzindohoue, “Everest: Towards a verified, drop-in replacement of HTTPS,”
in 2nd Summit on Advances in Programming Languages, SNAPL 2017, May 7-10, 2017,
Asilomar, CA, USA, ser. LIPIcs, B. S. Lerner, R. Bodı́k, and S. Krishnamurthi, Eds., vol. 71.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017, pp. 1:1–1:12. [Online]. Available:
https://doi.org/10.4230/LIPIcs.SNAPL.2017.1

[106] B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud, C. Fournet, M. Kohlweiss, A. Pironti,
P. Strub, and J. K. Zinzindohoue, “A messy state of the union: Taming the composite state
machines of TLS,” in 2015 IEEE Symposium on Security and Privacy, 2015, pp. 535–552.

[107] C. Cremers, M. Horvat, J. Hoyland, S. Scott, and T. van der Merwe, “A comprehensive
symbolic analysis of TLS 1.3,” in Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS ’17. New York, NY, USA:
Association for Computing Machinery, 2017, p. 1773–1788. [Online]. Available:
https://doi.org/10.1145/3133956.3134063

[108] D. Basin, J. Dreier, L. Hirschi, S. Radomirovic, R. Sasse, and V. Stettler, “A formal
analysis of 5G authentication,” in Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS ’18. New York, NY, USA:

KA Formal Methods for Security | July 2021 Page 46

https://www.cybok.org
http://www.cl.cam.ac.uk/users/lcp/papers/Auth/jcs.pdf
http://www.cl.cam.ac.uk/users/lcp/papers/Auth/jcs.pdf
https://eprint.iacr.org/2019/1393
http://dx.doi.org/10.1109/MSP.2013.162
https://doi.org/10.4230/LIPIcs.SNAPL.2017.1
https://doi.org/10.1145/3133956.3134063

The Cyber Security Body Of Knowledge
www.cybok.org

Association for Computing Machinery, 2018, p. 1383–1396. [Online]. Available:
https://doi.org/10.1145/3243734.3243846

[109] D. A. Basin, R. Sasse, and J. Toro-Pozo, “The EMV standard: Break, Fix, Verify,” in 42nd
IEEE Symposium on Security and Privacy (Oakland S&P), 2021, to appear.

[110] ——, “Card brand mixup attack: Bypassing the PIN in non-Visa cards by using them for
Visa transactions,” in 30th USENIX Security Symposium, 2021, to appear.

[111] D. Dolev and A. C. Yao, “On the security of public key protocols,” IEEE Trans.
Information Theory, vol. 29, no. 2, pp. 198–207, 1983. [Online]. Available: https:
//doi.org/10.1109/TIT.1983.1056650

[112] G. Lowe, “A hierarchy of authentication specification,” in 10th Computer Security
Foundations Workshop (CSFW ’97), June 10-12, 1997, Rockport, Massachusetts, USA.
IEEE Computer Society, 1997, pp. 31–44. [Online]. Available: https://doi.org/10.1109/
CSFW.1997.596782

[113] G. Bella, F. Massacci, and L. C. Paulson, “Verifying the SET registration protocols,” IEEE
Journal on Selected Areas in Communications, vol. 21, no. 1, pp. 77–87, 2003.

[114] S. Meier, C. Cremers, and D. Basin, “Strong invariants for the efficient construction of
machine-checked protocol security proofs,” in 23rd IEEE Computer Security Foundations
Symposium. Los Alamitos, USA: IEEE Computer Society, 7 2010, pp. 231–245.

[115] S. Meier, C. Cremers, and D. A. Basin, “Efficient construction of machine-checked sym-
bolic protocol security proofs,” Journal of Computer Security, vol. 21, no. 1, pp. 41–87,
2013.

[116] M. Abadi and L. Lamport, “The existence of refinement mappings,” Theor.
Comput. Sci., vol. 82, no. 2, pp. 253–284, 1991. [Online]. Available: https:
//doi.org/10.1016/0304-3975(91)90224-P

[117] J.-R. Abrial, Modeling in Event-B: System and Software Engineering. Cambridge Univer-
sity Press, 2010.

[118] J. Lallemand, D. A. Basin, and C. Sprenger, “Refining authenticated key agreement with
strong adversaries,” in 2017 IEEE European Symposium on Security and Privacy, EuroS&P
2017, Paris, France, April 26-28, 2017, 2017, pp. 92–107.

[119] C. Sprenger and D. A. Basin, “Refining security protocols,” Journal of Computer Security,
vol. 26, no. 1, pp. 71–120, 2018. [Online]. Available: https://doi.org/10.3233/JCS-16814

[120] N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov, “Multiset rewriting and the complexity
of bounded security protocols,” Journal of Computer Security, vol. 12, no. 2, pp. 247–311,
Apr. 2004. [Online]. Available: http://dl.acm.org/citation.cfm?id=1017273.1017276

[121] J. K. Millen, S. C. Clark, and S. B. Freedman, “The Interrogator: Protocol security analysis,”
IEEE Trans. Software Eng., vol. 13, no. 2, pp. 274–288, 1987.

[122] D. Longley and S. Rigby, “An automatic search for security flaws in key management
schemes,” Computers & Security, vol. 11, no. 1, pp. 75–89, 1992.

[123] C. Meadows, “The NRL Protocol Analyzer: An overview,” J. Log. Program., vol. 26, no. 2,
pp. 113–131, 1996.

[124] G. Lowe, “Casper: A compiler for the analysis of security protocols,” J. Comput. Secur.,
vol. 6, no. 1–2, p. 53–84, Jan. 1998.

[125] A. Armando, R. Carbone, and L. Compagna, “SATMC: A SAT-based model checker
for security protocols, business processes, and security apis,” Int. J. Softw.
Tools Technol. Transf., vol. 18, no. 2, p. 187–204, Apr. 2016. [Online]. Available:
https://doi.org/10.1007/s10009-015-0385-y

[126] A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuellar, P. H. Drielsma, P.-C.
Heám, O. Kouchnarenko, J. Mantovani, S. Mödersheim, D. von Oheimb, M. Rusinowitch,
J. Santiago, M. Turuani, L. Viganò, and L. Vigneron, “The AVISPA tool for the automated

KA Formal Methods for Security | July 2021 Page 47

https://www.cybok.org
https://doi.org/10.1145/3243734.3243846
https://doi.org/10.1109/TIT.1983.1056650
https://doi.org/10.1109/TIT.1983.1056650
https://doi.org/10.1109/CSFW.1997.596782
https://doi.org/10.1109/CSFW.1997.596782
https://doi.org/10.1016/0304-3975(91)90224-P
https://doi.org/10.1016/0304-3975(91)90224-P
https://doi.org/10.3233/JCS-16814
http://dl.acm.org/citation.cfm?id=1017273.1017276
https://doi.org/10.1007/s10009-015-0385-y

The Cyber Security Body Of Knowledge
www.cybok.org

validation of internet security protocols and applications,” in Proceedings of CAV’2005,
ser. LNCS 3576. Springer-Verlag, 2005, pp. 281–285.

[127] B. Schmidt, S. Meier, C. Cremers, and D. Basin, “The TAMARIN prover for the symbolic
analysis of security protocols,” in 25th International Conference on Computer Aided
Verification (CAV 2013), ser. LNCS, N. Sharygina and H. Veith, Eds., vol. 8044. Saint
Petersburg, Russia: Springer, July 2013, pp. 696–701.

[128] B. Blanchet, “Automatic verification of correspondences for security protocols,” J. Com-
put. Secur., vol. 17, no. 4, p. 363–434, Dec. 2009.

[129] B. Blanchet, M. Abadi, and C. Fournet, “Automated verification of selected equivalences
for security protocols,” in 20th Annual IEEE Symposium on Logic in Computer Science
(LICS’ 05), 2005, pp. 331–340.

[130] K. Bhargavan, C. Fournet, A. D. Gordon, and S. Tse, “Verified interoperable implemen-
tations of security protocols,” in 19th IEEE Computer Security Foundations Workshop
(CSFW’06), 2006, pp. 14 pp.–152.

[131] D. Basin and C. Cremers, “Know your enemy: Compromising adversaries in protocol
analysis,” ACM Trans. Inf. Syst. Secur., vol. 17, no. 2, pp. 7:1–7:31, Nov. 2014. [Online].
Available: http://doi.acm.org/10.1145/2658996

[132] M. D. Ryan and B. Smyth, “Applied pi calculus,” in Formal Models and Techniques for
Analyzing Security Protocols, V. Cortier and S. Kremer, Eds. IOS Press, 2011, ch. 6.

[133] V. Cortier and S. Delaune, “A method for proving observational equivalence,” in 2009
22nd IEEE Computer Security Foundations Symposium, 2009, pp. 266–276.

