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INTRODUCTION
Hardware security covers a broad range of topics from trusted computing to Trojan circuits.To classify these topics we follow the different hardware abstraction layers as introducedby the Y-chart of Gajski & Kuhn. The different layers of the hardware design process will beintroduced in section 1. It is linked with the important concept of a root of trust and associ-ated threat models in the context of hardware security. Next follows section 2 on measuringand evaluating hardware security. The next sections gradually reduce the abstraction level.Section 3 describes secure platforms, i.e. a complete system or system-on-chip as trustedcomputing base. Next section 4 covers hardware support for software security: what fea-tures should a programmable processor include to support software security. This sectionis closely related to the Software Security CyBOK Knowledge Area [1]. Register transfer levelis the next abstraction level down, covered in section 5. Focus at this level is typically the effi-cient and secure implementation of cryptographic algorithms so that they can be mapped onASIC or FPGA. This section is closely related to the Cryptography CyBOK Knowledge Area [2].All implementations also need protection against physical attacks, most importantly againstside-channel and fault attacks. Physical attacks and countermeasures are described in sec-tion 6. Section 7 describes entropy sources at the lowest abstraction level, close to CMOStechnology. It includes the design of random numbers generators and physically unclonablefunctions. The last technical section describes aspects related to the hardware design pro-cess itself. This chapter ends with the conclusion and an outlook on hardware security.
1 HARDWARE DESIGN CYCLE AND ITS LINK TO
HARDWARE SECURITY
Hardware security is a very broad topic and many topics fall under its umbrella. In this section,these seemingly unrelated topics are grouped and ordered according to the design levels ofabstraction as introduced by the Y-chart of Gajski & Kuhn [3]. While Gajski & Kuhn propose ageneral approach to hardware design, in this chapter it is applied to the security aspects ofhardware design and it is linked to threat models and the associated root of trust.
1.1 Short background on the hardware design process

Design abstraction layers are introduced in hardware design to reduce the complexity of thedesign. As indicated in 1, the lowest abstraction level a designer considers are individualtransistors at the center of the figure. These transistors are composed together to formbasic logic gates, such as NAND, NOR gates or flip-flops, called the logic level. Going oneabstraction layer up, at register transfer level gates are grouped together to form modules,registers, ALU’s, etc, and their operation is synchronized by a clock. These modules are thencomposed to form processors, specified by instruction sets, upon which applications andalgorithms can be implemented.
By going up in the abstraction layers, details of underlying layers are hidden. This reducesdesign complexity at higher abstraction layers. The abstraction layers are represented byconcentric circles in figure 1. Upon these circles, the Y-chart of Gajski & Kuhn introduces 3design activities, represented by three axes: a behavioral axis, describing the behavior orwhat
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Figure 1: Gajski-Kuhn Y-chart
needs to be implemented (aka specifications), a structural axis describing how something isimplemented and a physical axis, how the layouts are composed together at gate, module,chip, board level. An actual design activity is a ‘walk’ through this design space. Typicallyone starts with the specifications at the top of the behavioral domain. These specifications(=what) are decomposed in components at the same level of abstraction (=how) movingfrom the behavioral axis to the structural axis. A structural component at one abstractionlevel becomes a behavioral component at one level down.
As an example of a walk through the design space: Assume a hardware designer is requestedto implement a light-weight, low power security protocol for an Internet of Things (IoT) de-vice. This designer will only receive specifications on what needs to be designed: a securityprotocol aims at providing confidentiality and integrity (= what) and a set of cryptographicalgorithms (= components) to support the protocol. The crypto-algorithms are provided as abehavioral specification to the hardware designer, who has the choice of implementing it asa dedicated co-processor, as an assembly program, or support it with a set of custom instruc-tions. Depending on costs and volumes, a choice of a target CMOS technology or an FPGAplatform is made. This behavioral level will be translated into a more detailed register-transferlevel description (e.g. VHDL or Verilog). At the Register Transfer Level (RTL), decisions needto be made if this will be a parallel or sequential version, a dedicated or programmable design,with or without countermeasures against side-channel and fault attacks, etc.
Essential for the division in design abstraction layers, is the creation of models on how com-ponents behave. E.g. to simulate the throughput or energy consumption of a arithmetic unit,quality models of the underlying gates need to be available. Similarly, the Instruction SetArchitecture is a model of a processor available to the programmer.
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1.2 Root of trust
In the context of security, a root of trust is a model of an underlying component for the pur-pose of security evaluation. According to Anderson [4]: ”A root of trust is a component usedto realize a security function, upon which a designer relies but of which the trustworthinesscan not be explicitly verified.” The designer uses one or multiple components to construct asecurity function, which then defines the trusted computing base. It is defined by the trustedcomputing group as follows: “An entity can be trusted if it always behaves in the expected
manner for the intended purpose.” [5].
E.g. for an application developer, a Trusted Platform Module (TPM) or a Subscriber Identi-fication Module (SIM) are a root of trust which the developer uses to construct a securityapplication. For the TPM designer, the TPM is composition of smaller components whichare composed together to provide security functionality. At the lowest hardware abstractionlayers, basic roots of trust are the secure storage of the key in memory or the quality of theTrue Random Number Generator.
Hardware security is used as an enabler for software and system security. For this reason,hardware provides basic security services such as secure storage, isolation or attestation.The software or system considers the hardware as the trusted computing base. And thusfrom a systems or application view point, hardware has to behave as a trusted component.However, the hardware implementation can violate the trust assumption. E.g. Trojan circuitsor side-channel attacks could leak the key or other sensitive data to an attacker. Hence, hard-ware itself also needs security. Moreover hardware needs security at all abstraction layers.Therefore, at every abstraction layer, a threat model and associated trust assumptions needto be made. An alternative definition for a root of trust in the context of design abstractionlayers is therefore: “A root of trust is a component at a lower abstraction layer, upon whichthe system relies for its security. Its trustworthiness can either not be verified, or it is verifiedat a lower hardware design abstraction layer. ”
1.3 Threat model

A threat model is associated with each root of trust. When using a root of trust, it is assumedthat the threat model is not violated. This means that the threat model is also linked to thehardware abstraction layers. If we consider a root of trust at a particular abstraction layer,then all components that constitute this root of trust, are also considered trusted.
Example 1: security protocols assume that the secret key is securely stored and not acces-sible to the attacker. The root of trust, upon which the protocol relies, is the availability ofsecure memory to guard this key. For the protocol designer, this secure memory is a blackbox. The hardware designer has to decompose this requirement for a secure memory into aset of requirements at a lower abstraction layer. What type of memory will be used? On whichbusses will the key travel? Which other hardware components or software have access tothe storage? Can there be side-channel leaks?
Example 2: It is during this translation of higher abstraction layer requirements from protocolor security application developers into lower abstraction layers for the hardware designersthat many security vulnerabilities occur. Implementations of cryptographic algorithms usedto be considered black boxes to the attacker: only inputs/outputs at the algorithm level areavailable to mount mostly mathematical cryptanalysis attacks. However, with the appear-ance of side-channel attacks (see section 6) this black box assumption no longer holds. Tak-ing side-channel leakage into account the attacker has the algorithm level information as well
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as the extra timing, power, electro-magnetic information as observable from the outside ofthe chip. Thus the attacker model moves from black box to gray box. It is still assumed thatthe attacker does not know the details of the internals, e.g. the contents of the key registers.
Example 3: for programmable processors, the model between hardware and software is tra-ditionally considered the Instruction Set Architecture (ISA). The ISA is what is visible to thesoftware programmer and the implementation of the ISA is left to the hardware designer. TheISA used to be considered the trust boundary for the software designer. Yet, with the discov-ery of micro-architectural side-channel attacks, such as Spectre, Meltdown, Foreshadow, thisISA model is no longer a black box, as also micro-architectural information and leakage areavailable to the attacker [6].
1.4 Root of trust, threat model and hardware design abstraction layers

