Introduction to Lattices in
Cryptography

Dr. Essam Ghadafi

CyBOK © Crown Copyright, The National Cyber Security Centre 2025, licensed under the Open Government
Licence http://www.nationalarchives.gov.uk/doc/open-government-licence/


http://www.nationalarchives.gov.uk/doc/open-government-licence/

CYyBOK MAaApPPING

The lecture maps to the following CyBOK Knowledge Areas:

m Systems Security — Cryptography
m Infrastructure Security — Applied Cryptography
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https://www.cybok.org/media/downloads/Cryptography_v1.0.1.pdf
https://www.cybok.org/media/downloads/Applied_Cryptography_v1.0.0.pdf

OUTLINE

m A brief Overview of Vectors and Matrices: Basic concepts
of vectors and matrices, essential for understanding lattices

m Definition of Lattices: What is a lattice? Examples and
intuition
m Lattice Basis: How lattices are generated from basis vectors

m Determinant/Volume of a Lattice: Fundamental
parallelepiped and its significance

m Geometry of Lattices: Orthogonality and geometric
properties

m Successive Minima of a Lattice: Understanding lattice
structure
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VECTORS

A vector is an ordered list of numbers that represents a point or
a direction in space

m A 2D vector is written as v = (vy, v2)

m A nD vector is written as v = (v1, va, ..., vy)

Vectors can be thought of as arrows pointing from one position
to another
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VECTORS

A vector is an ordered list of numbers that represents a point or
a direction in space

m A 2D vector is written as v = (vy, v2)

m A nD vector is written as v = (v1, va, ..., vy)

Vectors can be thought of as arrows pointing from one position
to another

Example:
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VECTOR LENGTH (P-NORM)

The length (or norm) of a vector is a way to measure its size. The
general formula is:

1
[vlly = (for]” + [vaf” + ... + Joa|?) 7
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VECTOR LENGTH (P-NORM)

The length (or norm) of a vector is a way to measure its size. The
general formula is:

1
[vlly = (for]” + [vaf” + ... + Joa|?) 7

Special cases of the p-norm:

m Euclidean Norm (Ly, p = 2): ||v|2 = \/v% +v2 4. 402
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VECTOR LENGTH (P-NORM)

The length (or norm) of a vector is a way to measure its size. The
general formula is:

1
[vlly = (for]” + [vaf” + ... + Joa|?) 7

Special cases of the p-norm:

m Euclidean Norm (Ly, p = 2): ||v|2 = \/v% +v2 4. 402
m Manhattan Norm (L1, p = 1): ||v|l1 = |vi| + |ve] + ... + |vg]

= Maximum Norm (Loo, p — o0):
”VHOO = maX(‘Uﬂ? ’v2|7 PEER) |’Un|)
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VECTOR LENGTH (P-NORM)

The length (or norm) of a vector is a way to measure its size. The
general formula is:

1
[vlly = (for]” + [vaf” + ... + Joa|?) 7

Special cases of the p-norm:

m Euclidean Norm (Ly, p = 2): ||v|2 = \/v% +vi 4. 402
m Manhattan Norm (L1, p = 1): ||v|l1 = |vi| + |ve] + ... + |vg]

= Maximum Norm (Loo, p — o0):
”VHOO = max(\vll, ”Ug|, PEER) |’Un|)

The Euclidean norm is the default, and we will denote it by just

Example:
v=(3,4),|v|=v32+42=9+16=5
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MATRIX

A matrix is a rectangular array of numbers, arranged in rows and
columns

all ai12 . Aln

a1 an ... Q9n
M=

aml Am2 ... Gmn

m A matrix with m rows and n columns is called an m x n
matrix

m Special cases:

e A square matrix has the same number of rows and columns

o A diagonal matrix has nonzero elements only on its diagonal

o The identity matrix I has ones on the diagonal and zeros
elsewhere
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MATRIX MULTIPLICATION

You can only multiply compatible matrices

Rule: The number of columns in the LHS matrix must equal the
number of rows in the RHS matrix

Example: Matrix multiplication of a 2 x 2 matrix witha 2 x 1
matrix (column vector):

ail a2 bi| _ |a11b1 + a12b2
X =
a1 a2 by a1b1 + az2bo
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MATRIX MULTIPLICATION

You can only multiply compatible matrices

Rule: The number of columns in the LHS matrix must equal the
number of rows in the RHS matrix

Example: Matrix multiplication of a 2 x 2 matrix witha 2 x 1
matrix (column vector):

ail a2 bi| _ |a11b1 + a12b2
X =
a1 a2 by a1b1 + az2bo

Remember: Multiplying a matrix by its inverse results in the
identity matrix:

