Introduction to Lattices in Cryptography

Dr. Essam Ghadafi

CyBOK Mapping

The lecture maps to the following CyBOK Knowledge Areas:

- lacktriangle Systems Security o Cryptography
- Infrastructure Security → Applied Cryptography

OUTLINE

- A brief Overview of Vectors and Matrices: Basic concepts of vectors and matrices, essential for understanding lattices
- Definition of Lattices: What is a lattice? Examples and intuition
- Lattice Basis: How lattices are generated from basis vectors
- Determinant/Volume of a Lattice: Fundamental parallelepiped and its significance
- Geometry of Lattices: Orthogonality and geometric properties
- Successive Minima of a Lattice: Understanding lattice structure

CyBOK Essam Ghadafi

3

VECTORS

A vector is an ordered list of numbers that represents a point or a direction in space

- lacksquare A 2D vector is written as $\mathbf{v}=(v_1,v_2)$
- \blacksquare A nD vector is written as $\mathbf{v} = (v_1, v_2, \dots, v_n)$

Vectors can be thought of as arrows pointing from one position to another

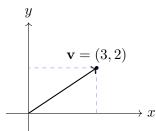
VECTORS

A vector is an ordered list of numbers that represents a point or a direction in space

- lacksquare A 2D vector is written as $\mathbf{v}=(v_1,v_2)$
- lacksquare A nD vector is written as $\mathbf{v} = (v_1, v_2, \dots, v_n)$

Vectors can be thought of as arrows pointing from one position to another

Example:



The length (or norm) of a vector is a way to measure its size. The general formula is:

$$\|\mathbf{v}\|_p = (|v_1|^p + |v_2|^p + \ldots + |v_n|^p)^{\frac{1}{p}}$$

The length (or norm) of a vector is a way to measure its size. The general formula is:

$$\|\mathbf{v}\|_p = (|v_1|^p + |v_2|^p + \dots + |v_n|^p)^{\frac{1}{p}}$$

Special cases of the p-norm:

■ Euclidean Norm (
$$L_2$$
, $p=2$): $\|\mathbf{v}\|_2 = \sqrt{v_1^2 + v_2^2 + \ldots + v_n^2}$

The length (or norm) of a vector is a way to measure its size. The general formula is:

$$\|\mathbf{v}\|_p = (|v_1|^p + |v_2|^p + \ldots + |v_n|^p)^{\frac{1}{p}}$$

Special cases of the p-norm:

- Euclidean Norm (L_2 , p=2): $\|\mathbf{v}\|_2 = \sqrt{v_1^2 + v_2^2 + \ldots + v_n^2}$
- lacksquare Manhattan Norm (L_1 , p=1): $\|\mathbf{v}\|_1=|v_1|+|v_2|+\ldots+|v_n|$
- Maximum Norm ($L\infty$, $p \to \infty$):

$$\|\mathbf{v}\|_{\infty} = \max(|v_1|, |v_2|, \dots, |v_n|)$$

The length (or norm) of a vector is a way to measure its size. The general formula is:

$$\|\mathbf{v}\|_p = (|v_1|^p + |v_2|^p + \dots + |v_n|^p)^{\frac{1}{p}}$$

Special cases of the p-norm:

- Euclidean Norm (L_2 , p=2): $\|\mathbf{v}\|_2 = \sqrt{v_1^2 + v_2^2 + \ldots + v_n^2}$
- lacksquare Manhattan Norm (L_1 , p=1): $\|\mathbf{v}\|_1=|v_1|+|v_2|+\ldots+|v_n|$
- Maximum Norm ($L\infty$, $p \to \infty$): $\|\mathbf{v}\|_{\infty} = \max(|v_1|, |v_2|, \dots, |v_n|)$

The Euclidean norm is the default, and we will denote it by just $\|\cdot\|$

Example:

$$\overline{\mathbf{v}} = (3, 4), \|\mathbf{v}\| = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = 5$$

MATRIX

A matrix is a rectangular array of numbers, arranged in rows and columns

$$\mathbf{M} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

- A matrix with m rows and n columns is called an $m \times n$ matrix
- Special cases:
 - A square matrix has the same number of rows and columns
 - A diagonal matrix has nonzero elements only on its diagonal
 - The identity matrix I has ones on the diagonal and zeros elsewhere