The decomposition in abstraction layers, in combination with Electronic Design Automation(EDA) tools, is one of the main reasons that the exponential growth of Moore’s law was sus-tainable in the past decades and it still is. This approach works well when optimizing forperformance, area, energy or power consumption. Yet for hardware security, no such gen-eral decomposition exists.
In this chapter, we propose to organise the different hardware security topics, their associ-ated threat models and root of trust according to the hardware design abstraction layers, asthere is no known other general body of knowledge available to organize the topics. Thisorganization has the advantage that it can be used to identify the state of the art on dif-ferent subtopics of hardware security. As an example, in the specific context of hardwareimplementations of cryptographic algorithms, the state of the art is well advanced and ro-bust countermeasures exist to protect cryptographic implementations against a wide rangeof side-channel attacks, as shown in detail in section 5. Yet in the context of general proces-sor security, e.g. to isolate process related data or to provide secure execution, new securityhazards continue to be discovered on a regular basis.
In an attempt to order the topics, table 1 summarizes this organization. The different ab-straction layers are identified (first column) from a hardware perspective. The highest level(system and software) sits on top of the hardware platform. E.g. a system designer assumesthat a secure platform is available. Thus the secure platform is the root of trust, providingsecurity functionality. The second column describes the functionality provided by the root oftrust. The third column describes how this functionality might be implemented. E.g. at thehighest abstraction layer this might be by providing a Trusted Execution Module or a secureelement, etc. The fourth column describes the threat models and attack categories at thatabstraction layer. E.g. at system level, the system designer assumes that they will receive amodule that provides isolation, integrity, attestation, etc. The last column describes typicaldesign activities at this particular design abstraction layer.
This exercise is repeated for each abstraction layer and described in detail in each of thefollowing sections.
At the processor level, one can distinguish general purpose programmable processors anddomain specific processors. General purpose processors should support a wide range of ap-plications, which unfortunately typically include software vulnerabilities. Hardware featuresare added to address these software vulnerabilities, such as a shadow stack or measuresto support hardware control flow integrity. Domain specific processors typically focus ona limited functionality. They are typically developed as co-processors in larger systems-on-
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Abstraction level Root of trust -functionality Structural (how) -examples Example Threats Typical HW designactivities
System andapplication Secure platforms e.g. TrustedExecution(Trustzone, SGX,TEE), HSM, SecureElement

to supportisolation, integrity,attestation, . . .
securityapplicationdevelopment

Processor general purpose e.g. shadow stack SW vulnerabilities ISA, HW/SWco-design
Processor domain specific Crypto specificRTL Timing attacks Constant numberof clock cycles
Register Transfer Crypto specific Building blocks, Side ChannelAttack, Logic synthesis
Logic Resistance to SCA,Power, EM, fault Masking, Circuitstyles Side Channelattack, fault FPGA tools,standard celldesign
Circuit andtechnology Source of entropy TRNG, PUF, SecureSRAM Temperature,glitches SPICE simulations
Physical TamperResistance Shields, sensors Probing, heating Layout activities

Table 1: Design abstraction layers linked to threat models, root of trust and design activities
chip. Typical examples are co-processors to support public key or secret key cryptographicalgorithms. Time at the processor level is typically measured in instruction cycles.
Both general purpose and domain specific processors are composed together from compu-tational units, multipliers and ALU’s, memory and interconnect. These modules are typicallydescribed at the register transfer level: constant-time and resistance against side-channelattacks become the focus. Time at this level is typically measured in clock cycles.
Multipliers, ALU’s, memories, interconnect and bus infrastructure are created from gates andflip-flops at the logic level. At this design abstraction level, focus is on leakage through phys-ical side-channels, power, electro-magnetic, and fault attacks. Time is typically measured inabsolute time (nsec) based on the available standard cell libraries or FPGA platforms.
The design of entropy sources requires knowledge and insights into the behavior of transis-tors and the underlying Complementary Metal-Oxide-Semiconductor (CMOS) technology.Thedesign of these hardware security primitives is therefore positioned at the circuit and tran-sistor level. Similarly the design of sensors and shields against physical tampering requireinsight into the technology. At the circuit and technology level it is measured in absolute time,e.g. nsec delay or GHz clock frequency.
The table 1 does not aim to be complete. The idea is to illustrate each abstraction layer withan example. In the next sections, the hardware security goals and their associated threatmodels will be discussed in detail in relation to and relevance for each abstraction layer.
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2 MEASURING HARDWARE SECURITY
Depending on the commercial application domain, several industrial and government orga-nizations have issued standards or evaluation procedures. The most well known ones arethe FIPS 140-2 (and the older FIPS 140-1), the Common Criteria (CC) evaluation and in thefinancial world the EMVCO. FIPS 140-2 mostly focuses on the implementation security ofcryptographic algorithms. Common Criteria are applicable to IT security in general.
2.1 FIPS140-2

FIPS140-2 is a US NIST standard used for the evaluation of cryptographic modules. FIPS140-2defines security levels from 1 to 4 (1 being the lowest). The following gives a description of thefour levels from a physical hardware security point of view. Next to the physical requirements,there are also roles, services and authentication requirements (for more details see [7] andother KAs).
Security level 1 only requires than an approved cryptographic algorithm be used, e.g. AES orSHA-3, but does not impose physical security requirements. Hence a software implementa-tion could meet level 1. Level 2 requires a first level of tamper evidence. Level 3 also requiresthe tamper evidence, but on top requires tamper resistance.
NIST defines tampering as an intentional but unauthorized act resulting in the modificationof a system, components of systems, its intended behavior, or data, [8].
Tamper evidence means that there is a proof or testimony that tampering with a hardwaremodule has happened. E.g. a broken seal indicates that a device was opened. A light sensormight observe that the lid of a chip package was lifted.
Tamper resistance means that on top of tamper evidence, protection mechanisms are addedto the device. E.g. by extra coating or dense metal layers, it is difficult to probe the key regis-ters.
Level 4 increases the requirements such that the cryptographic module can operate in phys-ically unprotected environments. In this context, the physical side-channel attacks pose animportant threat. If any of these physical components depend on sensitive data being pro-cessed, information is leaked. Since the device is under normal operation, a classic tamperevidence mechanism will not realize that the device is under attack. See later in section 6.
2.2 Common criteria and EMVCo

“Common Criteria for information technology security evaluation” is an international standardfor IT product security (ISO/IEC 15408), in short known as Common Criteria (CC). CC is avery generic procedure applicable to the security evaluation of IT products. Several partiesare involved in this procedure. The customer will define a set of security specifications forits product. The manufacturer will design a product according to these specifications. Anindependent evaluation lab will verify if the product fulfills the claims made in the securityrequirements. Certification bodies will issue a certification that the procedure was correctlyfollowed and that the evaluation lab indeed confirmed the claims made. The set of securityspecifications are collected in a so-called protection profile.
Depending on the amount of effort put into the security evaluation, the CC defines differentEvaluation Assurance Levels (EALs). It ranges from basic functionally testing, corresponding
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to EAL1, to formally verified design and tested, corresponding to the highest level EAL7. CCfurther subdivides the process of evaluation into several classes, where most of the classesverify the conformity of the device under test. The 5th class (AVA) deals with the actualvulnerability assessment. It is the most important class from a hardware security viewpointas it searches for vulnerabilities and associated tests. It will assign a rating on the difficulty toexecute the test, called the identification, and the possible benefit an attacker can gain fromthe penetration, called the exploitation. The difficulty is a function of the time required toperform the attack, the expertise of the attacker from layman to multiple experts, how muchknowledge of the device is required from simple public information to detailed hardwaresource code, the number of samples required, and the cost and availability of equipment toperform the attack, etc. A high difficulty level will result in a high score and a high level of theAVA class. The highest score one can obtain is an AVA level of 5, which is required to obtaina top EAL score.
Its usage is well established in the field of smartcards and secure elements as they are usedin telecom, financial, government ID’s applications. It is also used in the field of HardwareSecurity Modules, Trusted Platform Modules and some more [9]. For certain classes of ap-plications minimum sets of requirements are defined into protection profiles. There existsprotection profiles for Trusted Platform Module (TPM), Javacards, Biometric passports, SIMcards, secure elements, etc.
Since certification comes from one body, there exist agreements between countries so thatthe certifications in one country are recognized in other countries. As an exception EMVCois a private organization to set the specifications for worldwide interoperability of paymenttransactions. It has its own certification procedure similar to CC.
Please note that the main purpose of a common criteria evaluation is to verify that an ITproduct delivers the claims promised in the profile. It does not mean that there are no vul-nerabilities left. A good introduction to the topic can be found in [10] and a list of certifiedproducts on [9].
2.3 SESIP: Security Evaluation Standard for IoT Platforms