[134] D. Basin, J. Dreier, and R. Sasse, “Automated symbolic proofs of observational
equivalence,” in Proceedings of the 22Nd ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’15. New York, NY, USA: ACM, 2015, pp. 1144–1155.
[Online]. Available: http://doi.acm.org/10.1145/2810103.2813662

[135] S. Santiago, S. Escobar, C. Meadows, and J. Meseguer, “A formal definition of protocol
indistinguishability and its verification using maude-npa,” in Security and Trust Manage-
ment, S. Mauw and C. D. Jensen, Eds. Cham: Springer International Publishing, 2014,
pp. 162–177.

[136] M. Baudet, V. Cortier, and S. Delaune, “YAPA: A generic tool for computing intruder
knowledge,” ACM Trans. Comput. Logic, vol. 14, no. 1, Feb. 2013. [Online]. Available:
https://doi.org/10.1145/2422085.2422089

[137] c. Ciobâcă, S. Delaune, and S. Kremer, “Computing knowledge in security protocols under
convergent equational theories,” in Proceedings of the 22nd International Conference
on Automated Deduction, ser. CADE-22. Berlin, Heidelberg: Springer-Verlag, 2009, p.
355–370. [Online]. Available: https://doi.org/10.1007/978-3-642-02959-2 27

[138] B. Conchinha, D. Basin, and C. Caleiro, “Efficient decision procedures for message
deducibility and static equivalence,” in Formal Aspects of Security and Trust, P. Degano,
S. Etalle, and J. Guttman, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp.
34–49.

[139] M. Baudet, “Deciding security of protocols against off-line guessing attacks,” in
Proceedings of the 12th ACM Conference on Computer and Communications Security,
ser. CCS ’05. New York, NY, USA: Association for Computing Machinery, 2005, p.
16–25. [Online]. Available: https://doi.org/10.1145/1102120.1102125

[140] R. Corin, J. Doumen, and S. Etalle, “Analysing password protocol security against
off-line dictionary attacks,” Electronic Notes in Theoretical Computer Science, vol. 121,
pp. 47–63, 2005, proceedings of the 2nd International Workshop on Security Issues
with Petri Nets and other Computational Models (WISP 2004). [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1571066105000241

KA Formal Methods for Security | July 2021 Page 48

https://www.cybok.org
http://doi.acm.org/10.1145/2658996
http://doi.acm.org/10.1145/2810103.2813662
https://doi.org/10.1145/2422085.2422089
https://doi.org/10.1007/978-3-642-02959-2_27
https://doi.org/10.1145/1102120.1102125
https://www.sciencedirect.com/science/article/pii/S1571066105000241

The Cyber Security Body Of Knowledge
www.cybok.org

[141] M. Stoelinga, “An introduction to probabilistic automata,” Bull. EATCS, vol. 78, pp. 176–
198, 2002.

[142] C. Baier, L. de Alfaro, V. Forejt, and M. Kwiatkowska, Model Checking Probabilistic
Systems. Cham: Springer International Publishing, 2018, pp. 963–999. [Online].
Available: https://doi.org/10.1007/978-3-319-10575-8-28

[143] M. Kwiatkowska, G. Norman, and D. Parker, “Quantitative analysis with the probabilistic
model checker PRISM,” Electron. Notes Theor. Comput. Sci., vol. 153, no. 2, p. 5–31, May
2006. [Online]. Available: https://doi.org/10.1016/j.entcs.2005.10.030

[144] S. Basagiannis, P. Katsaros, A. Pombortsis, and N. Alexiou, “Probabilistic model
checking for the quantification of DoS security threats,” Comput. Secur., vol. 28, no. 6, p.
450–465, Sep. 2009. [Online]. Available: https://doi.org/10.1016/j.cose.2009.01.002

[145] V. Shmatikov, “Probabilistic analysis of an anonymity system,” J. Comput. Secur., vol. 12,
no. 3,4, p. 355–377, May 2004.

[146] M. K. Reiter and A. D. Rubin, “Crowds: Anonymity for web transactions,” ACM
Trans. Inf. Syst. Secur., vol. 1, no. 1, p. 66–92, Nov. 1998. [Online]. Available:
https://doi.org/10.1145/290163.290168

[147] R. Lanotte, A. Maggiolo-Schettini, and A. Troina, “Automatic analysis of a non-repudiation
protocol,” in Proc. 2nd International Workshop on Quantitative Aspects of Programming
Languages (QAPL’04), 2004.

[148] G. Norman and V. Shmatikov, “Analysis of probabilistic contract signing,” in Formal
Aspects of Security, A. E. Abdallah, P. Ryan, and S. Schneider, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2003, pp. 81–96.

[149] V. Galpin, “Formal modelling of software defined networking,” in Integrated Formal
Methods - 14th International Conference, IFM 2018, Maynooth, Ireland, September
5-7, 2018, Proceedings, ser. Lecture Notes in Computer Science, C. A. Furia and
K. Winter, Eds., vol. 11023. Springer, 2018, pp. 172–193. [Online]. Available:
https://doi.org/10.1007/978-3-319-98938-9 11

[150] R. Dimitrova, B. Finkbeiner, and H. Torfah, “Probabilistic hyperproperties of
Markov decision processes,” in Automated Technology for Verification and Analysis
- 18th International Symposium, ATVA 2020, Hanoi, Vietnam, October 19-23, 2020,
Proceedings, ser. Lecture Notes in Computer Science, D. V. Hung and O. Sokolsky,
Eds., vol. 12302. Springer, 2020, pp. 484–500. [Online]. Available: https:
//doi.org/10.1007/978-3-030-59152-6 27

[151] E. Ábrahám, E. Bartocci, B. Bonakdarpour, and O. Dobe, “Probabilistic hyperproperties
with nondeterminism,” in Automated Technology for Verification and Analysis, D. V. Hung
and O. Sokolsky, Eds. Cham: Springer International Publishing, 2020, pp. 518–534.

[152] N. Smart, The Cyber Security Body of Knowledge. University of Bristol, 2021, ch.
Cryptography, version 1.0.1. [Online]. Available: https://www.cybok.org/

[153] N. Koblitz and A. J. Menezes, “Another look at ”provable security”,” J. Cryptol., vol. 20,
no. 1, p. 3–37, Jan. 2007. [Online]. Available: https://doi.org/10.1007/s00145-005-0432-z

[154] M. Bellare and P. Rogaway, “The security of triple encryption and a framework for code-
based game-playing proofs,” in EUROCRYPT 2006, ser. LNCS, vol. 4004. Springer, 2006,
pp. 409–426.

[155] V. Shoup, “Sequences of games: A tool for taming complexity in security
proofs,” Cryptology ePrint Archive, Report 2004/332, 2004. [Online]. Available:
http://eprint.iacr.org/2004/332

[156] R. Canetti, “Universally composable security: A new paradigm for cryptographic pro-
tocols,” in Foundations of Computer Science, 2001. Proceedings. 42nd IEEE Symposium
on. IEEE, 2001, pp. 136–145.

KA Formal Methods for Security | July 2021 Page 49

https://www.cybok.org
https://doi.org/10.1007/978-3-319-10575-8-28
https://doi.org/10.1016/j.entcs.2005.10.030
https://doi.org/10.1016/j.cose.2009.01.002
https://doi.org/10.1145/290163.290168
https://doi.org/10.1007/978-3-319-98938-9_11
https://doi.org/10.1007/978-3-030-59152-6_27
https://doi.org/10.1007/978-3-030-59152-6_27
https://www.cybok.org/
https://doi.org/10.1007/s00145-005-0432-z
http://eprint.iacr.org/2004/332

The Cyber Security Body Of Knowledge
www.cybok.org

[157] U. Maurer, “Constructive cryptography – a new paradigm for security definitions and
proofs,” in Joint Workshop on Theory of Security and Applications. Springer, 2011, pp.
33–56.

[158] S. Halevi, “A plausible approach to computer-aided cryptographic proofs,” 2005,
shaih@alum.mit.edu 12949 received 15 Jun 2005. [Online]. Available: http://eprint.iacr.
org/2005/181

[159] M. Abadi and P. Rogaway, “Reconciling two views of cryptography (the computational
soundness of formal encryption),” J. Cryptol., vol. 20, no. 3, p. 395, Jul. 2007.

[160] D. Micciancio and B. Warinschi, “Soundness of formal encryption in the presence of
active adversaries,” in Theory of Cryptography, M. Naor, Ed. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2004, pp. 133–151.

[161] M. Backes, D. Hofheinz, and D. Unruh, “CoSP: A general framework for computational
soundness proofs,” in Proceedings of the 16th ACM Conference on Computer and
Communications Security, ser. CCS ’09. New York, NY, USA: Association for Computing
Machinery, 2009, p. 66–78. [Online]. Available: https://doi.org/10.1145/1653662.1653672

[162] V. Cortier and B. Warinschi, “Computationally sound, automated proofs for security
protocols,” in Programming Languages and Systems, M. Sagiv, Ed. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2005, pp. 157–171.