MATRIX MULTIPLICATION

You can only multiply compatible matrices

Rule: The number of columns in the LHS matrix must equal the number of rows in the RHS matrix

Example: Matrix multiplication of a 2×2 matrix with a 2×1 matrix (column vector):

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \times \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} a_{11}b_1 + a_{12}b_2 \\ a_{21}b_1 + a_{22}b_2 \end{bmatrix}$$

MATRIX MULTIPLICATION

You can only multiply compatible matrices

Rule: The number of columns in the LHS matrix must equal the number of rows in the RHS matrix

Example: Matrix multiplication of a 2×2 matrix with a 2×1 matrix (column vector):

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \times \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} a_{11}b_1 + a_{12}b_2 \\ a_{21}b_1 + a_{22}b_2 \end{bmatrix}$$

Remember: Multiplying a matrix by its inverse results in the identity matrix:

$$\mathbf{A} \times \mathbf{A}^{-1} = \mathbf{A}^{-1} \times \mathbf{A} = \mathbf{I}$$

LATTICE DEFINITION – INTUITION

Lattice: A a set of points in n-dimensional space that exhibits a periodic structure, i.e. A lattice is just a grid of points

- The position of each point is determined by the lattice basis
- The basis vectors define the directions and distances to reach the lattice points

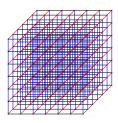


FIGURE: An example of 3D Lattice

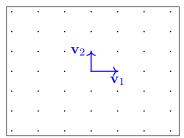
WHY LATTICE-BASED CRYPTOGRAPHY?

- Provable security from worst-case assumptions
 - Stronger security guarantees
- Lattice-based assumptions (e.g., LWE, SIS) are "believed" to be quantum-resistant
- Widely used, e.g. NIST PQC candidates are mostly lattice-based
- Efficiency
 - Works over matrices and rings, it mostly involves addition and multiplication so no modular exponentiations or pairings
- Relatively more mature than some other PQC approaches

LATTICE DEFINITION

Working over \mathbb{R}^n , an n-dimensional lattice L is an (additive) discrete subgroup of \mathbb{R}^n , consisting of n-dimensional vectors from \mathbb{R}

- Additive: For all $x \in L$, $-x \in L$, and for all $x, y \in L$, $x + y \in L$
 - Adding/subtracting points in the lattice, results in another lattice point
- Discrete: Points are sufficiently far apart
- Subgroup: A subset that is a group under addition



Lattice Basis – Intuition

- Intuition: The basis of a lattice defines the directions (or vectors) you can use to reach any point in the grid
 - Each point in the lattice (grid) can be reached by combining the basis vectors, using some integer multiples

CyBOK Essam Ghadafi 11

LATTICE BASIS – INTUITION

Example: Consider the 2D lattice generated by the basis

$$\mathbf{b}_1 = (2,1) \text{ and } \mathbf{b}_2 = (1,3)$$

- Point (3,4) (in red) is obtained as $\mathbf{b}_1 + \mathbf{b}_2$
- Point (5,5) (in blue) is obtained by $2\mathbf{b}_1 + \mathbf{b}_2$
- . . .

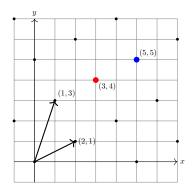


FIGURE: 2D-Lattice generated by the basis $\mathbf{b}_1 = (2,1)$ and $\mathbf{b}_2 = (1,3)$