In the context of IoT security evaluation, a recent initiative is the SESIP Security Evaluationscheme [11], currently at version 1.2. IoT devices are typically small, light-weight ’things’, withlimited accessibility via internet. Several levels of threat model for IoT are possible: from onlyremote internet access, over various remote software attack options, to also physical attackresistance. A comprehensive set of security functional requirements are defined: identifica-tion and attestation, product lifecycle, secure communication, software and physical attackresistance, cryptographic functionality including random number generation, and some com-pliance functionality to e.g. provide secure encrypted storage or provide reliable time. Similarto Common Criteria, SESIP provides several levels of assurance. Level 1 is the lowest leveland consists of a self-assessment. The highest level of SESIP consists of a full CC evalua-tion similar to smart cards or secure elements. The levels in between cover from a black boxpenetration testing over white box penetration testing with or without time limitations.
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3 SECURE PLATFORMS
This section describes the goals and the state-of-the-art in secure platforms. At this high levelof abstraction the system designer receives a complete chip or board as trusted computingbase. The system designers assume that the trusted root delivers a set of cryptographicfunctions, protected by the hardware and software inside the physical enclosure. Commonto these platforms is that they are stand-alone pieces of silicon with a strict access policy. De-pending on the provided functionality, the hardware tamper resistance and protection levels,and the communication interface, these secure platforms are used in different applicationfields (automotive, financial, telecom). Three important platforms are the Hardware SecurityModule (HSM), the Subscriber Identification Module or SIM and the Trusted Platform Module(TPM). These are briefly described next.
3.1 HSM Hardware Security Module

A HSM module will typically provide cryptographic operations, e.g. a set of public key andsecret key algorithms, together with secure key management including secure generation,storage and deletion of keys. Essential to HSM’s is that these operations occur in a hardenedand tamper resistant environment. A TRNG and a notion of a real-time clock are usually alsoincluded. HSM’s are mostly used in server back-end systems to manage keys or paymentsystems, e.g. in banking systems.
A HSM is used as a co-processor, attached to a host system. Its architecture typically in-cludes a micro-processor/micro-controller, a set of crypto co-processors, secure volatile andnon-volatile memory, TRNG, real-time clock, and I/O. The operations occur typically inside atamper resistant casing. In previous generations, inside the casing multiple components re-side on one board.
Recently, in some application domains, such as automotive, HSM functionality is no longerprovided as a stand-alone module but is now integrated as a secure co-processor in a largerSystem on Chip (SoC). Indeed Moore’s law enables higher integration into one SoC. Whatexactly is covered under HSM functionality depends on the application domain. Therefore,compliance with security levels is also evaluated by specialized independent evaluation labsaccording to specific protection profiles.
3.2 Secure Element and Smartcard

Similar to an HSM, a Secure Element and a smart card provide a set of cryptographic algo-rithms, public key, secret key, HMAC, etc. together with secure key storage, generation anddeletion. The main difference with an HSM are cost, size, and form factor. They are typi-cally implemented as one single integrated circuit and have a much smaller form factor fromaround 50 cm2 to less than 1 cm2. The main difference between a smart card and a secureelement sits in the form factor and the different markets they address. Secure elementsare a more generic term, while smart cards have the very specific form factor of a bankingcard. They are produced in large volumes and need to be very cheap as they are used forSIM cards in cell phones and smart phones. They are also used in banking cards, pay-TVsystems access cards, national identity cards and passports, and recently in IOT devices,vehicular systems and so on. Tamper resistance and physical protection are essential tosecure elements. They are a clear instance of what in a computer architecture domain are
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called ’domain specific processors’. Specific protection profiles exist depending the applica-tion domain: financial, automotive, pay-TV, etc.
A typical embedded secure element is one integrated circuit with no external components.It consists of a small micro-controller with cryptographic co-processors, secure volatile andnon-volatile storage, TRNG, etc. I/O is usually limited, through a specific set of pins, or througha NFC wireless connection. Building a secure element is a challenge for a hardware de-signer, as one needs to combine security with non-security requirements of embedded cir-cuits: small form factor (no external memory), low power and/or low energy consumption incombination with tamper resistance and resistance against physical attacks, such as side-channel and fault attacks (see section 6).
3.3 Trusted Platform Module (TPM)

The TPM module has been defined by the Trusted Computing Group (TCG), an industry asso-ciation, to provide specific security functions to the Personal Computer (PC) platform. Morespecifically, the TPM is a root of trust embedded on the PC platform, so that PC+TPM plat-form can identify itself and its current configuration and running software [5]. The TPM pro-vides three specific roots of trust: the Root of Trust for Measurement (RTM), the Root of Trustfor Storage (RTS), the Root of Trust for Reporting (RTR). Besides these three basic functions,other functionality of TPMs is being used: access to specific cryptographic functions, securekey storage, support for secure login, etc.
The TPM is implemented as a separate security module, much like a secure element but witha specific bus interface to a PC platform, e.g. through the LPC or I2C bus interface. Its archi-tecture at minimum consists of an embedded micro-controller, several crypto coprocessors,secure volatile and non-volatile storage for root keys and a high quality true random numbergenerator. It includes hardware engines for hash functions (SHA1 and SHA256), public key(RSA and ECC), secret key (AES) and HMAC calculations. Since a TPM is a separate module,physical protection and tamper resistance is essential for security. Next to its main scope ofintegrity protection, TPM also has applications in disk encryption, digital rights management,etc.
The most recent TPM2.0 version broadens the application scope from PC oriented to alsosupporting networking, embedded, automotive, IoT, and so on. It also provides a more flex-ible approach in the functionality included. Four types of TPM are identified: the dedicatedintegrated circuit ‘discrete element’ TPM provides the highest security level. One step lowerin protection level is the ‘integrated TPM’ as an IP module in a larger SoC. The lowest levelsof protection are provided by the firmware and software TPM.
The adoption of TPMs has evolved differently from what was originally the focus of the TCG.Originally, the main focus was the support of a secure boot and the associated softwarestack, so that a complete measurement of the software installed could be made. The prob-lem is that the complexity of this complete software base grows too quickly, making it toodifficult to measure completely all variations in valid configurations. Thus TPMs are lessused to protect a complete software stack up to the higher layers of software. Still mostnew PCs now have TPMs but they are used to protect the encryption keys, avoid firmwareroll-back, and assist the boot process in general.
Starting from the original TPM, the Trusted Computing Group has broadened its scope andnow has working groups on many different application, such as cloud, embedded systems,IoT, mobile, network equipment, and so on, [12].
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4 HARDWARE SUPPORT FOR SOFTWARE SECURITY AT
ARCHITECTURE LEVEL
At the secure platform level, the complete module, i.e. hardware and its enclosed embeddedsoftware, are part of the trusted computing base. One level down on the abstraction layers,we make the assumption that all hardware is trusted, while software is no longer trusted. In-deed, software vulnerabilities are a major source of security weaknesses (see the SoftwareSecurity CyBOK Knowledge Area [1]). To prevent the exploitation or to mitigate the effects ofsoftware vulnerabilities, a large variety of hardware modifications/additions to the processorarchitecture have been proposed in literature and have been included in commercial proces-sors. We call this abstraction layer the hardware/software boundary: hardware forms thetrust boundary, while software is no longer trusted. These security additions to the hardwaretypically have a cost in extra area and loss in performance.
The most important security objectives at this design abstraction level are to support pro-tection, isolation and attestation for the software running on a processor platform [13], [14],[15].

• Protection: ”A set of mechanisms for ensuring that multiple processes sharing the pro-cessor, memory, or I/O devices cannot interfere, intentionally or unintentionally, withone another by reading or writing each others’ data. These mechanisms also isolatethe operating system from the user process” [13]. In a traditional computer architecture,usually the OS kernel is part of the Trusted Computing Base (TCB), but the rest of thesoftware is not.
• With isolation, a hardware mechanism is added that controls access to pieces of soft-ware and associated data. Isolation separates two parties: a software module mightneed protection from the surrounding software is one case. So, a Protected ModelArchitecture (PMA) provides a hardware guarantee that a piece of software runs un-hindered from unwanted outside influences. The opposite case, if we want to limit theeffects of possibly tainted software to its environment, it will be sandboxed or be putinto a ‘compartment.’ Protected Module Architectures are a hardware only solution: theOS is not part of the TCB. More details are described in section 4.4
• With attestation, there is hardware support to demonstrate to a third party that the sys-tem, e.g. the code installed and/or running on a processor, is in a particular state. At-testation can be local or remote. Local attestation means that one software modulecan attest its state to another one on the same compute platform. Remote attestationmeans that a third party, outside the compute platform can get some guarantee aboutthe state of a processor.