[163] V. Cortier, S. Kremer, and B. Warinschi, “A survey of symbolic methods in computational
analysis of cryptographic systems,” J. Autom. Reason., vol. 46, no. 3-4, pp. 225–259,
2011. [Online]. Available: https://doi.org/10.1007/s10817-010-9187-9

[164] B. Blanchet, “A computationally sound mechanized prover for security protocols,” IEEE
Transactions on Dependable and Secure Computing, vol. 5, no. 04, pp. 193–207, oct
2008.

[165] G. Barthe, B. Grégoire, and S. Zanella Béguelin, “Formal certification of code-based
cryptographic proofs,” in Proceedings of the 36th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, ser. POPL ’09. New York, NY,
USA: Association for Computing Machinery, 2009, p. 90–101. [Online]. Available:
https://doi.org/10.1145/1480881.1480894

[166] A. Petcher and G. Morrisett, “The foundational cryptography framework,” in POST 2015,
ser. LNCS, vol. 9036. Springer, 2015, pp. 53–72.

[167] D. A. Basin, A. Lochbihler, and S. R. Sefidgar, “CryptHOL: Game-based proofs in higher-
order logic,” Journal of Cryptology, pp. 1–73, 2020.

[168] G. Barthe, B. Grégoire, S. Heraud, and S. Z. Béguelin, “Computer-aided security proofs for
the working cryptographer,” in Proceedings of the 31st Annual Conference on Advances
in Cryptology, ser. CRYPTO’11. Berlin, Heidelberg: Springer-Verlag, 2011, p. 71–90.

[169] Y. Lindell, How to Simulate It – A Tutorial on the Simulation Proof Technique.
Cham: Springer International Publishing, 2017, pp. 277–346. [Online]. Available:
https://doi.org/10.1007/978-3-319-57048-8 6

[170] A. Datta, R. Küsters, J. C. Mitchell, and A. Ramanathan, “On the relationships between
notions of simulation-based security,” in Proceedings of the Second International
Conference on Theory of Cryptography, ser. TCC’05. Berlin, Heidelberg: Springer-Verlag,
2005, p. 476–494. [Online]. Available: https://doi.org/10.1007/978-3-540-30576-7 26

[171] M. Backes, B. Pfitzmann, and M. Waidner, “A universally composable cryptographic
library,” Cryptology ePrint Archive, Report 2003/015, 2003, https://eprint.iacr.org/2003/
015.

[172] R. Kusters, “Simulation-based security with inexhaustible interactive turing machines,”
in Proceedings of the 19th IEEE Workshop on Computer Security Foundations, ser.
CSFW ’06. USA: IEEE Computer Society, 2006, p. 309–320. [Online]. Available:

KA Formal Methods for Security | July 2021 Page 50

https://www.cybok.org
http://eprint.iacr.org/2005/181
http://eprint.iacr.org/2005/181
https://doi.org/10.1145/1653662.1653672
https://doi.org/10.1007/s10817-010-9187-9
https://doi.org/10.1145/1480881.1480894
https://doi.org/10.1007/978-3-319-57048-8_6
https://doi.org/10.1007/978-3-540-30576-7_26
https://eprint.iacr.org/2003/015
https://eprint.iacr.org/2003/015

The Cyber Security Body Of Knowledge
www.cybok.org

https://doi.org/10.1109/CSFW.2006.30
[173] A. Ramanathan, J. Mitchell, A. Scedrov, and V. Teague, “Probabilistic bisimulation and

equivalence for security analysis of network protocols,” in Foundations of Software
Science and Computation Structures, I. Walukiewicz, Ed. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2004, pp. 468–483.

[174] S. Delaune, S. Kremer, and O. Pereira, “Simulation based security in the applied pi
calculus,” in IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science, ser. Leibniz International Proceedings in Informatics
(LIPIcs), R. Kannan and K. N. Kumar, Eds., vol. 4. Dagstuhl, Germany: Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2009, pp. 169–180. [Online]. Available:
http://drops.dagstuhl.de/opus/volltexte/2009/2316

[175] C. Sprenger, M. Backes, D. Basin, B. Pfitzmann, and M. Waidner, “Cryptographically
sound theorem proving,” in 19th IEEE Computer Security Foundations Workshop, Venice,
Italy. IEEE Computer Society, July 2006, pp. 153–166.

[176] A. Lochbihler, S. R. Sefidgar, D. Basin, and U. Maurer, “Formalizing constructive cryptog-
raphy using CryptHOL,” in 2019 IEEE 32nd Computer Security Foundations Symposium
(CSF), June 2019, pp. 152–15 214.

[177] D. Butler, D. Aspinall, and A. Gascón, “How to simulate it in Isabelle: Towards formal proof
for secure multi-party computation,” in Interactive Theorem Proving, M. Ayala-Rincón
and C. A. Muñoz, Eds. Cham: Springer International Publishing, 2017, pp. 114–130.

[178] R. Canetti, A. Stoughton, and M. Varia, “EasyUC: Using EasyCrypt to mechanize proofs
of universally composable security,” in 2019 IEEE 32nd Computer Security Foundations
Symposium (CSF), 2019, pp. 167–16 716.

[179] A. Sabelfeld and A. C. Myers, “Language-based information-flow security,” IEEE
J.Sel. A. Commun., vol. 21, no. 1, p. 5–19, Sep. 2006. [Online]. Available:
https://doi.org/10.1109/JSAC.2002.806121

[180] A. C. Myers and B. Liskov, “Protecting privacy using the decentralized label model,” ACM
Trans. Softw. Eng. Methodol., vol. 9, no. 4, p. 410–442, Oct. 2000. [Online]. Available:
https://doi.org/10.1145/363516.363526

[181] M. Eilers, P. Müller, and S. Hitz, “Modular product programs,” ACM Trans. Program. Lang.
Syst., vol. 42, no. 1, Nov. 2019. [Online]. Available: https://doi.org/10.1145/3324783

[182] J.-K. Zinzindohoué, K. Bhargavan, J. Protzenko, and B. Beurdouche, “HACL*: A
verified modern cryptographic library,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’17. New York, NY,
USA: Association for Computing Machinery, 2017, p. 1789–1806. [Online]. Available:
https://doi.org/10.1145/3133956.3134043

[183] A. Chlipala, “Mostly-automated verification of low-level programs in computational
separation logic,” in Proceedings of the 32nd ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI ’11. New York, NY,
USA: Association for Computing Machinery, 2011, p. 234–245. [Online]. Available:
https://doi.org/10.1145/1993498.1993526

[184] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe, K. En-
gelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood, “seL4: formal
verification of an OS kernel,” in Symposium on Operating Systems Principles (SOSP), J. N.
Matthews and T. E. Anderson, Eds. ACM, 2009, pp. 207–220.

[185] W. R. Bevier, W. A. H. Jr., J. S. Moore, and W. D. Young, “An approach to systems
verification,” J. Autom. Reason., vol. 5, no. 4, pp. 411–428, 1989. [Online]. Available:
https://doi.org/10.1007/BF00243131

[186] H. Garavel and S. Graf, Formal Methods for Safe and Secure Computers Systems - BSI

KA Formal Methods for Security | July 2021 Page 51

https://www.cybok.org
https://doi.org/10.1109/CSFW.2006.30
http://drops.dagstuhl.de/opus/volltexte/2009/2316
https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.1145/363516.363526
https://doi.org/10.1145/3324783
https://doi.org/10.1145/3133956.3134043
https://doi.org/10.1145/1993498.1993526
https://doi.org/10.1007/BF00243131

The Cyber Security Body Of Knowledge
www.cybok.org

Study 875. BSI German Federal Office for Information Security, 2013.
[187] V. D’Silva, D. Kroening, and G. Weissenbacher, “A survey of automated techniques for

formal software verification,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 27, no. 7, pp. 1165–1178, 2008.

[188] S. Chong, J. Guttman, A. Datta, A. Myers, B. Pierce, P. Schaumont, T. Sherwood, and
N. Zeldovich, “Report on the NSF workshop on formal methods for security,” NSF, USA,
Tech. Rep., 2016.

[189] H. Bos, The Cyber Security Body of Knowledge. University of Bristol, 2021, ch. Operating
Systems & Virtualisation, version 1.0.1. [Online]. Available: https://www.cybok.org/

[190] D. E. Denning and P. J. Denning, “Certification of programs for secure information
flow,” Commun. ACM, vol. 20, no. 7, p. 504–513, Jul. 1977. [Online]. Available:
https://doi.org/10.1145/359636.359712

[191] D. Volpano, C. Irvine, and G. Smith, “A sound type system for secure flow analysis,” J.
Comput. Secur., vol. 4, no. 2–3, p. 167–187, Jan. 1996.

[192] G. Smith, “Principles of secure information flow analysis,” in Malware Detection,
M. Christodorescu, S. Jha, D. Maughan, D. Song, and C. Wang, Eds. Boston, MA:
Springer US, 2007, pp. 291–307.