A basis of a lattice is a set of k linearly independent vectors $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_k \in \mathbb{R}^n$ (points in the lattice) s.t. any vector \mathbf{v} in the lattice can be written as an integer linear combination of the basis vectors:

$$\mathbf{v} = \sum_{i=1}^{k} c_i \mathbf{b}_i, \quad c_i \in \mathbb{Z}$$

A basis of a lattice is a set of k linearly independent vectors $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_k \in \mathbb{R}^n$ (points in the lattice) s.t. any vector \mathbf{v} in the lattice can be written as an integer linear combination of the basis vectors:

$$\mathbf{v} = \sum_{i=1}^{k} c_i \mathbf{b}_i, \quad c_i \in \mathbb{Z}$$

We can think of the basis as a matrix $\mathbf{B} \in \mathbb{R}^{n \times k}$ with k-linearly independent vectors $\mathbf{b}_1, \dots, \mathbf{b}_k \in \mathbb{R}^n$ as columns:

$$\mathbf{B} = egin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \dots & \mathbf{b}_k \end{bmatrix}$$

13

A basis of a lattice is a set of k linearly independent vectors $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_k \in \mathbb{R}^n$ (points in the lattice) s.t. any vector \mathbf{v} in the lattice can be written as an integer linear combination of the basis vectors:

$$\mathbf{v} = \sum_{i=1}^{k} c_i \mathbf{b}_i, \quad c_i \in \mathbb{Z}$$

We can think of the basis as a matrix $\mathbf{B} \in \mathbb{R}^{n \times k}$ with k-linearly independent vectors $\mathbf{b}_1, \dots, \mathbf{b}_k \in \mathbb{R}^n$ as columns:

$$\mathbf{B} = \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \dots & \mathbf{b}_k \end{bmatrix}$$

We denote the lattice generated by the basis matrix $\mathbf{B} \in \mathbb{R}^{n \times k}$ $_{ ext{CyBOK}}$ by $L(\mathbf{B})$

Essam Ghadafi

MATHEMATICAL LATTICE

■ $L(\mathbf{B})$ is a discrete set of points in \mathbb{R}^n that can be described as:

$$L(\mathbf{B}) = \left\{ \sum_{i=1}^{k} \alpha_i \mathbf{b}_i \mid \alpha_i \in \mathbb{Z} \right\}$$

where $\alpha_i \in \mathbb{Z}$ are integers.

Alternatively, we can define the lattice as:

$$L(\mathbf{B}) = \left\{ \mathbf{v} \in \mathbb{R}^n \mid \mathbf{v} = \mathbf{B} \boldsymbol{\alpha} \text{ for some } \boldsymbol{\alpha} \in \mathbb{Z}^k \right\}$$

LATTICE QUIZ

Quiz: Can you think of a matrix $\mathbf B$ (of any size) with entries from $\mathbb R$ that cannot serve as a lattice basis?

Hint: The basis span does not form an additive discrete subgroup . . .

CyBOK Essam Ghadafi 15

LATTICE RANK

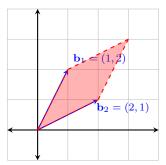
Lattice Rank is the number of vectors in its basis (i.e., k)

A lattice has full rank iff k=n, meaning it has a square basis matrix $\mathbf{B} \in \mathbb{R}^{n \times n}$ with full rank n, i.e., $\det(\mathbf{B}) \neq 0$.

Cybok Essam Ghadafi 16

FUNDAMENTAL PARALLELEPIPED - INTUITION

- The smallest building block/tile of the point grid
- The lattice is created by shifting this tile in different directions, forming the entire point grid



FUNDAMENTAL PARALLELEPIPED

Tiling of the lattice with its basis's fundamental parallelepiped

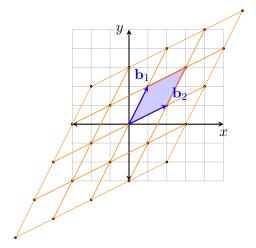


FIGURE: Tiling of the 2D lattice with basis vectors $\mathbf{b}_1=(1,2)$ and $\mathbf{b}_2=(2,1)$

Fundamental Parallelepiped

The fundamental parallelepiped of a basis matrix $\mathbf{B} \in \mathbb{R}^{n \times k}$ denoted by $\mathcal{P}(\mathbf{B})$ is the region of space spanned by \mathbf{B} where each point within the parallelepiped is a convex combination of the basis vectors with the coefficients λ_i satisfying $0 \le \lambda_i < 1$

$$\mathcal{P}(\mathbf{B}) = \left\{ \sum_{i=1}^{k} \lambda_i \mathbf{b}_i \quad \text{with} \quad 0 \le \lambda_i < 1 \right\}$$