In the context of general purpose computing, Virtual Machines (VMs) and Hypervisors havebeen introduced to support multiple operating systems on one physical processor. This shar-ing of resources improves efficiency and reuse. It can however only be realized by a secureand efficient sharing of physical memory: virtual machines should only be allowed to usethe portions of physical memory assigned to it. The organization and details of virtual mem-ory are out of scope of hardware security and part of the Operating Systems & VirtualisationCyBOK Knowledge Area [16]. The hardware supports protection by providing privileged in-structions, control and status registers and sometimes support for multiple parallel threads.
In the context of embedded micro-controllers, with no operating system, and only one applica-
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tion, the hardware support could be limited to only machine level support. Memory protectioncould be added as an optional hardware module to the processor.
Other more advanced security objectives to support software security might include:

• Sealed storage is the process of wrapping code and/or data with certain configuration,process or status values. Only under the correct configuration (e.g. program countervalue, nonce, secret key, etc.) can the data be unsealed. Dynamic root of trust in combi-nation with a late launch guarantees that even if the processor starts from an unknownstate, it can enter a fixed known piece of code and known state. This typically requiresspecial instructions to enter and exit the protected partition.
• Memory protection refers to the protection of data when it travels between the proces-sor unit and the on-chip or off-chip memory. It protects against bus snooping or side-channel attacks or more active fault injection attacks.
• Control flow integrity is a security mechanism to prevent malware attacks from redirect-ing the flow of execution of a program. In hardware, the control flow of the program iscompared on-the-fly at runtime with the expected control flow of the program.
• Information flow analysis is a security mechanism to follow the flow of sensitive datawhile it travels through the different processor components, from memory to cache overmultiple busses into register files and processing units and back. This is important inthe context of micro-architectural and physical side-channel attacks.

In the next subsections a representative set of hardware approaches to address the abovesoftware security challenges are presented. Some hardware techniques address multiplesecurity objectives. Some are large complex approaches, others are simple dedicated hard-ware features.
As a side note: a large body of knowledge on software-only approaches is available in liter-ature. Mostly, they offer a weaker level of security as they are not rooted in a hardware rootof trust. E.g. for control flow integrity, software-only approaches might instruct the softwarecode to check branches or jumps, while hardware support might calculate MACs on the flyand compare these to stored associated MACs.
4.1 Trusted Execution Environment (TEE)

TEE was originally an initiative of Global Platform, a consortium of companies, to standard-ize a part of the processor as a trusted secure part. TEE has since evolved and covers ingeneral the hardware modifications made to processors to provide isolation and attestationto software applications. There is a large body of knowledge both from the industrial side aswell as from the academic side.
TEE is a concept that provides a secure area of the main processor “to provide end-to-endsecurity by protecting the execution of authenticated code, confidentiality, authenticity, pri-vacy, system integrity and data access rights” [17]. It is important that the TEE is isolatedfrom the so-called Rich Execution Environment (REE), which includes the untrusted OS. Thereasoning behind this split is that it is impossible to guarantee secure execution and to avoidmalware in the normal world due to the complexity of the OS and all other applications run-ning there. The rich resources are accessible from the TEE, while the opposite is not possible.Global Platform does not specify the specifics on how these security properties should beimplemented. Three main hardware options are suggested. Option 1 assumes that every pro-
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cessor component on the IC can be split into a trusted and a rich part, i.e. the processor core,the crypto accelerators, the volatile and non-volatile memory are all split. Option 2 assumesthat there is a separate secure co-processor area on the SoC with a well-defined hardwareinterface to the rest of the SoC. Option 3 assumes a dedicated off-chip secure co-processor,much like a secure element.
Global Platform defines also a Common Criteria based protection profile (see section 2.2)for the TEE. It assumes that the package of the integrated circuit is a black box [17] and thussecure storage is assumed by the fact that the secure asset remains inside the SoC. It followsthe procedures of common criteria assurance package EAL2 with some extra features. Itpays extra attention to the evaluation of the random number generator and the concept ofmonotonic increasing time.
4.2 IBM 4758 Secure coprocessor

An early example, even before the appearance of the TEE of Global Platform is the IBM 4758secure processor. Physical hardware security was essential for this processor: it contained aboard with a general purpose processor, DRAM, separate battery backed-DRAM, Flash ROM,crypto accelerator (for DES), a random number generator and more. All of these componentswere enclosed in a box with tamper resistant and tamper evidence measures. It was certifiedto FIPS 140-1, level 4 at that time [18].
4.3 ARM Trustzone

ARM Trustzone is one well known instantiation of a TEE. It is part of a system of ARM pro-cessors integrated into System on Chips (SoCs) mostly used for smartphones. The TEE isthe secure part of the processor and it runs a smaller trusted OS. It is isolated from the non-secure world, called the Rich Execution Environment, which runs the untrusted rich OS. Themain hardware feature to support this split is the Non-Secure (NS) bit. The AXI bus transac-tions are enhanced with a NS bit so that it can block the access of secure world resourcesby non-secure resources. Each AXI transaction comes with this bit set or reset. When theprocessor runs in the secure mode, then the transaction comes with the NS bit set to zero,which gives it access to both secure and non-secure resources. When the processor runs innormal mode, it can only access resources from the normal world. This concept is extendedto the level 1 and level 2 cache. These caches store an extra information bit to indicate if thecode can be accessed by a secure or non-secure master. Special procedures are foreseento jump from secure to non-secure and vice-versa. This is supported by a special monitormode which exists in the secure world.
The split applied by ARM Trustzone is however a binary split. Applications from different ven-dors could co-exist together in the secure world and so if one trusted component violates thesystem’s security, the security can no longer be guaranteed. To address this issue, protectedmodule architectures are introduced.
Trusted Execution Environments are also being created in open-source context, more specif-ically in the context of the RISC-V architecture.
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4.4 Protected Module Architectures and HWSW co-design solutions
If multiple software applications want to run on the same platform isolated from each other,then hardware needs to isolate them from each other at a more fine granularity. This canbe done by so-called protected module architectures. The basic idea is that small softwaremodules can run protected from all other software running on the processor. And becausethey are small, their properties and behavior can be verified more thoroughly. The protectionis provided by extra features added to the hardware in combination with an extremely smalltrusted software base if needed. In the Flicker project, the software TCB relies on only 250lines of codes but requires a dedicated TPM chip [19]. Table 12 of the review work of [18], pro-vides an in-depth comparison of several general purpose secure processor projects with theirhardware and software TCB. The hardware TCB distinguishes between the complete motherboard as TCB, e.g. for TPM usage, to CPU package only for SGX and other projects. Thesoftware TCB varies from a complete secure world as is the case for TrustZone to privilegedcontainers in the case of SGX or a trusted hypervisor, OS or security monitor.
Even more advanced are solutions with a zero trusted software base: only the hardware istrusted. This is the case for the Sancus project [20]. It implements a program counter basedmemory access control system. Extra hardware is provided to compare the current programcounter with stored boundaries of the protected module. Access to data is only possible ifthe program counter is in the correct range of the code section. Progress of the program inthe code section is also controlled by the hardware so that correct entry, progress and exitof the module can be guaranteed.
Intel’s Software Guard Extension (SGX) are also a protection mechanism at small granularity.Software modules of an application are placed in memory enclaves. Enclaves are defined inthe address space of a process, but access to enclaves is restricted. Enclaves are created,initialized, and cleared by possibly untrusted system software, but operating in the enclavecan only be done by the application software. Minimizing the extra hardware to support SGX,and especially avoiding performance degradation is an important goal. The details of thehardware micro-architecture have not been disclosed: yet its most important parts are amemory encryption unit, a series of hardware enforced memory access checks and securememory range registers [18].
4.5 Light-weight and individual solutions