[193] A. C. Myers and B. Liskov, “A decentralized model for information flow control,” in
Proceedings of the Sixteenth ACM Symposium on Operating Systems Principles, ser.
SOSP ’97. New York, NY, USA: Association for Computing Machinery, 1997, p. 129–142.
[Online]. Available: https://doi.org/10.1145/268998.266669

[194] V. Simonet, “Flow Caml in a nutshell,” in Proceedings of the first APPSEM-II workshop,
G. Hutton, Ed., Nottingham, United Kingdom, Mar. 2003, pp. 152–165.

[195] F. Pottier and V. Simonet, “Information flow inference for ML,” ACM Transactions on
Programming Languages and Systems, vol. 25, no. 1, pp. 117–158, Jan. 2003, ©ACM.

[196] R. Chapman and A. Hilton, “Enforcing security and safety models with an information
flow analysis tool,” in Proceedings of the 2004 Annual ACM SIGAda International
Conference on Ada: The Engineering of Correct and Reliable Software for Real-Time and
Distributed Systems Using Ada and Related Technologies, ser. SIGAda ’04. New York,
NY, USA: Association for Computing Machinery, 2004, p. 39–46. [Online]. Available:
https://doi.org/10.1145/1032297.1032305

[197] J.-F. Bergeretti and B. A. Carré, “Information-flow and data-flow analysis of while-
programs,” ACM Trans. Program. Lang. Syst., vol. 7, no. 1, p. 37–61, Jan. 1985. [Online].
Available: https://doi.org/10.1145/2363.2366

[198] D. Giffhorn and G. Snelting, “A new algorithm for low-deterministic security,” International
Journal of Information Security, no. 14, pp. 263––287, 2015.

[199] F. Pottier, “A simple view of type-secure information flow in the spl pi-calculus,” in
Proceedings 15th IEEE Computer Security Foundations Workshop. CSFW-15, 2002, pp.
320–330.

[200] G. Barthe, J. M. Crespo, and C. Kunz, “Beyond 2-safety: Asymmetric product programs
for relational program verification,” in Logical Foundations of Computer Science, S. Arte-
mov and A. Nerode, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp.
29–43.

[201] T. Terauchi and A. Aiken, “Secure information flow as a safety problem,” in
Proceedings of the 12th International Conference on Static Analysis, ser. SAS’05.
Berlin, Heidelberg: Springer-Verlag, 2005, p. 352–367. [Online]. Available: https:
//doi.org/10.1007/11547662 24

[202] R. Joshi and K. R. M. Leino, “A semantic approach to secure information flow,”
Sci. Comput. Program., vol. 37, no. 1–3, p. 113–138, May 2000. [Online]. Available:

KA Formal Methods for Security | July 2021 Page 52

https://www.cybok.org
https://www.cybok.org/
https://doi.org/10.1145/359636.359712
https://doi.org/10.1145/268998.266669
https://doi.org/10.1145/1032297.1032305
https://doi.org/10.1145/2363.2366
https://doi.org/10.1007/11547662_24
https://doi.org/10.1007/11547662_24

The Cyber Security Body Of Knowledge
www.cybok.org

https://doi.org/10.1016/S0167-6423(99)00024-6
[203] G. Barthe, P. R. D’Argenio, and T. Rezk, “Secure information flow by self-

composition,” in Proceedings. 17th IEEE Computer Security Foundations Workshop.
Los Alamitos, CA, USA: IEEE Computer Society, jun 2004, p. 100. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/CSFW.2004.1310735

[204] N. Benton, “Simple relational correctness proofs for static analyses and program
transformations,” SIGPLAN Not., vol. 39, no. 1, p. 14–25, Jan. 2004. [Online]. Available:
https://doi.org/10.1145/982962.964003

[205] G. Barthe, J. M. Crespo, and C. Kunz, “Relational verification using product programs,” in
Proceedings of the 17th International Conference on Formal Methods, ser. FM’11. Berlin,
Heidelberg: Springer-Verlag, 2011, p. 200–214.

[206] P. Müller, M. Schwerhoff, and A. J. Summers, “Viper: A verification infrastructure for
permission-based reasoning,” in Verification, Model Checking, and Abstract Interpre-
tation, B. Jobstmann and K. R. M. Leino, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2016, pp. 41–62.

[207] N. Swamy, C. Hritcu, C. Keller, A. Rastogi, A. Delignat-Lavaud, S. Forest, K. Bhargavan,
C. Fournet, P. Strub, M. Kohlweiss, J. K. Zinzindohoue, and S. Z. Béguelin, “Dependent
types and multi-monadic effects in F∗,” in Principles of Programming Languages (POPL),
R. Bodı́k and R. Majumdar, Eds. ACM, 2016, pp. 256–270.

[208] B. Bond, C. Hawblitzel, M. Kapritsos, K. R. M. Leino, J. R. Lorch, B. Parno, A. Rane, S. Setty,
and L. Thompson, “Vale: Verifying high-performance cryptographic assembly code,” in
Proceedings of the 26th USENIX Conference on Security Symposium, ser. SEC’17. USA:
USENIX Association, 2017, p. 917–934.

[209] K. R. M. Leino, “Dafny: An automatic program verifier for functional correctness,” in
Logic for Programming, Artificial Intelligence, and Reasoning (LPAR), ser. Lecture Notes
in Computer Science, E. M. Clarke and A. Voronkov, Eds., vol. 6355. Springer, 2010, pp.
348–370.

[210] J. B. Almeida, M. Barbosa, G. Barthe, A. Blot, B. Grégoire, V. Laporte, T. Oliveira,
H. Pacheco, B. Schmidt, and P.-Y. Strub, “Jasmin: High-assurance and high-
speed cryptography,” in Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’17. New York, NY, USA:
Association for Computing Machinery, 2017, p. 1807–1823. [Online]. Available:
https://doi.org/10.1145/3133956.3134078

[211] J. B. Almeida, M. Barbosa, G. Barthe, F. Dupressoir, and M. Emmi, “Verifying constant-
time implementations,” in 25th USENIX Security Symposium (USENIX Security 16).
Austin, TX: USENIX Association, Aug. 2016, pp. 53–70. [Online]. Available: https://www.
usenix.org/conference/usenixsecurity16/technical-sessions/presentation/almeida

[212] M. Patrignani, A. Ahmed, and D. Clarke, “Formal approaches to secure compilation: A
survey of fully abstract compilation and related work,” ACM Comput. Surv., vol. 51, no. 6,
Feb. 2019. [Online]. Available: https://doi.org/10.1145/3280984

[213] C. Abate, R. Blanco, D. Garg, C. Hritcu, M. Patrignani, and J. Thibault, “Journey
beyond full abstraction: Exploring robust property preservation for secure compilation,”
in 32nd IEEE Computer Security Foundations Symposium, CSF 2019, Hoboken, NJ,
USA, June 25-28, 2019. IEEE, 2019, pp. 256–271. [Online]. Available: https:
//doi.org/10.1109/CSF.2019.00025

[214] J. B. Jensen, N. Benton, and A. Kennedy, “High-level separation logic for low-level
code,” SIGPLAN Not., vol. 48, no. 1, p. 301–314, Jan. 2013. [Online]. Available:
https://doi.org/10.1145/2480359.2429105

[215] J. C. Reynolds, “Separation logic: a logic for shared mutable data structures,” in Pro-

KA Formal Methods for Security | July 2021 Page 53

https://www.cybok.org
https://doi.org/10.1016/S0167-6423(99)00024-6
https://doi.ieeecomputersociety.org/10.1109/CSFW.2004.1310735
https://doi.org/10.1145/982962.964003
https://doi.org/10.1145/3133956.3134078
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/almeida
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/almeida
https://doi.org/10.1145/3280984
https://doi.org/10.1109/CSF.2019.00025
https://doi.org/10.1109/CSF.2019.00025
https://doi.org/10.1145/2480359.2429105

The Cyber Security Body Of Knowledge
www.cybok.org

ceedings 17th Annual IEEE Symposium on Logic in Computer Science, 2002, pp. 55–74.
[216] A. Chlipala, “From network interface to multithreaded web applications: A case

study in modular program verification,” in Proceedings of the 42nd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, ser. POPL ’15.
New York, NY, USA: Association for Computing Machinery, 2015, p. 609–622. [Online].
Available: https://doi.org/10.1145/2676726.2677003

[217] P. Wang, S. Cuellar, and A. Chlipala, “Compiler verification meets cross-language linking
via data abstraction,” in Proceedings of the 2014 ACM International Conference on
Object Oriented Programming Systems Languages & Applications, OOPSLA 2014, part of
SPLASH 2014, Portland, OR, USA, October 20-24, 2014, A. P. Black and T. D. Millstein, Eds.
ACM, 2014, pp. 675–690. [Online]. Available: https://doi.org/10.1145/2660193.2660201

[218] C. Sprenger, T. Klenze, M. Eilers, F. A. Wolf, P. Müller, M. Clochard, and D. Basin,
“Igloo: Soundly linking compositional refinement and separation logic for distributed
system verification,” Proc. ACM Program. Lang., vol. 4, no. OOPSLA, Nov. 2020. [Online].
Available: https://doi.org/10.1145/3428220

[219] S. Maus, M. Moskal, and W. Schulte, “Vx86: x86 assembler simulated in c powered
by automated theorem proving,” in Algebraic Methodology and Software Technology,
J. Meseguer and G. Roşu, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp.
284–298.