Fundamental Parallelepiped

The fundamental parallelepiped of a basis matrix $\mathbf{B} \in \mathbb{R}^{n \times k}$ denoted by $\mathcal{P}(\mathbf{B})$ is the region of space spanned by \mathbf{B} where each point within the parallelepiped is a convex combination of the basis vectors with the coefficients λ_i satisfying $0 \le \lambda_i < 1$

$$\mathcal{P}(\mathbf{B}) = \left\{ \sum_{i=1}^{k} \lambda_i \mathbf{b}_i \quad \text{with} \quad 0 \le \lambda_i < 1 \right\}$$

The volume (or n-dimensional measure) of the fundamental parallelepiped is given by the absolute value of the determinant of the basis matrix:

$$\mathsf{Volume} = |\det(\mathbf{B})|$$

CYBOK ESSAM GHADAFI 19

Fundamental Parallelepiped

Some useful properties:

- B can only be a basis for the lattice $L(\mathbf{B})$ if $\mathcal{P}(\mathbf{B})$ does not contain any points in $L(\mathbf{B})$ other than the origin, i.e. $L(\mathbf{B}) \cap \mathcal{P}(\mathbf{B}) = \{\mathbf{0}\}$
- $L(\mathbf{B})$ can be fully tiled by placing $\mathcal{P}(\mathbf{B})$ at each point in $L(\mathbf{B})$ (as we have seen earlier)

DETERMINANT (VOLUME) OF LATTICE

The determinant of a lattice classifies the lattice density (how spread out the points are):

- A larger determinant ⇒ a more "spread-out" lattice (lower density)
- A smaller determinant ⇒ a denser packing of lattice points (higher density)

CyBOK Essam Ghadafi 2

DETERMINANT (VOLUME) OF LATTICE

The determinant of a lattice classifies the lattice density (how spread out the points are):

- A larger determinant ⇒ a more "spread-out" lattice (lower density)
- A smaller determinant ⇒ a denser packing of lattice points (higher density)

For a lattice $L(\mathbf{B}) \subseteq \mathbb{R}^n$, the determinant (volume) of the lattice is $\det(L(\mathbf{B})) = \mathsf{Volume}(\mathcal{P}(\mathbf{B})) = |\det(\mathbf{B})| \leq \prod\limits_{i=1}^k \|\mathbf{b}_i\|$

An n-dimensional lattice, for n>1, will have infinitely many bases that can generate it

An n-dimensional lattice, for n>1, will have infinitely many bases that can generate it

Two matrices $\mathbf{B} \in \mathbb{R}^{n \times n}$ and $\mathbf{B}' \in \mathbb{R}^{n \times n}$ are bases for the same lattice (i.e. generate the same lattice) if and only if

$$\mathbf{B} = \mathbf{B}'\mathbf{U}$$

for some unimodular matrix $\mathbf{U} \in \mathbb{R}^{n \times n}$, where $|\mathsf{det}(\mathbf{U})| = 1$

This means we have

$$\det(\mathbf{B}) = \pm \det(\mathbf{B}')$$

An n-dimensional lattice, for n > 1, will have infinitely many bases that can generate it

Two matrices $\mathbf{B} \in \mathbb{R}^{n \times n}$ and $\mathbf{B}' \in \mathbb{R}^{n \times n}$ are bases for the same lattice (i.e. generate the same lattice) if and only if

$$\mathbf{B} = \mathbf{B}'\mathbf{U}$$

for some unimodular matrix $\mathbf{U} \in \mathbb{R}^{n \times n}$, where $|\mathsf{det}(\mathbf{U})| = 1$

This means we have

$$\det(\mathbf{B}) = \pm \det(\mathbf{B}')$$

This means the volume of a parallelepiped formed by the lattice basis vectors is invariant, i.e. $Volume(\mathcal{P}(\mathbf{B})) = Volume(\mathcal{P}(\mathbf{B}'))$

Cybok Essam Ghadafi 2

An n-dimensional lattice, for n > 1, will have infinitely many bases that can generate it