The above listed solutions are mostly suited for general purpose computing, i.e. for platformson which a complex software stack will run. In literature, more solutions are proposed toprovide extremely light weight solutions to support specific security requests. SMART is oneearly example: it includes a small immutable piece of bootROM, considered the root of trust,to support remote attestation [21].
To protect against specific software attacks, more individual hardware countermeasureshave been introduced. One example is a hardware shadow stack: to avoid buffer overflow at-tacks and to protect control flow integrity, return addresses are put on both the stack and theshadow stack. When a function loads a return address, the hardware will compare the returnaddress of the stack to that of the shadow stack. They should agree for a correct return.
Another example is the protection of jump and return addresses to avoid buffer overflow at-tacks and other abuses of pointers. A simple but restrictive option is to use read-only memory,which fixes the pointer. A novel recent technique is the use of pointer authentication. The au-thentication code relies on cryptographic primitives. A challenge for these algorithms is that
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they should create the authentication tag with very low latency to fit into the critical path of amicroprocessor. The ARMV8-A architectures uses therefore a dedicated low-latency cryptoalgorithm Qarma [22]. In this approach the unused bits in a 64-bit pointer are used to store atag. This tag is calculated based on a key and on the program state, i.e. current address andfunction. These tags are calculated and verified on the fly.
Address Space Layout Randomization or Stack canaries area general software technique: itsaim is to make it hard to predict the destination address of the jump. A detailed descriptioncan be found in the Software Security CyBOK Knowledge Area [1].
5 HARDWARE DESIGN FOR CRYPTOGRAPHIC
ALGORITHMS AT RTL LEVEL
The hardware features discussed so far are added to general purpose compute platforms,i.e. to a programmable micro-processor or micro-controller. General purpose means that aplatform is created of which the hardware designer does not know the future applicationsthat will run on it. Flexibility, reflected in the instruction set, is then of importance. A secondclass of processors are domain-specific processors: they have limited or no programmabilityand designed for one or a small class of applications.
5.1 Design process from RTL to ASIC or FPGA

When a dedicated processor is built for one or a class of cryptographic algorithms, this givesa lot of freedom to the hardware designer. Typically, the hardware designer will, starting fromthe cryptographic algorithm description, come up with hardware architectures at the Regis-ter Transfer Level (RTL) taking into account a set of constraints. Area is measured by gatecount at RTL level. Throughput is measured by bits/sec. Power consumption is important forcooling purposes and measured in Watt. Energy, measured in Joule, is important for batteryoperated devices. It is often expressed in the amount of operations or amount of bits that canbe processed per unit energy. Hence the design goal is to maximize the operations/Joule orbits/Joule. The resistance to side channel attacks is measured by the number of measure-ments or samples required to disclose the key or other sensitive material. Flexibility and pro-grammability are difficult to measure and are typically imposed by the application or classof applications that need to be supported: will the hardware support only one or a few algo-rithms, encryption and/or decryption, modes of operation, initialization, requirements for keystorage, and so on.
A hardware architecture is typically described in a Hardware Description Language such asVerilog of VHDL. Starting from this description the two most important hardware platformsavailable to a hardware designer are ASIC and FPGA. An Application Specific Integrated Cir-cuit (ASIC) is a dedicated circuit fabricated in silicon. Once fabricated (baked) it cannotbe modified anymore. A Field Programmable Gate Array (FPGA) is a special type of pro-grammable device: it consists of regular arrays of 1-bit cells, that can programmed by meansof a bitstream. This special bitstream programs each cell to a specific function, e.g. a one bitaddition, a register, a multiplexer, and so on. By changing the bit-stream the functionality ofthe FPGA changes. From the viewpoint of the Register Transfer Level (RTL) the actual designprocess for either FPGA or ASIC doesn’t differ that much. Similar design options are avail-able: the designer can decide to go for serial or parallel architectures, making use of multipledesign tricks to match the design with the requirements. The most well-known tricks are
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to use pipelining to increase throughput, or unrolling to reduce latency, time multiplexing toreduce area, etc.
From implementation viewpoint, at this register transfer abstraction level, a large body ofknowledge and a large set of Electronic Design Automation (EDA) tools exist to map an ap-plication onto a FPGA or ASIC platform [3]. Implementation results should be compared notonly on the number of operations, but also on memory requirements (program memory anddata memory), throughput and latency requirements, energy and power requirements, band-width requirements and the ease with which side-channel and fault attack countermeasurescan be added. Please note that this large body of knowledge exists for implementations thatfocus on efficiency. However, when combining efficiency with security requirements, suchas constant time execution or other countermeasures, there is a huge lack of supporting EDAtools (see section 8).
5.2 Cryptographic algorithms at RTL level

Cryptographic implementations are subdivided in several categories, enumerated below. Thedetails of the cryptographic algorithms themselves are discussed in the Cryptography CyBOKKnowledge Area [2]. Here only remarks related to the RTL implementation are made. In thissection only notes specific to the hardware implementations are made.
• Secret key algorithms: both block ciphers and stream ciphers result usually in compactand fast implementations. Feistel ciphers are chosen for very area constrained designsas the encryption and decryption hardware is the same. This is e.g. not the case forthe AES algorithm for which encryption and decryption require different units.
• Secret key: light-weight algorithms. For embedded devices, over the years, many light-weight algorithms have been developed and implemented, e.g. Present, Prince, Rect-angle, Simon or Speck cipher. Focus in these cases is mostly on area cost. However,lately light-weight has been extended to include also low power, low energy and es-pecially low-latency. Latency is defined as the time difference between input clear textand corresponding encrypted output or MAC. Having a short latency is important in real-time control systems, automotive, industrial IoT but also in memory encryption, controlflow integrity applications etc. More knowledge will follow from the recent NIST call onlight-weight crypto [23].
• Secret key: block ciphers by themselves are not directly applicable in security applica-tion. They need to be combined with modes of operation to provide confidentiality orintegrity, etc. (see the Cryptography CyBOK Knowledge Area [2]). In this context effi-cient implementations of authenticated encryption schemes are required: this is thetopic of the CAESAR competition [24]. From an implementation viewpoint, the sequen-tial nature of the authenticated encryption schemes makes it very difficult to obtainhigh throughputs as pipelining cannot directly be applied.
• Hash algorithms require typically a much larger area compared to secret key algorithms.Especially the SHA3 algorithm and its different versions are large in area and slow inexecution. Therefore, light-weight hash algorithms are a topic of active research.
• One important hardware application of hash functions is the mining of cryptocurrencies,such as Bitcoin, Etherium, Litecoin and others, based on SHA2, SHA256, SHA3, etc.To obtain the required high throughputs, massive parallelism and pipelining is applied.This is however limited as hash algorithms are recursive algorithms and thus there is
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an upper bound on the amount of pipelining that can be applied [25]. Cryptocurrenciesform part of the more general technology of distributed ledgers, which is discussed inthe Distributed Systems Security CyBOK Knowledge Area [26].
• The computational complexity of public key algorithms is typically 2 or 3 orders of mag-nitude higher than secret key and thus its implementation 2 to 3 orders slower or larger.Especially for RSA and Elliptic curve implementations, a large body of knowledge isavailable, ranging from compact [27] to fast, for classic and newer curves [28].
• Algorithms resistant to attacks of quantum computers, aka post-quantum secure algo-rithms, are the next generation algorithms requiring implementation in existing CMOSASIC and FPGA technology. Computational bottle-necks are the large multiplier struc-tures, with/without the Number Theoretic Transform, the large memory requirementsand the requirements on random numbers that follow specific distributions. Currently,NIST is holding a competition on post-quantum cryptography [29]. Thus it is expectedthat after the algorithms are decided, implementations in hardware will follow.
• Currently, the most demanding implementations for cryptographic algorithms are thoseused in homomorphic encryption schemes: the computational complexity, the size ofthe multipliers and especially the large memory requirements are the challenges to ad-dress [30].

6 SIDE-CHANNEL ATTACKS, FAULT ATTACKS AND
COUNTERMEASURES
This section first provides an overview of physical attacks on implementations of crypto-graphic algorithms. The second part discusses a wide range of countermeasures and someopen research problems. Physical attacks, mostly side-channel and fault attacks, were orig-inally of great concern to the developers of small devices that are in the hands of attackers,especially smart-cards and pay-TV systems. The importance of these attacks and counter-measures is growing as more electronic devices are easily accessible in the context of theIoT.
6.1 Attacks