[220] E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinenbach, M. Moskal, T. Santen, W. Schulte,
and S. Tobies, “VCC: A practical system for verifying concurrent C,” in Theorem Proving
in Higher Order Logics, S. Berghofer, T. Nipkow, C. Urban, and M. Wenzel, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, pp. 23–42.

[221] T. Murray, D. Matichuk, M. Brassil, P. Gammie, T. Bourke, S. Seefried, C. Lewis, X. Gao,
and G. Klein, “seL4: From general purpose to a proof of information flow enforcement,”
in 2013 IEEE Symposium on Security and Privacy, 2013, pp. 415–429.

[222] Y. Zhao, D. Sanán, F. Zhang, and Y. Liu, “High-assurance separation kernels: A
survey on formal methods,” CoRR, vol. abs/1701.01535, 2017. [Online]. Available:
http://arxiv.org/abs/1701.01535

[223] R. Gu, Z. Shao, H. Chen, X. N. Wu, J. Kim, V. Sjöberg, and D. Costanzo, “CertiKOS:
An extensible architecture for building certified concurrent OS kernels,” in Operating
Systems Design and Implementation (OSDI), K. Keeton and T. Roscoe, Eds. USENIX
Association, 2016, pp. 653–669.

[224] H. Mai, E. Pek, H. Xue, S. T. King, and P. Madhusudan, “Verifying security invariants
in ExpressOS,” SIGARCH Comput. Archit. News, vol. 41, no. 1, p. 293–304, Mar. 2013.
[Online]. Available: https://doi.org/10.1145/2490301.2451148

[225] X. Wang, D. Lazar, N. Zeldovich, A. Chlipala, and Z. Tatlock, “Jitk: A trustworthy in-kernel
interpreter infrastructure,” in Proceedings of the 11th USENIX Conference on Operating
Systems Design and Implementation, ser. OSDI’14. USA: USENIX Association, 2014, p.
33–47.

[226] X. Leroy, “Formal verification of a realistic compiler,” Commun. ACM, vol. 52, no. 7, p.
107–115, Jul. 2009. [Online]. Available: https://doi.org/10.1145/1538788.1538814

[227] H. Chen, D. Ziegler, T. Chajed, A. Chlipala, M. F. Kaashoek, and N. Zeldovich, “Using
crash hoare logic for certifying the FSCQ file system,” in Proceedings of the 25th
Symposium on Operating Systems Principles, SOSP 2015, Monterey, CA, USA, October
4-7, 2015, E. L. Miller and S. Hand, Eds. ACM, 2015, pp. 18–37. [Online]. Available:
https://doi.org/10.1145/2815400.2815402

[228] S. Amani, A. Hixon, Z. Chen, C. Rizkallah, P. Chubb, L. O’Connor, J. Beeren, Y. Nagashima,
J. Lim, T. Sewell, J. Tuong, G. Keller, T. Murray, G. Klein, and G. Heiser, “Cogent: Verifying

KA Formal Methods for Security | July 2021 Page 54

https://www.cybok.org
https://doi.org/10.1145/2676726.2677003
https://doi.org/10.1145/2660193.2660201
https://doi.org/10.1145/3428220
http://arxiv.org/abs/1701.01535
https://doi.org/10.1145/2490301.2451148
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/2815400.2815402

The Cyber Security Body Of Knowledge
www.cybok.org

high-assurance file system implementations,” SIGPLAN Not., vol. 51, no. 4, p. 175–188,
Mar. 2016. [Online]. Available: https://doi.org/10.1145/2954679.2872404

[229] J. Yang and C. Hawblitzel, “Safe to the last instruction: Automated verification of
a type-safe operating system,” in Proceedings of the 31st ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI ’10. New York,
NY, USA: Association for Computing Machinery, 2010, p. 99–110. [Online]. Available:
https://doi.org/10.1145/1806596.1806610

[230] C. Hawblitzel, J. Howell, J. R. Lorch, A. Narayan, B. Parno, D. Zhang, and B. Zill, “Ironclad
apps: End-to-end security via automated full-system verification,” in Operating Systems
Design and Implementation (OSDI), J. Flinn and H. Levy, Eds. USENIX Association,
2014, pp. 165–181.

[231] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, Ú. Erlingsson, L. Lozano, and G. Pike,
“Enforcing forward-edge control-flow integrity in GCC & LLVM,” in 23rd USENIX Security
Symposium (USENIX Security 14). San Diego, CA: USENIX Association, Aug. 2014, pp.
941–955. [Online]. Available: https://www.usenix.org/conference/usenixsecurity14/
technical-sessions/presentation/tice

[232] J. Criswell, A. Lenharth, D. Dhurjati, and V. Adve, “Secure virtual architecture:
A safe execution environment for commodity operating systems,” SIGOPS Oper.
Syst. Rev., vol. 41, no. 6, p. 351–366, Oct. 2007. [Online]. Available: https:
//doi.org/10.1145/1323293.1294295

[233] J. Criswell, N. Dautenhahn, and V. Adve, “KCoFI: Complete control-flow integrity for
commodity operating system kernels,” in Proceedings of the 2014 IEEE Symposium
on Security and Privacy. USA: IEEE Computer Society, 2014. [Online]. Available:
https://doi.org/10.1109/SP.2014.26

[234] S. Fahl, The Cyber Security Body of Knowledge. University of Bristol, 2021, ch. Web &
Mobile Security, version 1.0.1. [Online]. Available: https://www.cybok.org/

[235] M. Bugliesi, S. Calzavara, and R. Focardi, “Formal methods for web security,” Journal of
Logical and Algebraic Methods in Programming, vol. 87, pp. 110 – 126, 2017. [Online].
Available: http://www.sciencedirect.com/science/article/pii/S2352220816301055

[236] A. Guha, C. Saftoiu, and S. Krishnamurthi, “The essence of JavaScript,” in ECOOP 2010
– Object-Oriented Programming, T. D’Hondt, Ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010, pp. 126–150.

[237] M. Bodin, A. Chargueraud, D. Filaretti, P. Gardner, S. Maffeis, D. Naudziuniene, A. Schmitt,
and G. Smith, “A trusted mechanised javascript specification,” in Proceedings of the
41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, ser.
POPL ’14. New York, NY, USA: Association for Computing Machinery, 2014, p. 87–100.
[Online]. Available: https://doi.org/10.1145/2535838.2535876

[238] C. Fournet, N. Swamy, J. Chen, P.-E. Dagand, P.-Y. Strub, and B. Livshits, “Fully abstract
compilation to JavaScript,” SIGPLAN Not., vol. 48, no. 1, p. 371–384, Jan. 2013. [Online].
Available: https://doi.org/10.1145/2480359.2429114

[239] D. Hedin, A. Birgisson, L. Bello, and A. Sabelfeld, “JSFlow: Tracking information flow in
javascript and its APIs,” in Proceedings of the 29th Annual ACM Symposium on Applied
Computing, ser. SAC ’14. New York, NY, USA: Association for Computing Machinery,
2014, p. 1663–1671. [Online]. Available: https://doi.org/10.1145/2554850.2554909

[240] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman, D. Gohman,
L. Wagner, A. Zakai, and J. Bastien, “Bringing the web up to speed with
WebAssembly,” SIGPLAN Not., vol. 52, no. 6, p. 185–200, Jun. 2017. [Online]. Available:
https://doi.org/10.1145/3140587.3062363

[241] C. Watt, J. Renner, N. Popescu, S. Cauligi, and D. Stefan, “CT-Wasm: Type-driven secure

KA Formal Methods for Security | July 2021 Page 55

https://www.cybok.org
https://doi.org/10.1145/2954679.2872404
https://doi.org/10.1145/1806596.1806610
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/tice
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/tice
https://doi.org/10.1145/1323293.1294295
https://doi.org/10.1145/1323293.1294295
https://doi.org/10.1109/SP.2014.26
https://www.cybok.org/
http://www.sciencedirect.com/science/article/pii/S2352220816301055
https://doi.org/10.1145/2535838.2535876
https://doi.org/10.1145/2480359.2429114
https://doi.org/10.1145/2554850.2554909
https://doi.org/10.1145/3140587.3062363

The Cyber Security Body Of Knowledge
www.cybok.org

cryptography for the web ecosystem,” Proc. ACM Program. Lang., vol. 3, no. POPL, Jan.
2019. [Online]. Available: https://doi.org/10.1145/3290390

[242] A. Bohannon and B. C. Pierce, “Featherweight Firefox: Formalizing the core of a
web browser,” in USENIX Conference on Web Application Development (WebApps 10).
USENIX Association, Jun. 2010. [Online]. Available: https://www.usenix.org/conference/
webapps-10/featherweight-firefox-formalizing-core-web-browser

[243] A. Armando, R. Carbone, L. Compagna, J. Cuéllar, and L. Tobarra, “Formal analysis
of SAML 2.0 web browser single sign-on: breaking the SAML-based single sign-on
for Google apps,” in Proceedings of the 6th ACM Workshop on Formal Methods in
Security Engineering, FMSE 2008, Alexandria, VA, USA, October 27, 2008, V. Shmatikov,
Ed. ACM, 2008, pp. 1–10. [Online]. Available: https://doi.org/10.1145/1456396.1456397

[244] D. Akhawe, A. Barth, P. E. Lam, J. Mitchell, and D. Song, “Towards a formal foundation of
web security,” in 2010 23rd IEEE Computer Security Foundations Symposium, 2010, pp.
290–304.