Two matrices $\mathbf{B} \in \mathbb{R}^{n \times n}$ and $\mathbf{B}' \in \mathbb{R}^{n \times n}$ are bases for the same lattice (i.e. generate the same lattice) if and only if

$$\mathbf{B} = \mathbf{B}'\mathbf{U}$$

for some unimodular matrix $\mathbf{U} \in \mathbb{R}^{n \times n}$, where $|\det(\mathbf{U})| = 1$

This means we have

$$\det(\mathbf{B}) = \pm \det(\mathbf{B}')$$

This means the volume of a parallelepiped formed by the lattice basis vectors is invariant, i.e. $Volume(\mathcal{P}(\mathbf{B})) = Volume(\mathcal{P}(\mathbf{B}'))$

Note: The same applies when the lattice is not full rank (when the basis matrix is not square)

Example: Consider the lattice in \mathbb{R}^2 generated by the basis:

$$\mathbf{B}_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Another valid basis for the same lattice is

$$\mathbf{B}_2 = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$$

We have

$$\mathbf{B}_2 = \mathbf{B}_1 \mathbf{U}$$

where

$$\mathbf{U} = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$$

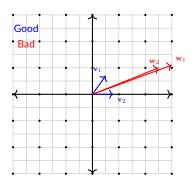
LATTICE BASIS – THE GOOD, THE BAD

P Intuition:

- A good lattice basis has clear, direct steps, making it easy to navigate and quickly reach any point in the grid.
 - Used as a secret key in lattice-based cryptosystems
- A bad basis still reaches all points, but is inefficient, requiring unnecessary steps and complicating navigation.
 - Used as a public key in lattice-based cryptosystems

Cybok Essam Ghadafi 24

Lattice Basis and Cryptography



One can classify the basis as Good or Bad:

- Good: Consists of short, nearly orthogonal vectors, making computations more efficient and problem-solving easier
- Bad: Consists of long and highly skewed vectors (almost parallel), making the lattice computationally difficult to work with

LATTICE BASIS REDUCTION METHODS

How to go from bad to good?

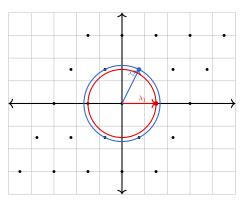
Lattice Basis Reduction Methods

How to go from bad to good?

Transforming a bad basis to a better one involves shortening vectors and improving orthogonality among them

- Gram-Schmidt: Orthogonal but unstable and order-dependent
 - Does not always return a valid lattice basis
- LLL (Lenstra-Lenstra-Lovász): Efficient (poly-time), produces shorter, nearly orthogonal vectors. Utilises Gram-Schmidt Orthogonalisation
- BKZ (Block Korkine-Zolotarev): Improves LLL with block reduction, better results but higher cost

Intuition: The successive minima of a lattice measure how spread out the lattice is by identifying the smallest radii that enclose at least k independent vectors (points)



The *i*-th successive minimum $\lambda_i(L(\mathbf{B}))$ of a lattice $L(\mathbf{B}) \subseteq \mathbb{R}^n$ is the smallest radius r s.t. i linearly independent vectors $\{\mathbf{v}_1, \ldots, \mathbf{v}_i\}$ of length $\leq r$ exist

The *i*-th successive minimum $\lambda_i(L(\mathbf{B}))$ of a lattice $L(\mathbf{B}) \subseteq \mathbb{R}^n$ is the smallest radius r s.t. i linearly independent vectors $\{\mathbf{v_1},\ldots,\mathbf{v_i}\}$ of length $\leq r$ exist , i.e. $\|v_j\| \leq r$ for all $j=1,\ldots,i$.

$$\lambda_i(L(\mathbf{B})) = \inf\{r > 0 \mid \dim(\mathsf{span}(L(\mathbf{B}) \cap B(0,r))) \ge i\}$$

Where:

- $lackbox{ } B(0,r)$ denotes the closed ball centdarkred at the origin with radius r
- $L(\mathbf{B}) \cap B(0,r)$ is the set of lattice points contained within this ball

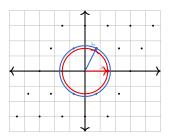
Note: \inf denotes the infimum: the largest number that is \leq every element of the set.