At the current state of knowledge, cryptographic algorithms have become very secure againstmathematical and cryptanalytical attacks: this is certainly the case for algorithms that arestandardized or that have received an extensive review in the open research literature. Cur-rently, the weak link is mostly the implementation of algorithms in hardware and software.Information leaks from the hardware implementation through side-channel and fault attacks.A distinction is made between passive or side-channel attacks versus active or fault attacks.A second distinction can be made based on the distance of the attacker to the device: at-tacks can occur remotely, close to the device still non-invasive to actual invasive attacks.More details on several classes of attacks are below.
Passive Side Channel Attacks General side-channel attacks are passive observations of acompute platform. Through data dependent variations of execution time, power consump-tion or electro-magnetic radiation of the device, the attacker can deduce information of secretinternals. Variations of execution time, power consumption or electro-magnetic radiationsare typically picked up in close proximity of the device, while it is operated under normal con-
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ditions. It is important to note that the normal operation of the device is not disturbed. Thusthe device is not aware that it is being attacked, which makes this attack quite powerful [31].
Side channel attacks based on variations on power consumption have been extensively stud-ied. They are performed close to the device with access to the power supply or the powerpins. One makes a distinction between Simple Power Analysis (SPA), Differential and HigherOrder Power Analysis (DPA), and template attacks. In SPA, the idea is to first study the targetfor features that depend on the key. E.g. a typical target in timing and power attacks are if-then-else branches that are dependent on key bits. In public key algorithm implementations,such as RSA or ECC, the algorithm runs sequentially through all key bits. When the if-branchtakes more or less computation time than the else-branch this can be observed from outsidethe chip. SPA attacks are not limited to public key algorithms, they have also been appliedto secret key algorithms, or algorithms to generate prime numbers (in case they need to re-main secret). So with knowledge of the internal operation of the device, SPA only requires tocollect one or a few traces for analysis.
With DPA, the attacker collects multiple traces, ranging from a few tens for unprotected im-plementations to millions in case of protected hardware implementations. In this situation,the attacker exploits the fact that the instantaneous power consumption depends on thedata that is processed. The same operation, depending on the same unknown sub-key, willresult in different power consumption profiles if the data is different. The attacker will alsobuilt a statistical model of the device to estimate the power consumption as a function ofthe data and the different values of the subkey. Statistical analysis on these traces based oncorrelation analysis, mutual information and other statistical tests are applied to correlatethe measured values to the statistical model.
Side channel attacks based on Electro-Magnetic radiations have been recognized early-onin the context of military communication and radio equipment. As a reaction, NATO and thegovernments of many countries have issued TEMPEST [32]. It consists of specifications onthe protection of equipment against unintentional electro-magnetic radiation but also againstleakage of information through vibrations or sound. Electro-Magnetic radiation attacks canbe mounted from a distance, as explained above, but also at close proximity to the integratedcircuit. Electro-Magnetic probing on top of an integrated circuit can release very localizedinformation of specific parts of an IC by using a 2D stepper and fine electro-magnetic probers.Thus electro-magnetic evaluation has the possibility to provide more fine grained leakageinformation compared to power measurements.
Timing attacks are another subclass of side-channel attacks [33]. When the execution timeof a cryptographic calculation or a program handling sensitive data, varies as a function ofthe sensitive data, then this time difference can be picked up by the attacker. A timing attackcan be as simple as a key dependent different execution time of an if-branch versus an else-branch in a finite state machine. Cache attacks, which abuse the time difference between acache hit and a cache miss are an important class of timing attacks [34], [35], .
With a template attack, the attacker will first create a copy or template of the target device[36]. This template is used to study the behavior of the device for all or a large set of inputsand secret data values. One or a few samples of the target device are then compared to thetemplates in the database to deduce secret information from the device. Template attacksare typically used when the original device has countermeasures against multiple executions.E.g. it might have an internal counter to log the number of failed attempts. Templates can bemade based on timing, power or electro-magnetic information. As machine learning and AItechniques become more powerful, so will the attack possibility with template attacks.
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Micro-architectural Side-channels Processor architectures are very vulnerable to timing at-tacks. The problem of information leaks and the difficulty of confinement between programswas already identified early on in [37]. Later timing variations in cache hits and misses be-came an important class of timing attacks [38]. Recently gaining a lot of attention are themicro-architectural side-channel attacks, such as Spectre, Meltdown, Foreshadow. They arealso based on the observation of timing differences [6][38]. The strength of the attacks sits inthe fact that they can be mounted remotely from software. Modern processors include multi-ple optimization techniques to boost performance not only with caches, but also speculativeexecution, out-of-order execution, branch predictors, etc. When multiple processes run onthe same hardware platform, virtualization and other software techniques isolates the dataof the different parties in separate memory locations. Yet, through the out-of-order executionor speculative execution (or many other variants) the hardware of the processor will accessmemory locations not intended for the process by means of so-called transient instructions.These instructions are executed but never committed. They have however touched memorylocations, which might create side channel effects, such as variations in access time, andthus leak information.
Active fault attacks Fault attacks are active manipulations of hardware compute platforms[39]. The result is that the computation itself or the program control flow is disturbed. Faultyor no outputs are released. Even if no output is released or the device resets itself, thisdecision might leak sensitive information. One famous example is published in [40]: it de-scribes an RSA signature implementation which makes use of the Chinese Remainder Theo-rem (CRT). With one faulty and one correct result signature, and some simple mathematicalcalculations, the secret signing key can be derived. Physical fault-attacks could be a simpleclock glitching, power glitching, heating up or cooling down a device. These require closeproximity to the device but are non-invasive.
With scaling of memories, more attack surfaces appear. A very specific attack on DRAMmemories, is the RowHammer attack [41, 42]. By repeating reading specific locations inDRAM memory, neighboring locations will loose their values. Thus by hammering certainlocations, bit flips will occur in nearby locations.
With more expensive equipment, and with opening the lid of the integrated circuit or etchingthe silicon down, even more detailed information of the circuit can be obtained. Equipmentthat has been used include optical fault [43], laser attacks [44], Focused Ion Beam (FIB), aScanning Electron Microscope (SEM) and other. The latter are typically equipment that hasbeen designed for chip reliability and failure analysis. This equipment can also be used ormisused for reverse engineering.
6.2 Countermeasures

There are no generic countermeasures that resist all classes of side-channel attacks. De-pending on the threat model (remote/local access, passive/active, etc.) and the assump-tions made on the trusted computing base (i.e. what is and what is not included in the rootof trust), countermeasures have been proposed at several levels of abstraction. The mostimportant categories are summarized below.
To resist timing attacks, the first objective is to provide hardware that executes the applica-tion or program in constant time independent of secret inputs, keys and internal state. De-pending on the time granularity of the measurement equipment of the attacker, constant timecountermeasures also need to be more fine grained. At the processor architecture level, con-
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stant time means a constant number of instructions. At the RTL level, constant time meansa constant number of clock cycles. At logic and circuit level, constant time means a constantlogic depth or critical path independent of the input data. At instruction level, constant timecan be obtained by balancing execution paths and adding dummy instructions. Sharing ofresources, e.g. through caches, make constant time implementations extremely difficult toobtain.
At RTL level, we need to make sure that all instructions run in the same number of clockcycles. dummy operations or dummy gates, depending on the granularity level. Providingconstant time RTL level and gate level descriptions is however a challenge as design tools,both hardware and software compilers, will for performance reasons synthesize away thedummy operations or logic which were added to balance the computations.
As many side-channel attacks rely on a large number of observations or samples, randomisa-tion is a popular countermeasure. It is used to protect against power, electro-magnetic andtiming side-channel attacks. Randomisation is a technique that can be applied at algorithmlevel: it is especially popular for public key algorithms, which apply techniques such as scalarblinding, or message blinding [45]. Randomisation applied at register transfer and gate levelis called masking. Masking schemes randomise intermediate values in the calculations sothat their power consumption can no longer be linked with the internal secrets. A large setof papers on gate level masking schemes is available, ranging from simple Boolean maskingto threshold implementations that are provable secure under certain leakage models [46].Randomisation has been effective in practice especially as a public key implementation pro-tection measure. The protection of secret key algorithms by masking is more challenging.Some masking schemes require a huge amount of random numbers, others assume leak-age models that do not always correspond to reality. In this context, novel cryptographictechniques summarized under the label leakage resilient cryptography, are developed thatare inherently resistant against side-channel attacks [47, 48]. At this stage, there is still a gapbetween theory and practice.
Hiding is another major class of countermeasures. The idea is to reduce the signal to noise ra-tio by reducing the signal strength. Shielding in the context of TEMPEST is one such example.Similarly, at gate level, reducing the power signature or electro-magnetic signature of stan-dard cells or logic modules, will increase the resistance against power or electro-magneticattacks. Simple techniques such as using a jittery or drifting clock, and large decouplingcapacitances will also reduce the signal to noise ratio.
Sometimes solutions for leaking at one abstraction level, e.g. power side channels, can beaddressed at a different abstraction level. Therefore, if there is a risk that an encryption keyleaks from an embedded device, a cryptographic protocol that changes the key at a suffi-ciently high frequency, will also avoid side-channel information leakage.
General purpose processors such as CPUs, GPUs, and micro-controllers can not be modi-fied once fabricated. Thus protecting against micro-architectural attacks after fabrication bymeans of software patches and updates is extremely difficult and mostly at the cost of re-duced performance [6]. Micro-code updates are also a form of software, i.e. firmware updateand not a hardware update. The main difference is that the translation from instructions tomicro-code is a company secret, and thus for the user it looks like a hardware update. Provid-ing generic solutions to programmable hardware is a challenge as it is unknown beforehandwhich application will run. Solutions to this problem will be a combined effort between hard-ware and software techniques.
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Protection against fault attacks are made at the register transfer level, as well as at the circuitlevel. At RTL, protection agains fault attacks is mostly based on redundancy either in space orin time and by adding checks based on coding, such as parity checks. The price is expensiveas calculations are performed multiple times. One problem with adding redundancy is that itincreases the attack surface of side-channels. Indeed, due to the redundant calculations, theattacker has more traces available to perform time, power or electro-magnetic side-channelattacks [45]. At circuit level, monitors on the clock or power supply, might detect deviationsfrom normal operations and raise an alarm.
Many type of circuit level sensors are added to integrated circuits. Examples are light sensorsthat detect that a lid of a package has been opened. Mesh metal sensors which are laid-outin top level metal layers can detect probing attacks. Temperature sensors detect heating orcooling of the integrated circuit. Antenna sensors to detect electro-magnetic probes closeto the surface have been developed: these sensors measure a change in electro-magneticfields. And sensors that detect manipulation of the power supply or clock can be addedto the device. Note that adding sensors to detect active manipulation can again leak extrainformation to the side channel attacker.
Joint countermeasures against side-channel and fault attacks are challenging and an activearea of research.
7 ENTROPY GENERATING BUILDING BLOCKS: RANDOM
NUMBERS, PHYSICALLY UNCLONABLE FUNCTIONS
Sources of entropy are essential for security and privacy protocols. In this section two im-portant sources of entropy related to silicon technology are discussed: random number gen-erators and physically unclonable functions.
7.1 Random number generation