AxAT=A1TxA=1
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LATTICE DEFINITION — INTUITION

Lattice: A a set of points in n-dimensional space that exhibits a
periodic structure, i.e. A lattice is just a grid of points

The lattice is an infinite grid of points arranged in a
regular, repeating pattern that extends in multiple dimensions
m The position of each point is determined by the lattice basis
m The basis vectors define the directions and distances to
reach the lattice points
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F1GURE: An example of 3D Lattice
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WHY LATTICE-BASED CRYPTOGRAPHY?

m Provable security from worst-case assumptions

e Stronger security guarantees
m Lattice-based assumptions (e.g., LWE, SIS) are “believed” to
be quantum-resistant
Widely used, e.g. NIST PQC candidates are mostly
lattice-based
Efficiency

o Works over matrices and rings, it mostly involves addition
and multiplication so no modular exponentiations or pairings

Relatively more mature than some other PQC approaches
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LATTICE DEFINITION

Working over R", an n-dimensional lattice L is an (additive)
discrete subgroup of R", consisting of n-dimensional vectors
from R

m Additive: Forallz € L, —x € L,and forall z,y € L,

r+y€L
o Adding/subtracting points in the lattice, results in another
lattice point
m Discrete: Points are sufficiently far apart
m Subgroup: A subset that is a group under addition

N

Vi
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LATTICE BASIS — INTUITION

The basis of a lattice defines the directions (or
vectors) you can use to reach any point in the grid

m Each point in the lattice (grid) can be reached by combining
the basis vectors, using some integer multiples
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LATTICE BASIS — INTUITION

Example: Consider the 2D lattice generated by the basis
b, = (2, 1) and by = (1,3)

= Point (3,4) (in red) is obtained as by + b,

m Point (5,5) (in blue) is obtained by 2b; + by

Y

(5,5)

(1.3) (3,4)

FicUure: 2D-Lattice generated by the basis b; = (2,1) and by = (1, 3)
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LATTICE BASIS

A basis of a lattice is a set of k linearly independent vectors
b1, bs, ..., by € R" (points in the lattice) s.t. any vector v in the

lattice can be written as an integer linear combination of the
basis vectors:

k
szcibi, c €7

=1
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LATTICE BASIS

A basis of a lattice is a set of k linearly independent vectors
b1, bs, ..., by € R" (points in the lattice) s.t. any vector v in the

lattice can be written as an integer linear combination of the
basis vectors:

k
szcibi, c €7

=1

We can think of the basis as a matrix B € R™** with k-linearly
independent vectors by, ..., b; € R™ as columns:

B=|b, by ... bk]
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LATTICE BASIS

A basis of a lattice is a set of k linearly independent vectors
b1, bs, ..., by € R" (points in the lattice) s.t. any vector v in the

lattice can be written as an integer linear combination of the
basis vectors:

k
szcibi, c €7

=1

We can think of the basis as a matrix B € R™** with k-linearly
independent vectors by, ..., b; € R™ as columns:

B=|b, by ... bk]

We denote the lattice generated by the basis matrix B € R"**
by L(B)
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MATHEMATICAL LATTICE

m L(B) is a discrete set of points in R™ that can be described
as:

k
L(B) = {Zaibi | a; € Z}
=1

where «; € Z are integers.

Alternatively, we can define the lattice as:

L(B) = {v € R" | v = Ba for some a € Zk}
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LATTICE QUIZ

Quiz: Can you think of a matrix B (of any size) with entries from
R that cannot serve as a lattice basis?

m Hint: The basis span does not form an additive discrete
subgroup . ..
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LATTICE RANK

Lattice Rank is the number of vectors in its basis (i.e., k)

The rank is the number of independent directions
needed to span the lattice space, i.e. to navigate the entire point

grid

A lattice has full rank iff & = n, meaning it has a square basis
matrix B € R™*™ with full rank n, i.e., det(B) # 0.
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FUNDAMENTAL PARALLELEPIPED — INTUITION

The fundamental parallelepiped is the smallest
region (box) formed by the lattice basis vectors, containing one
lattice point and repeating throughout the lattice

m The smallest building block/tile of the point grid
m The lattice is created by shifting this tile in different
directions, forming the entire point grid

FIGURE: i ice with basi = -
CYBOK GUR Funéjsg?\?\PtalHrﬁr)ilLelleplped of a 2D lattice with basis vectors b1 (1,2) and by (2,1)



FUNDAMENTAL PARALLELEPIPED

Tiling of the lattice with its basis’s fundamental parallelepiped

Y

by

FIGURE: Tiling of the 2D lattice with basis vectors b; = (1,2)and by = (2, 1)
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FUNDAMENTAL PARALLELEPIPED