[245] D. Fett, R. Küsters, and G. Schmitz, “An expressive model for the web infrastructure:
Definition and application to the browser ID SSO system,” in 2014 IEEE Symposium on
Security and Privacy, 2014, pp. 673–688.

[246] B. C. Pierce, “The science of deep specification (keynote),” in Companion Proceedings of
the 2016 ACMSIGPLAN International Conference on Systems, Programming, Languages
and Applications: Software for Humanity, SPLASH 2016, Amsterdam, Netherlands,
October 30 - November 4, 2016, E. Visser, Ed. ACM, 2016, p. 1. [Online]. Available:
https://doi.org/10.1145/2984043.2998388

[247] A. Erbsen, J. Philipoom, J. Gross, R. Sloan, and A. Chlipala, “Simple high-level code for
cryptographic arithmetic - with proofs, without compromises,” in 2019 IEEE Symposium
on Security and Privacy (SP), 2019, pp. 1202–1219.

[248] W. Mansky, A. W. Appel, and A. Nogin, “A verified messaging system,” PACMPL, vol. 1,
no. OOPSLA, pp. 87:1–87:28, 2017. [Online]. Available: https://doi.org/10.1145/3133911

[249] N. Koh, Y. Li, Y. Li, L. Xia, L. Beringer, W. Honoré, W. Mansky, B. C. Pierce, and
S. Zdancewic, “From C to interaction trees: specifying, verifying, and testing a
networked server,” in Proceedings of the 8th ACM SIGPLAN International Conference
on Certified Programs and Proofs, CPP 2019, Cascais, Portugal, January 14-15, 2019,
A. Mahboubi and M. O. Myreen, Eds. ACM, 2019, pp. 234–248. [Online]. Available:
https://doi.org/10.1145/3293880.3294106

[250] Q. Cao, L. Beringer, S. Gruetter, J. Dodds, and A. W. Appel, “VST-Floyd: A separation
logic tool to verify correctness of C programs,” J. Autom. Reasoning, vol. 61, no. 1-4, pp.
367–422, 2018. [Online]. Available: https://doi.org/10.1007/s10817-018-9457-5

[251] C. Cotrini, T. Weghorn, D. Basin, and M. Clavel, “Analyzing first-order role based access
control,” in Computer Security Foundations Symposium (CSF), 2015 IEEE 28th. IEEE,
2015, pp. 3–17.

[252] K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and M. C. Tschantz, “Verification
and change-impact analysis of access-control policies,” in Proceedings of the 27th
International Conference on Software Engineering, ser. ICSE ’05. New York, NY,
USA: Association for Computing Machinery, 2005, p. 196–205. [Online]. Available:
https://doi.org/10.1145/1062455.1062502

[253] N. Zhang, M. Ryan, and D. P. Guelev, “Synthesising verified access control systems
in XACML,” in Proceedings of the 2004 ACM Workshop on Formal Methods in Security
Engineering, ser. FMSE ’04. New York, NY, USA: Association for Computing Machinery,
2004, p. 56–65. [Online]. Available: https://doi.org/10.1145/1029133.1029141

[254] D. Gollmann, The Cyber Security Body of Knowledge. University of Bristol, 2021,

KA Formal Methods for Security | July 2021 Page 56

https://www.cybok.org
https://doi.org/10.1145/3290390
https://www.usenix.org/conference/webapps-10/featherweight-firefox-formalizing-core-web-browser
https://www.usenix.org/conference/webapps-10/featherweight-firefox-formalizing-core-web-browser
https://doi.org/10.1145/1456396.1456397
https://doi.org/10.1145/2984043.2998388
https://doi.org/10.1145/3133911
https://doi.org/10.1145/3293880.3294106
https://doi.org/10.1007/s10817-018-9457-5
https://doi.org/10.1145/1062455.1062502
https://doi.org/10.1145/1029133.1029141

The Cyber Security Body Of Knowledge
www.cybok.org

ch. Authentication, Authorisation & Accountability, version 1.0.2. [Online]. Available:
https://www.cybok.org/

[255] N. Li and M. V. Tripunitara, “Security analysis in role-based access control,” ACM
Trans. Inf. Syst. Secur., vol. 9, no. 4, p. 391–420, Nov. 2006. [Online]. Available:
https://doi.org/10.1145/1187441.1187442

[256] S. Jha, N. Li, M. Tripunitara, Q. Wang, and W. Winsborough, “Towards formal verification
of role-based access control policies,” IEEE Transactions on Dependable and Secure
Computing, vol. 5, no. 4, pp. 242–255, 2008.

[257] T. Nelson, C. Barratt, D. J. Dougherty, K. Fisler, and S. Krishnamurthi, “The Margrave
tool for firewall analysis,” in Proceedings of the 24th International Conference on Large
Installation System Administration, ser. LISA’10. USA: USENIX Association, 2010, p.
1–8.

[258] C. Bodei, P. Degano, L. Galletta, R. Focardi, M. Tempesta, and L. Veronese, “Language-
independent synthesis of firewall policies,” in 2018 IEEE European Symposium on Secu-
rity and Privacy (EuroS P), 2018, pp. 92–106.

[259] C. Bertolissi, D. R. dos Santos, and S. Ranise, “Automated synthesis of run-time
monitors to enforce authorization policies in business processes,” in Proceedings of
the 10th ACM Symposium on Information, Computer and Communications Security, ser.
ASIA CCS ’15. New York, NY, USA: Association for Computing Machinery, 2015, p.
297–308. [Online]. Available: https://doi.org/10.1145/2714576.2714633

[260] D. Basin, S. Burri, and G. Karjoth, “Dynamic enforcement of abstract separation
of duty constraints,” in 14th European Symposium on Research in Computer
Security (ESORICS), ser. 5789, M. Backes and P. N. (Eds.), Eds., vol. 5789. Saint
Malo, France: Springer-Verlag, 09 2009, pp. 250–267. [Online]. Available: http:
//www.springer.com/computer/security+and+cryptology/book/978-3-642-04443-4

ACRONYMS

ABAC Attribute-Based Access Control.

ACL2 A Computational Logic for Applicative Common Lisp.

AJAX Asynchronous JavaScript And XML.

API Application Programming Interface.

CCA Chosen Ciphertext Attack.

CCS Calculus of Communicating Systems.

CFI Control-Flow Integrity.

CSL Continuous Stochastic Logic.

CSP Communicating Sequential Processes.

CTL Computational Tree Logic.

CVC Cooperating Validity Checker.

DNS Domain Name System.

DOM Document Object Model.

KA Formal Methods for Security | July 2021 Page 57

https://www.cybok.org
https://www.cybok.org/
https://doi.org/10.1145/1187441.1187442
https://doi.org/10.1145/2714576.2714633
http://www.springer.com/computer/security+and+cryptology/book/978-3-642-04443-4
http://www.springer.com/computer/security+and+cryptology/book/978-3-642-04443-4

The Cyber Security Body Of Knowledge
www.cybok.org

EAL Evaluation Assurance Level.

FCF Foundational Cryptography Framework.

FDH Full Domain Hash.

FDR Failures-Divergences Refinement.

FORBAC First-Order Role-Based Access Control.

FPGA Field Programmable Gate Array.

GCC GNU Compiler Collection.

HDL Hardware Description Language.

HOL Higher Order Logic.

HRU Harrison, Ruzzo, and Ullman model.

HTTP Hyper Text Transport Protocol.

IEC International Electrotechnical Commission.

IFC Information Flow Control.

IND Indistinguishable.

ISO International Organization for Standardization.

JIT Just-In-Time.

JOANA Java Object-sensitive ANAlysis.

KA Knowledge Area.

KISS Knowledge In Security protocolS.

LTL Linear Temporal Logic.

LTS Labelled Transition System.

MAC Message Authentication Code.

NAT Network Address Translation.

OAEP Optimized Asymmetric Encryption Padding.

OS Operating System.

PCTL Probabilistic Computation Tree Logic.

PIN Personal Identification Number.

PKCS Public Key Cryptography Standards.

KA Formal Methods for Security | July 2021 Page 58

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

PSPACE Polynomial Space.

RBAC Role-Based Access Control.

RSA Rivest-Shamir-Adleman.

RTL Register Transfer Level.

SAML Security Assertion Markup Language.