Security and privacy rely on strong cryptographic algorithms and protocols. A source of en-tropy is essential in these protocols: random numbers are used to generate session keys,nonces, initialization vectors, to introduce freshness, etc. Random numbers are also usedto create masks in masking countermeasures, random shares in multi party computation,zero-knowledge proofs, etc. In this section the focus is on cryptographically secure randomnumbers as used in security applications. Random numbers are also used outside cryptog-raphy, e.g. in gaming, lottery applications, stochastic simulations, etc.
In general, random numbers are subdivided in two major classes: the Pseudo Random Num-ber Generator (PRNG) also called Deterministic Random Bit Generator (DRBG) and the TrueRandom Number Generator (TRNG) or Non-Deterministic Random Bit Generator (NRBG). Thedesign, properties and testing of random numbers is described in detail by important stan-dards, issued in the US by NIST. NIST has issued the NIST800-90A for deterministic randomnumber generators, the NIST800-90B for entropy sources, and NIST800-90C for random bitgeneration constructions [49], [50] [51] 1. In Germany and by extension in most of Europe, theGerman BSI has issued two important standards: the AIS-20 for functionality classes andevaluation criteria for deterministic random number generators and the AIS-31 for physicalrandom number generators [52, 53, 54].

1NIST800-90C does not exist as a standard yet.

KA Hardware Security | October 2019 Page 21

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

An ideal RNG should generate all numbers with equal probability. Secondly, these numbersshould be independent from previous or next numbers generated by the RNG, called forwardand backward secrecy. The probabilities are verified with statistical tests. Each standardincludes a large set of statistical tests aimed at finding statistical weaknesses. Not beingable to predict future values or derive previous values is important not only in many securityapplications, e.g. when this is used for key generation, but also in many gaming and lotteryapplications.
Pseudo-random number generators are deterministic algorithms that generate a sequenceof bits or numbers that look random but are generated by a deterministic process. Since aPRNG is a deterministic process, when it starts with the same initial value, then the samesequence of numbers will be generated. Therefore it is essential that PRNG starts with adifferent start-up value each time the PRNG is initiated. This initial seed can either be gener-ated by a slow true random number generated or at minimum by a non-repeating value, e.g.as provided by a monotonic increasing counter. A PRNG is called cryptographically secure ifthe attacker, who learns part of the sequence, is not able to compute any previous or futureoutputs. Cryptographically secure PRNGs rely on cryptographic algorithms to guarantee thisforward and backward secrecy. Forward secrecy requires on top a regular reseeding to in-troduce new freshness into the generator. Hybrid RNG have an additional non-deterministicinput to the PRNG.
PRNGs provide conditional security based on the computational complexity of the underlyingcryptographic algorithms. See the Cryptography CyBOK Knowledge Area [2] for more details.In contrast, ideal true random number generators provide unconditional security as they arebased on unpredictable physical phenomena. Thus their security is guaranteed independentof progress in mathematics and cryptanalysis.
The core of a true random number generator consists of an entropy source, which is a phys-ical phenomena with a random behavior. In electronic circuits, noise or entropy sources areusually based on thermal noise, jitter and metastability. These noise sources are never per-fect: the bits they generate might show bias or correlation or other variations. Hence theydon’t have full entropy. Therefore, they are typically followed by entropy extractors or con-ditioners. These building blocks improve the entropy per bit of output. But as the entropyextractor are deterministic processes, they cannot increase the total entropy. So the outputlength will be shorter than the input length.
Due to environmental conditions, e.g. due to temperature or voltage variations, the qualityof the generated numbers might vary over time. Therefore, the standards describe specifictests that should be applied at the start and continuously during the process of generatingnumbers. One can distinguish three main categories of tests. The first one is the total failuretest, applied at the source of entropy. The second ones are online health tests to monitor thequality of the entropy extractors. The third ones are tests for the post-processed bits. Therequirements for these tests are well described in the different standards and specializedtext books [55].
The challenge in designing TRNGs is first to provide a clear and convincing proof of the en-tropy source, second the design of online tests which at the same are compact and candetect a wide range of defects [56]. The topic of attacks, countermeasures and sensors forTRNGs, especially in the context of IoT and embedded devices, is an active research topic.
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7.2 Physically Unclonable Functions
From a hardware perspective, Physically Unclonable Functions (PUFs), are circuits and tech-niques to derive unique features from silicon circuits, similar to human biometrics [57]. Themanufacturing of silicon circuits results in unique process variations which cannot be phys-ically cloned. The basic idea of PUFs is that these unique manufacturing features are mag-nified and digitized so that they can be used in security applications similar to the use of fin-gerprints or other biometrics. Process and physical variations such as doping fluctuations,line or edge widths of interconnect wires, result in variations of threshold voltages, transistordimensions, capacitances, etc. Thus circuits are created that are sensitive to and amplifythese variations.
The major security application for PUFs is to derive unique device specific keys, e.g. for usagein an IoT device or smart card. Traditionally, this storage of device unique keys is done innon-volatile memory, as the key has to remain in the chip even when the power is turned-off.Non-volatile memory requires however extra fabrication steps, which makes chips with non-volatile memory more expense than regular standard CMOS chips. Thus PUFs are promisedas cheap alternative for secure non-volatile memory, because the unique silicon fingerprintis available without the extra processing steps. Indeed, each time the key is needed, it canbe read from the post-processed PUF and directly used in security protocols. They can alsoreplace fuses, which are large and their state is relatively easy to detect under a microscope.
The second security application is to use PUFs in identification applications, e.g. for accesscontrol or tracking of goods. The input to a PUF is called a challenge, the output the response.The ideal PUF has an exponential number of unique challenge response pairs, exponential inthe number of circuit elements. The uniqueness of PUFs is measured by the inter-distancebetween different PUFs seeing the same challenge. The ideal PUF has stable responses:it replies with the same response, i.e. there is no noise in the responses. Moreover, PUFresponses should be unpredictable and physically unclonable.
The ideal PUF unfortunately does not exist. In literature, two main classes of PUFs are de-fined, characterized by the number of challenge-response pairs they can generate. So-calledweak PUFs are circuits with a finite number of elements, with each element providing a highamount of entropy. The number of possible challenge-response pairs grows typically linearwith the area of the integrated circuit. Hence they are called weak PUFs. The most wellknown example is the SRAM PUF [58]. These PUFs are typically used for key generation. Theraw PUF output material is not directly usable for key generation as the PUF responses areaffected by noise. Indeed, subsequent readings of the same PUF might result in slightly vary-ing noisy responses, typically up to 20%. Thus after the entropy extraction follows securesketch (similar to error correction) circuits to eliminate the noise and compress the entropyto generate a full entropy key [59]. The challenge for the PUF designer is to come up withprocess variations and circuits that can be used as key material, but which are not sensitiveto transient noise. A second challenge is to keep all the post-processing modules compactso that the key-generation PUF can be included in embedded IoT devices.
The second class are the so-called strong PUFs. In this case, the number of challenge-response pairs grows large, ideally exponential, with the silicon area. The most well-knownexample is the arbiter PUF [60]. A small number of silicon elements are combined together,e.g. to create a chain of multiplexers or comparators, so that simple combinations of theelements create the large challenge-response space. Also in this case, the effects of noisein the circuits needs to be taken into account. Strong PUFs are promised to be useful in au-
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thentication applications, e.g. for access control. Each time a challenge is applied to the PUF,a response unique to the chip will be sent. The verifier will accept the response if it can beuniquely tied to the prover. This requires that the PUF responses are registered in a form ofa database beforehand during an enrollment phase.
The problem with strong PUFs is that there is a strong correlation between different challenge-response pairs of most circuits proposed in literature. Hence all of these circuits are brokenwith machine learning techniques [61] and can not be used for authentication purposes. Thefundamental problem is that very basic, mostly linear operations are used to combine PUFelements, which makes them easy targets for machine learning attacks. Ideally, these shouldbe cryptographic or other computationally hard operations resistant to machine learning: un-fortunately these cannot tolerate noise. Light-weight PUF based security protocols are anactive area of research.
8 HARDWARE DESIGN PROCESS