The fundamental parallelepiped of a basis matrix B € R"**
denoted by P(B) is the region of space spanned by B where
each point within the parallelepiped is a convex combination of
the basis vectors with the coefficients \; satisfying 0 < \; < 1

k
P(B):{Z)\ibi with Og/\i<1}

=1
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FUNDAMENTAL PARALLELEPIPED

The fundamental parallelepiped of a basis matrix B € R"**
denoted by P(B) is the region of space spanned by B where
each point within the parallelepiped is a convex combination of
the basis vectors with the coefficients \; satisfying 0 < \; < 1

k
P(B):{Z)\ibi with Og/\i<1}

=1

The volume (or n-dimensional measure) of the fundamental
parallelepiped is given by the absolute value of the determinant
of the basis matrix:

Volume = |det(B)|
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FUNDAMENTAL PARALLELEPIPED

Some useful properties:

= B can only be a basis for the lattice L(B) if P(B) does not
contain any points in L(B) other than the origin,
i.e. L(B)NP(B) = {0}

m L(B) can be fully tiled by placing P(B) at each point in
L(B) (as we have seen earlier)
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DETERMINANT (VOLUME) OF LATTICE

The determinant of a lattice classifies the lattice density (how
spread out the points are):

m A larger determinant = a more “spread-out” lattice (lower
density)

m A smaller determinant = a denser packing of lattice points
(higher density)
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DETERMINANT (VOLUME) OF LATTICE

The determinant of a lattice classifies the lattice density (how
spread out the points are):

m A larger determinant = a more “spread-out” lattice (lower
density)

m A smaller determinant = a denser packing of lattice points
(higher density)

For a lattice L(B) C R", the determinant (volume) of the lattice

is det(L(B)) = Volume(P(B)) = | det(B)| < f[l b
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LATTICE BASIS

An n-dimensional lattice, for n > 1, will have infinitely many
bases that can generate it
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LATTICE BASIS

An n-dimensional lattice, for n > 1, will have infinitely many
bases that can generate it

Two matrices B € R™*" and B’ € R"*" are bases for the same
lattice (i.e. generate the same lattice) if and only if

B=B'U
for some unimodular matrix U € R"*", where |det(U)| = 1
This means we have

det(B) = £det(B’)
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LATTICE BASIS

An n-dimensional lattice, for n > 1, will have infinitely many
bases that can generate it

Two matrices B € R™"*"™ and B’ € R"*" are bases for the same
lattice (i.e. generate the same lattice) if and only if

B=B'U
for some unimodular matrix U € R"*", where |det(U)| = 1
This means we have
det(B) = £det(B’)

This means the volume of a parallelepiped formed by the lattice
basis vectors is invariant, i.e. Volume(P(B)) = Volume(P(B’))
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LATTICE BASIS

An n-dimensional lattice, for n > 1, will have infinitely many
bases that can generate it

Two matrices B € R™"*" and B’ € R™*" are bases for the same
lattice (i.e. generate the same lattice) if and only if

B=B'U
for some unimodular matrix U € R"*", where |det(U)| = 1
This means we have
det(B) = £det(B’)

This means the volume of a parallelepiped formed by the lattice
basis vectors is invariant, i.e. Volume(P(B)) = Volume(P(B’))

Note: The same applies when the lattice is not full rank (when
the basis mag%igﬁg{% square)
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LATTICE BASIS

Example: Consider the lattice in R? generated by the basis:

o]
Bi=1y 1
Another valid basis for the same lattice is

et
We have

B, =B,;U
where

v-[i
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LATTICE BASIS — THE GOOD, THE BAD

m A good lattice basis has clear, direct steps, making it easy to
navigate and quickly reach any point in the grid.

o Used as a secret key in lattice-based cryptosystems

m A bad basis still reaches all points, but is inefficient,
requiring unnecessary steps and complicating navigation.

o Used as a public key in lattice-based cryptosystems
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LATTICE BASIS AND CRYPTOGRAPHY

Good
*Bad*

S
Y
Y

¥

One can classify the basis as Good or Bad:
m Good: Consists of short, nearly orthogonal vectors, making
computations more efficient and problem-solving easier

m Bad: Consists of long and highly skewed vectors (almost
parallel), making the lattice computationally difficult to
work wit]
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LATTICE BASIS REDUCTION METHODS

How to go from bad to good?
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LATTICE BASIS REDUCTION METHODS

How to go from bad to good?