SAT Satisfiability.

SET Secure Electronic Transactions.

SMT Satisfiability Modulo Theories.

SQL Structured Query Language.

SSO Single Sign-On.

SVA Secure Virtual Architecture.

TAL Typed Assembly Language.

TLA Temporal Logic of Actions.

TLS Transport Layer Security.

VCC Verifying C Compiler.

VST Verified Software Toolchain.

XACML Extensible Access Control Markup Language.

XML Extensible Markup Language.

GLOSSARY

CyBOK Refers to the Cyber Security Body of Knowledge.

KA Formal Methods for Security | July 2021 Page 59

https://www.cybok.org

INDEX

2-safety hyperproperty, 8, 9
5G network, 19
64-bit, 32

AAMP7G, 17
abstraction, 3, 4, 6, 7, 13–15, 17, 21, 22, 25, 34–

36
access control, 3, 5, 28, 29, 38, 39
access control matrix, 38
access control policy, 38, 39
access pattern, 31
ACL2, 11, 17, 37
active adversary, 14, 20
Ada, 29
adversarial environment, 3
adversary model, 5, 6, 23
Alloy, 36
Amazon, 4, 15
anonymity, 3, 11, 24
ANSI-C, 17
application programming interface, 15, 19
applied pi calculus, 11, 22, 23
artifact analysis, 4, 13
assembler, 6, 31–33, 37, 39
assembly code, 6, 31, 32, 35, 37
assembly program, 6
atomic action, 7
attacker capabilities, 3, 5, 6, 25, 36
attacker model, 3
attribute-based access control, 38
authentication, 3, 8, 19, 21, 26, 27, 36
authentication protocol, 19, 27
authorisation, 4, 5, 8, 37–39
automata, 10, 13, 24
automated inductive reasoning, 17
automation, 11, 12, 18, 19, 21, 23, 26, 27, 30, 34,

35
axiomatic semantics, 5

back-end, 30
batch mode, 12
Bedrock project, 32
Biba model, 28
binary decision diagram, 13, 17, 39
bisimulation, 10, 11, 26
black box, 27

Boogie, 35
bootloader, 35
bounded model checking, 11, 13, 17
bounded reachability problem, 22
Boyer-Moore prover, 37
branch prediction, 17
browser plugin, 35
BrowserID, 36
buffer overflow, 4, 15, 34

C, 14, 33
C#, 35
cache, 18, 21, 31, 32
cache side-channel, 32
calculi, 5, 10, 27, 30
CCS, 10
CertiCrypt, 26
certificates, 37
CertiKOS, 34
Chaff, 13
change-impact analysis, 39
chosen ciphertext attack, 26
ciphertext, 20, 26, 27
clearance level, 9
co-processor, 19
code auditing, 15
code pointer, 31, 32, 34
Cogent, 34
combinational circuit, 17
command injection, 15
common criteria, 16, 17, 33
communication channel, 17
CompCert, 34
compiler, 6, 14, 15, 29, 31–35, 37
computational complexity, 12, 13
computational model, 25
computational soundness, 14, 25
computer science, 3
concurrency, 10, 11, 29
confidentiality, 3, 5, 28
constraint solving, 14, 22
constructive cryptography, 25, 27
constructive type theory, 12
continuous-time Markov chains, 24
contract signing protocol, 24
control-flow, 14, 18, 34, 35, 39

60

The Cyber Security Body Of Knowledge
www.cybok.org

control-flow graph, 14
Coq, 3, 12, 26, 32, 35, 37
correctness, 3, 5, 7, 12, 21, 22, 26, 27, 31–34,

37, 38
countermeasures, 18
Coverity’s Prevent, 14
credentials, 37
cross-origin resource sharing, 36
cross-site request forgery, 36
cross-site scripting, 15, 36
CryptHol, 26, 27
cryptographic assumption, 6, 26, 27, 31
cryptographic libraries, 15, 28, 31, 32
cryptographic primitives, 22, 31, 37
cryptographic protocols, 10, 15, 19, 31, 37
cryptography, 10, 14, 15, 17–20, 22, 24–28, 31,

32, 37
Cryptol, 32
CryptoVerif, 3, 26
CSP, 10, 14, 22, 40
CT-Verif, 32
Curve25519, 32
CVC4, 13

Dafny, 31, 32
dangling pointer, 31, 34
data declassification, 30
data separation, 33
data structure, 11, 13, 17, 31
decision procedure, 11–13, 17, 23, 24, 30
decompilation, 39
decryption key, 20
deep property, 5
DeepSpec, 37
denotational semantics, 5
deterministic algorithm, 9
diff-equivalence, 23
diff-term, 23
differential privacy, 25
Diffie-Hellman key exchange, 23, 32
discrete-time Markov chains, 24
distributed systems, 16, 28
division by zero, 14
DNS, 36
Dolev-Yao model, 20, 21
domain-specific, 32
driver, 32, 34, 35
dynamic analysis, 12, 15, 35

EasyCrypt, 3, 26, 27

education, 11
elliptic curve, 32
embedded devices, 33
encapsulation, 15
encryption, 8, 20, 26, 27, 31
end-to-end security, 28
entity authentication, 19, 21
entropy, 18
evaluation assurance level, 16, 17
execution trace, 10, 15
exploitation, 4
expressive logic, 11, 12
ExpressOS, 34

F#, 22
false-negative, 7, 14
false-positive, 7, 14–16
FAST, 23
FCF, 26
FDR, 3, 22
FDR2, 13, 22
file system, 5, 33, 34
finite automaton, 10
finitely falsifiable, 8
firewall, 39
firewall configuration, 39
firewall rule, 39
FireWall Synthesizer, 39
firmware, 15
first-order logic, 11, 13, 22, 36, 38
floating-point arithmetic, 13
Flow Caml, 29
FORBAC, 38
forensic analysis, 5
formal language, 3, 34
formal methods, 3–8, 10, 11, 13, 15, 16, 18–20,

25, 27, 33–37
formal proof, 6, 32
formal security analysis, 3, 4
forward secrecy, 21
FPGA, 32
FSCQ, 34
full domain hash, 26
full stack verification, 6, 37
functional language, 31, 34

game hopping, 27
game-based proof, 25–27
garbage collection, 35
GCC, 35

KA Formal Methods for Security | July 2021 Page 61

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

genetic research, 19
Google, 4, 15, 36
Grammatech’s CodeSonar, 14
Grasp, 13
group communication, 24

HACL*, 31, 32
handshake, 21
hardware description language, 11, 17
hardware security, 16, 17
hardware verification, 16, 17
hash function, 20, 26, 31
higher-order logic, 11, 12, 20, 25, 26, 32, 34
Hoare logic, 27, 30, 34
HOL, 3, 12, 21, 26, 27, 32, 34
HOL-light, 12
Horn clause, 22
HRU model, 38
HTML5, 36
HTTP, 15, 36
HTTP response, 15
HTTP response splitting, 15
human interaction, 7, 14, 30
hyper-temporal logic, 9
HyperCTL, 24
hyperliveness, 9
HyperLTL, 9, 24
hyperproperties, 5, 8, 9, 12, 14, 16, 23, 24, 28,

30
hypersafety, 9
hypervisor, 15, 34

I/O, 27, 33
identity provider, 36
IEC, 19, 33
Igloo project, 32
imperative programming, 4, 5, 30, 32
indistinguishable encryption, 10, 26
inference procedure, 12
infinite loop, 8
information flow, 3, 4, 8, 12, 17, 28–31, 33–35
information flow control, 12, 28, 29, 33–35
information leakage, 17–20, 29, 31, 38
information-theoretic security, 18, 31
infrastructure, 34, 36
injection attack, 14, 27
input validation, 15
integrity, 3, 5, 28, 29, 34, 35
inter-procedural analysis, 14
interactive verification, 5

intermediate representation, 18
intractability, 14
Ironclad, 35
Isabelle, 3, 12, 21, 26, 27, 32, 34
ISO, 19, 33
isolation, 33
iterative process, 14

Jasmin, 31, 32
Java, 16, 29, 30
Java bytecode, 29
JavaScript, 35
Jif, 29
Jitk, 34
JOANA, 29
just-in-time, 34

KCoFI, 35
Kerberos, 21, 26, 36
kernel, 12, 17, 33, 34, 37
key agreement, 20, 26
key establishment, 21
key exchange, 21, 32
key-server, 20
KISS, 23
Kripke structure, 9, 10

labelled Kripke structure, 10
labelled transition system, 10, 11
latency, 32
linear algebra, 24
linear temporal logic, 7, 9, 13, 24, 30
LINT, 14
Lisp, 11, 37
liveness properties, 8, 20
LLVM, 35
load-bypassing, 17
load-forwarding, 17
logical expressions, 3
logical theory, 11
Longley-Rigby search tool, 22
low-security observational determinism, 29

machine code, 18
management, 38
manipulation, 15, 20, 25, 31, 32
Margrave, 39
Markov chains, 24
Markov decision processes, 24
mathematical object, 5
mathematics, 3, 5, 6, 12, 14, 18