In this section, several hardware security topics are described which are directly related tothe lower design abstraction layers. One is the trust in the hardware design process itself.Directly related to this, is the problem of Trojan circuits. Also part of the hardware designprocess are circuit level techniques for camouflaging, logic locking, etc.
8.1 Design and fabrication of silicon integrated circuits

It is important to note that the hardware design process itself also needs to be trusted. Be-cause of its design complexity, design at each abstraction layer relies on Electronic DesignAutomation (EDA) tools. The design, fabrication, packaging and test of silicon integratedcircuits is an international engagement: silicon foundries are mostly located in Asia. Silicondesign tools are most developed in the US, and silicon testing and packaging usually occurall over the world. For chips that end-up in critical infrastructure, such as telecommunication,military, aviation, trust and verification of the complete design cycle is essential.
Since silicon foundries and mask making are extremely expensive, very few countries andcompanies can still afford it and a huge consolidation has and is taking place in the industry.For critical infrastructure, governments demand more tools and techniques to increase thetrustworthiness of this international design process. On this topic, large research projectsare defined to come up with methods and tools to increase the trustworthiness of the designprocess and especially to assess the risk of Trojan insertions during the design process.
8.2 Trojan circuits

Trojan circuits are logic or gates added to large integrated circuits. As they are not part of thespecified functionality, they are difficult to detect. They rely on the fact that they are extremelysmall in comparison with the large size of integrated circuits and SoCs. Trojan circuits areclassified according to three main criteria [62, 63]. The first one is the physical characteristicsof the Trojan, i.e. how is the Trojan inserted into the circuit. E.g. does it requires logic modifi-cations or only layout modifications. The second one is the activation characteristic: will theTrojan be turned on by an internal or external event, etc. The third characteristic classifies thetype of action taken by the Trojan, e.g. will it leak information or will it destroy functionality,etc. The knowledge area on this topic is summarized in [62, 63].
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8.3 Circuit level techniques
To avoid visual inspection, circuit level camouflaging techniques are introduced [64]. Theseare standard cells or other modules that visually look the same, or they look camouflaged byrandom extra material. This is done to avoid visual inspection and reverse engineering basedon visual inspection.
Another techniques to avoid loss of intellectual property is logic locking [65]. With this tech-nique, extra gates are added to a circuit with a secret input. Only when the correct key isapplied to the secret gates, will the circuit perform the correct functionality. This is an activeresearch topic with logic locking schemes being proposed and attacked, with SAT solversbeing a very useful tool in attacking the circuits.
8.4 Board Level Security

Integrated circuits are placed together on Printer Circuit Boards (PCBs). Many of the attacksand countermeasures mentioned before for integrated circuits, can be repeated for PCBsalbeit at a different scale. While integrated circuits provide some level of protection becausethey are encapsulated in packages and use much smaller CMOS technologies, PCB’s areless complex and somewhat easier to access. Therefore, for PCB’s special coatings, andmechanical tamper evident and tamper resistant protection mechanisms could be provided.There have been some concerns that Trojan circuits could also be included at the board level.
8.5 Time

The concept of time and the concept of sequence of events are essential in security protocols.The TCG identifies three types of sequencing: a monotonic counter, a tick counter and actualtrusted time [5]. A monotonic counter always increases, but the wall clock time between twoincrements is unknown. The tick counter increases with a set frequency. It only increaseswhen the power is on. At power-off the tick counter will reset. Therefore the tick counter islinked with a nonce and methods are foreseen to link this with a real wall clock time. Trustedtime is the most secure. It makes sure that there is a link between the tick counter and thereal wall clock time. From a hardware viewpoint it will require non-volatile memory, counters,crystals, continuous power, and an on chip clock generator. The connection to a real wallclock will require synchronization and an actual communication channel.
The importance of time is placed in a wider context in the Distributed Systems Security Cy-BOK Knowledge Area [26].
9 CONCLUSION

Hardware security is a very broad topic, covering many different topics. In this chapter, aclassification is made based on the different design abstraction layers. At each abstractionlayer, the threat model, root of trust and security goals are identified.
Because of the growth of IoT, edge and cloud computing, the importance of hardware secu-rity is growing. Yet, in many cases hardware security is in conflict with other performanceoptimisations, such as low power or limited battery operated conditions. In these circum-stances, performance optimization is the most important design task. Yet it is also the most
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important cause of information leakage. This is the case at all abstraction layers: instructionlevel, architecture level and logic and circuit level.
Another trend is that hardware is becoming more ‘soft’. This is an important trend in proces-sor architecture, where FPGA functionality is added to processor architectures. The funda-mental assumption that hardware is immutable is lost here. This will create a whole newclass of attacks.
A last big challenge for hardware security is the lack of EDA tools to support hardware secu-rity. EDA tools are made for performance optimization and security is usually an afterthought.An added challenge is that it is difficult to measure security and thus difficult to balance se-curity versus area, throughput or power optimisations.
LINKS TO OTHER KAS

The KA on hardware security is linked with most other KA in cyber security. The most impor-tant ones are mentioned in the text.
• KA Malware and attack technologies
• KA Software security
• KA in cryptography
• KA in distributed systems
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ACRONYMS
AI Artificial Intelligence.
ALU Arithmetic Logic Unit.
ASIC Application Specific Integrated Circuit.
AVA Actual Vulnerability Assessment.
CC Common Criteria.
CMOS Complementary Metal-Oxide-Semiconductor.
CPU Central Processing Unit.
CRT Chinese Remainder Theorem.
DES Data Encryption Standard.
DPA Differential and Higher Order Power Analysis.
DRAM Dynamic Random Access Memory.
DRBG Deterministic Random Bit Generator.
EAL Evaluation Assurance Level.
ECC Elliptic Curve Cryptography.
EDA Electronic Design Automation.
FIB Focused Ion Beam.
FPGA Field Programmable Gate Array.
GPU Graphics Processing Unit.
HMAC Hash MAC.
HSM Hardware Security Module.
I2C Inter-Integrated Circuit.
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IC Integrated Circuit.
IoT Internet of Things.
ISA Instruction Set Architecture.
ISO International Organization for Standardization.
LPC Low Pin Count.
MAC Message Authentication Code.
NFC Near-Field Communication.
NIST National Institute of Standards and Technology.
NRBG Non-Deterministic Random Bit Generator.
NS Non-Secure.
OS Operating System.
PCB Printer Circuit Board.
PMA Protected Model Architecture.
PRNG Pseudo Random Number Generator.
PUF Physically Unclonable Function.
REE Rich Execution Environment.
RNG Random Number Generator.
ROM Read-Only Memory.
RSA Rivest-Shamir-Adleman.
RTL Register Transfer Level.
RTM Root of Trust for Measurement.
RTR Root of Trust for Reporting.
RTS Root of Trust for Storage.
SEM Scanning Electron Microscope.
SGX Software Guard Extension.
SIM Subscriber Identification Module.
SoC System on Chip.
SPA Simple Power Analysis.
SRAM Static Random Access Memory.
TCB Trusted Computing Base.
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TCG Trusted Computing Group.
TEE Trusted Execution Environment.
TPM Trusted Platform Module.
TRNG True Random Number Generator.
VM Virtual Machine.
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