Transforming a bad basis to a better one involves shortening
vectors and improving orthogonality among them

m Gram-Schmidt: Orthogonal but unstable and
order-dependent

o Does not always return a valid lattice basis
m LLL (Lenstra-Lenstra-Lovasz): Efficient (poly-time), produces
shorter, nearly orthogonal vectors. Utilises Gram-Schmidt
Orthogonalisation

m BKZ (Block Korkine-Zolotarev): Improves LLL with block
reduction, better results but higher cost
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SUCCESSIVE MINIMA

The successive minima of a lattice measure how
spread out the lattice is by identifying the smallest radii that
enclose at least k independent vectors (points)

A

o
N

CYBOK EssaM GHADAFI
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SUCCESSIVE MINIMA

The i-th successive minimum \;(L(B)) of a lattice L(B) C R™ is
the smallest radius r s.t. i linearly independent vectors
{v1,...,v;} of length < r exist
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SUCCESSIVE MINIMA

The i-th successive minimum \;(L(B)) of a lattice L(B) C R™ is
the smallest radius r s.t. i linearly independent vectors
{v1,...,vi} of length <rexist,ie. |lv;|| <rforallj=1,...,4.

A(L(B)) = inf{r > 0 | dim(span(L(B) N B(0,r))) > i}

Where:

m B(0,r) denotes the closed ball centdarkred at the origin
with radius r

m L(B) N B(0,r) is the set of lattice points contained within
this ball

Note: inf denotes the infimum: the largest number that is <
every element of the set.
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SUCCESSIVE MINIMA

= A\ (L(B)) is the length of the shortest nonzero vector in
L(B)
o The shortest vector is not unique, e.g. ||v|| = || — V]|
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SUCCESSIVE MINIMA

= A\ (L(B)) is the length of the shortest nonzero vector in
L(B)
o The shortest vector is not unique, e.g. ||v|| = || — V]|

m \2(L(B)) is the radius of the smallest ball containing two
linearly independent vectors
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SUCCESSIVE MINIMA

= A\ (L(B)) is the length of the shortest nonzero vector in
L(B)

o The shortest vector is not unique, e.g. ||v|| = || — V]|

m \2(L(B)) is the radius of the smallest ball containing two
linearly independent vectors

m In general, \;(L(B)) is the radius of the smallest ball
containing 7 linearly independent lattice vectors

The \,-ball contains a basis for an n-dimensional lattice

A

/A
e

b
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MINIMUM DISTANCE OF A LATTICE

The minimum distance of a lattice L, denoted by A\(L), is the
shortest distance between any two points in the lattice. It
answers the question:

m Q: How close are the closest two points in the grid?

CYBOK EssaM GHADAFI
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MINIMUM DISTANCE OF A LATTICE

The minimum distance of a lattice L, denoted by A\(L), is the
shortest distance between any two points in the lattice. It
answers the question:

m Q: How close are the closest two points in the grid?

Formally,

AML)= min |v—w|
v,wEL v#£W

The lattice minimum distance is also the length of its shortest
non-zero vector: A(L) = A\;(L)
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MINIMUM DISTANCE OF A LATTICE

The minimum distance of a lattice L, denoted by A\(L), is the
shortest distance between any two points in the lattice. It
answers the question:

m Q: How close are the closest two points in the grid?

Formally,
AML)= min |v—w]|

v,wEL v#£W

The lattice minimum distance is also the length of its shortest
non-zero vector: A(L) = A\;(L)

Note: Since lattice points are discrete, the minimum distance
must be > 0, as otherwise the set would not be discrete and
would not form a lattice

CYBOK EssaM GHADAFI
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DUuAL LATTICE

The dual (or reciprocal) lattice L* of a lattice L C R" is defined
as:
L*={yeR"|yl'xez, vxeclL}

That is, the dual lattice consists of all vectors in R” that have an
integer inner product with every vector L

The basis of L* is is given by:

B* = (BT)fl

CYBOK EssaM GHADAFI
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KEY TAKEAWAYS

CYBOK

m Lattices are discrete grids of points formed by integer
combinations of basis vectors

m The basis of a lattice is not unique, but the determinant
(volume of the fundamental parallelepiped) is invariant

o Good lattice bases are short and nearly orthogonal; bad
ones are long or nearly parallel, leading to inefficiency

m The determinant of a lattice represents the “density” of the
lattice and plays a crucial role in geometry and applications

m Successive minima provide insights into the structure and
density of the lattice
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ADDITIONAL RESOURCES & READING

m https://web.eecs.umich.edu/~cpeikert/pubs/
lattice-survey.pdf

m https://link.springer.com/chapter/10.1007/
978-3-642-23082-0_7

m https://link.springer.com/chapter/10.1007/
978-3-540-88702-7_5
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