- $\lambda_1(L(\mathbf{B}))$ is the length of the shortest nonzero vector in $L(\mathbf{B})$
 - \bullet The shortest vector is not unique, e.g. $\|\mathbf{v}\| = \|-\mathbf{v}\|$

- $\lambda_1(L(\mathbf{B}))$ is the length of the shortest nonzero vector in $L(\mathbf{B})$
 - ullet The shortest vector is not unique, e.g. $\|\mathbf{v}\| = \|-\mathbf{v}\|$
- lacksquare $\lambda_2(L(\mathbf{B}))$ is the radius of the smallest ball containing two linearly independent vectors

- $\lambda_1(L(\mathbf{B}))$ is the length of the shortest nonzero vector in $L(\mathbf{B})$
 - ullet The shortest vector is not unique, e.g. $\|\mathbf{v}\| = \|-\mathbf{v}\|$
- lacksquare $\lambda_2(L(\mathbf{B}))$ is the radius of the smallest ball containing two linearly independent vectors
- In general, $\lambda_i(L(\mathbf{B}))$ is the radius of the smallest ball containing i linearly independent lattice vectors

The λ_n -ball contains a basis for an n-dimensional lattice



MINIMUM DISTANCE OF A LATTICE

The **minimum distance** of a lattice L, denoted by $\lambda(L)$, is the shortest distance between any two points in the lattice. It answers the question:

Q: How close are the closest two points in the grid?

MINIMUM DISTANCE OF A LATTICE

The **minimum distance** of a lattice L, denoted by $\lambda(L)$, is the shortest distance between any two points in the lattice. It answers the question:

• Q: How close are the closest two points in the grid?

Formally,

$$\lambda(L) = \min_{\mathbf{v}, \mathbf{w} \in L, \mathbf{v} \neq \mathbf{w}} \|\mathbf{v} - \mathbf{w}\|$$

The lattice minimum distance is also the length of its shortest non-zero vector: $\lambda(L)=\lambda_1(L)$

MINIMUM DISTANCE OF A LATTICE

The **minimum distance** of a lattice L, denoted by $\lambda(L)$, is the shortest distance between any two points in the lattice. It answers the question:

Q: How close are the closest two points in the grid?

Formally,

$$\lambda(L) = \min_{\mathbf{v}, \mathbf{w} \in L, \mathbf{v} \neq \mathbf{w}} \|\mathbf{v} - \mathbf{w}\|$$

The lattice minimum distance is also the length of its shortest non-zero vector: $\lambda(L) = \lambda_1(L)$

Note: Since lattice points are discrete, the minimum distance must be > 0, as otherwise the set would not be discrete and would not form a lattice

30

DUAL LATTICE

The dual (or reciprocal) lattice L^* of a lattice $L \subseteq \mathbb{R}^n$ is defined as:

$$L^* = \{ \mathbf{y} \in \mathbb{R}^n \mid \mathbf{y}^T \mathbf{x} \in \mathbb{Z}, \quad \forall \mathbf{x} \in L \}$$

That is, the dual lattice consists of all vectors in \mathbb{R}^n that have an integer inner product with every vector L

The basis of L^* is is given by:

$$\mathbf{B}^* = (\mathbf{B}^T)^{-1}$$

KEY TAKEAWAYS

- Lattices are discrete grids of points formed by integer combinations of basis vectors
- The basis of a lattice is not unique, but the determinant (volume of the fundamental parallelepiped) is invariant
 - Good lattice bases are short and nearly orthogonal; bad ones are long or nearly parallel, leading to inefficiency
- The determinant of a lattice represents the "density" of the lattice and plays a crucial role in geometry and applications
- Successive minima provide insights into the structure and density of the lattice

Additional Resources & Reading

- https://web.eecs.umich.edu/~cpeikert/pubs/ lattice-survey.pdf
- https://link.springer.com/chapter/10.1007/ 978-3-642-23082-0_7
- https://link.springer.com/chapter/10.1007/ 978-3-540-88702-7_5