KA Formal Methods for Security | July 2021 Page 62

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

Maude-NPA, 23
memory access, 31, 32
memory cell, 23
memory corruption, 14, 27, 33
memory errors, 31
memory safety, 31–35
message authentication code, 31
methodology, 32
Micro Focus’ Fortify tool, 14
micro-architecture, 18
microcode, 17
microkernel, 12, 17, 33, 34
microprocessor, 17, 37
Microsoft, 4, 33, 34
middleware, 37
Millen’s Interrogator, 22
Milner’s pi calculus, 10
MiniSAT, 13
misconfiguration, 38
mobile security, 35
model checking, 11, 13–17, 19, 22–25, 30, 38,

40
monotonic, 14
MonPoly, 16
multi-party computation, 27
mutable state, 30

NaCL library, 31
NASA, 16
Needham-Schroeder protocol, 19
network address translation, 39
network traffic, 20
non-interference properties, 8, 9, 17, 25, 28, 29,

32
non-repudiation, 24
NQTHM, 37
NRL protocol analyzer, 22
NuSMV, 13

OAEP, 26
OASIS Security Assertion Markup Language,

36
observational determinism, 9, 29
observational equivalence, 10, 13, 22, 23
OCaml, 35
Operating System, 6, 28, 32–35, 37
operational semantics, 5, 11, 12, 20, 31, 36, 40
oracle, 26
out-of-order execution, 18

parallelism, 20, 22

partial-order reduction, 13
passwords, 17
path manipulation, 15
pattern-matching, 15
pay-TV systems, 19
Peano arithmetic, 11
peer-to-peer system, 24
perfect forward secrecy, 21
Petri net, 10
physical access, 5
pi calculus, 10, 11, 22, 23, 26
PIN, 7
plaintext, 20
policies, 6, 16, 19, 28, 29, 36–39
policy language, 38, 39
polynomial time, 25
post-condition, 30, 31, 33, 37
power consumption, 31
pre-condition, 30, 31, 33, 37
predicate abstraction, 13, 34
predicate symbol, 13
primitive recursive arithmetic, 11
PRISM, 3, 14, 24
privacy, 11, 22–25
probabilistic algorithm, 13, 24–27
probabilistic computation tree logic, 24
probabilistic hyper logic, 24
probability, 24, 26, 29
probability distribution, 26
process calculi, 5, 10, 13, 22, 25, 27
process graph, 10
process theory, 10
process-algebraic notion, 26
processes, 7, 10, 11, 13, 20, 22–26
program termination, 7, 23
programming language, 11–13, 29–31, 33–35,

39
programming logic, 12, 27
propositional logic, 11, 13, 22
propositional temporal logic, 11
Protocols for Entity Authentication, 19
provable security, 25
ProVerif, 3, 10, 22, 23
PSPACE, 38
public key cryptography, 19, 25
Public Key Cryptography Standards, 19
Python, 30

quality assurance, 7

KA Formal Methods for Security | July 2021 Page 63

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

race condition, 27
reachability, 22
reachable states, 7, 11
register transfer level, 17, 37
relational logic, 30
replay cache, 21
resource partitioning, 17, 34
resource usage, 4
response time, 8
return-oriented programming, 35
reverse engineering, 19
Rice’s theorem, 7
role-based access control, 38
RSA, 19
runtime, 6, 8, 14–16, 35, 39
runtime exception, 14
runtime monitoring, 8, 16, 39
runtime verification, 6, 15, 16
Rust, 30

safety, 7–10, 13, 16, 20, 30, 34, 35, 38
safety analysis, 38
safety properties, 7, 8, 10, 13, 16, 20, 30, 38
satisfiability modulo theories, 11, 13, 27, 30–32,

35, 38, 39
satisfiability problem, 13, 22, 32
satisfiability solver, 3, 13, 22
SATMC, 22, 36
scalability, 12, 16, 33
science of security, 5, 6
scripting language, 36
Secure Electronic Transactions, 21
security argument, 5, 25, 26
security bug, 4, 5, 14, 15, 33, 35, 36
security goal, 21, 27
security mechanism, 28, 36
security monitoring, 8, 15, 16, 39
security policies, 16, 19, 28, 36
security proof, 12, 25, 27
security properties, 3, 5, 6, 8, 12, 13, 22, 31, 32,

38
security rationale, 6
security requirements, 6, 33
seL4 microkernel, 12, 33
semantics, 3, 5, 11, 12, 17, 20, 26, 31, 32, 34–37,

40
separation logic, 30, 32, 33, 37
separation of duty, 39
session key, 21
set inclusion, 7

set theory, 15
side-channel analysis, 4, 8, 18
side-channel vulnerability, 8, 17–19, 30–32, 36
signature scheme, 26
simple power analysis, 17
simulation, 3, 6, 10, 17, 25, 27
simulation-based proof, 25, 27
single sign-on, 36
SLAM, 34
software defined networking, 24
software library, 15, 19, 28, 31, 32, 34
software security, 3
source code, 14, 34
SPARK, 29
specification, 3–6, 10, 11, 13–15, 21–24, 30–34,

36, 38–40
specification language, 11, 13, 23, 24, 32
speculative execution, 17
SPIN, 3, 13
SQL injection, 15
stakeholder, 6
standardisation, 19
state space, 13, 22
state-action pair, 7
state-transition system, 9
static analysis, 5, 12–16, 29, 32
supercomputer, 33
SVA, 35
symbolic execution, 13, 17, 30
symmetric cryptography, 20
symmetric encryption, 20, 26
syntax-tree, 15
system administrators, 39
system heap, 30
system stack, 3, 6, 37

taint analysis, 15
Tamarin, 3, 22, 23
temporal logic, 7, 9, 11, 13, 15, 16, 24, 30
temporal separation, 33
test and fix, 4
test vector, 31
textbook, 3, 12
theorem-proving software, 3, 5, 8, 11, 12, 14, 17,

21, 37
timed trace, 8, 30
timing side-channel, 8, 17, 31, 36
TLA+, 15
trace property, 5, 7, 27
transistor, 17

KA Formal Methods for Security | July 2021 Page 64

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

transition system, 9–11, 13, 20, 24, 30, 40
Transport Layer Security, 19, 21
trusted third party, 24
Turing complete language, 7
Turing machine, 25, 27
type checking, 14, 15, 31
type error, 14
typed assembly language, 35

ubiquitous, 33, 38
undecidability, 4, 14, 22
Universal Composability Framework, 25
unlinkability, 11
unused variable, 15
usability, 33
utility meter, 19

Vale, 31, 32
Verified Software Toolchain, 37
Verifying C Compiler, 33
Verilog, 17
Verve, 34, 35
VHDL, 17
Viper verification framework, 30, 32
virtual memory, 18
vulnerabilities, 3, 4, 12, 14, 15, 33, 34
vulnerability detection, 12
Vx86, 33

warranty, 37
web browser, 35, 36
web page, 35
web security, 35
WebAssembly, 36
witness, 8, 15, 16
workflow, 15, 39

x86 architecture, 32–35
XACML, 39
XML, 15
XML validation, 15

YAPA, 23
Yices, 13

Z3, 3, 13, 32, 33, 35, 39

KA Formal Methods for Security | July 2021 Page 65

https://www.cybok.org

	1 Motivation
	1.1 Inadequacy of Traditional Development Methods
	1.2 Towards More Scientific Development Methods
	1.3 Limitations

	2 Foundations, Methods, and Tools
	2.1 Properties of Systems and Their Executions
	2.1.1 Trace Properties
	2.1.2 Hyperproperties
	2.1.3 Relations on Systems

	2.2 Logics and Specification Languages
	2.3 Property Checking
	2.3.1 Interactive Theorem Proving
	2.3.2 Decision Procedures
	2.3.3 Static Analysis
	2.3.4 Dynamic Analysis

	3 Hardware
	3.1 Hardware Verification
	3.2 Side-Channels
	3.3 API Attacks on Security Hardware

	4 Cryptographic Protocols
	4.1 Symbolic Methods
	4.1.1 Theorem Proving
	4.1.2 Model Checking Trace Properties
	4.1.3 Model Checking Non-trace Properties

	4.2 Stochastic Methods
	4.3 Computational Methods
	4.3.1 Game-based Proofs
	4.3.2 Simulation-based Proofs

	5 Software and Large-Scale Systems
	5.1 Information Flow Control
	5.1.1 Static Analysis and Typing
	5.1.2 Self-composition and Product Programs

	5.2 Cryptographic Libraries
	5.3 Low-level Code
	5.4 Operating Systems
	5.4.1 Functional Correctness of Kernel Components
	5.4.2 Absence of Bug Classes

	5.5 Web-based Applications
	5.5.1 Web Programming
	5.5.2 Web Components
	5.5.3 Component Interaction

	5.6 Full-stack Verification

	6 Configuration
	6.1 Policy Analysis
	6.2 Specification-based Synthesis

