Introduction to the Era of
Post-Quantum Cryptography

Dr. Essam Ghadafi

CyBOK © Crown Copyright, The National Cyber Security Centre 2025, licensed under the Open Government
Licence http://www.nationalarchives.gov.uk/doc/open-government-licence/


http://www.nationalarchives.gov.uk/doc/open-government-licence/

CYyBOK MAaApPPING

The lecture maps to the following CyBOK Knowledge Areas:

m Systems Security — Cryptography
m Infrastructure Security — Applied Cryptography
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https://www.cybok.org/media/downloads/Cryptography_v1.0.1.pdf
https://www.cybok.org/media/downloads/Applied_Cryptography_v1.0.0.pdf

LECTURE OUTLINE

CYyBOK

Classical Cryptography: Overview of symmetric and
asymmetric cryptography

Shor’s and Grover’s Algorithms: Impact of quantum
algorithms on cryptography

Introduction to Quantum Computing: Qubits,
superposition, and entanglement

The Issue(s) in Classical Cryptography: Vulnerabilities of
classical systems to quantum attacks

Post-Quantum Cryptography Approaches: Brief overview
of quantum-resistant cryptographic methods

Challenges in Post-Quantum Cryptography: Efficiency
trade-offs, key sizes, and security proofs
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SECRET-KEY CRYPTOGRAPHY

l Secret Key (K)
i

Alice Bob

Secret Key (K)

Communicating parties must share a secret key
m Requires solution to key-distribution problem

o How can Alice send a message that only Bob can read? Use
Secret-Key Encryption
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SECRET-KEY CRYPTOGRAPHY

l Secret Key (K)
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Secret Key (K)

Communicating parties must share a secret key
m Requires solution to key-distribution problem

o How can Bob send a message that only Bob could have sent?
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SECRET-KEY CRYPTOGRAPHY

l Secret Key (K)
i

Alice Bob

Secret Key (K)

Communicating parties must share a secret key
m Requires solution to key-distribution problem

o How can Bob send a message that only Bob could have sent?
Use MACs
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Bob'’s Public Key PKggp ¥
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Everyone knows PKpggp but only Bob knows SKggp,
= How is this done in practice?

Goals:
= How can Alice send a message that only Bob can read?
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Goals:

= How can Alice send a message that only Bob can read?
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PuBLIC-KEY CRYPTOGRAPHY

Bob'’s Public Key PKggp ¥

Bob'’s Public Key PKpop v Bob'’s Secret Key SKgqp

Alice Bob

Everyone knows PKpggp but only Bob knows SKggp,
= How is this done in practice?

Goals:

m How can Bob send a message that only Bob could have

sent?
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PuBLIC-KEY CRYPTOGRAPHY

Bob'’s Public Key PKggp ¥

Bob’s Public Key PKpg, 4 I’ Bob'’s Secret Key SKgqp

Alice Bob

Everyone knows PKpggp but only Bob knows SKggp,
= How is this done in practice?

Goals:

m How can Bob send a message that only Bob could have
sent? Use Digital Signatures
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Security Requirement R

| Security Proof| = e.g. EUF-CMA, IND-CCA
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PROVABLE SECURITY (CLASSIC CRYPTO)

Security Requirement R

| Security Proof| = e.g. EUF-CMA, IND-CCA

+

Hard Problem P
e.g. Factoring, DLog

+
\A reduction from R to P

If attacker violates requirement R, we solve problem P

The Issue: Only classic attackers have been considered against P

= How about Quantum attackers?
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QuUANTUM COMPUTERS

m Exploit quantum phenomena,
e.g. superposition &
entanglement
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QuUANTUM COMPUTERS

m Exploit quantum phenomena,
e.g. superposition &
entanglement

m Utilise different rules than
classic computers, e.g. qubits

m A lot of attention and
advancement in recent years

m A lot of applications: Genomic
sequencing, finance, etc.
o How do they affect used
Cryptography?
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Crassic BiT vs. QUANTUM BIT

The state of a classic bit can be either 0 or 1

CyYyBOK EssAM GHADAFI



Crassic BiT vs. QUANTUM BIT

The state of a quantum bit (qubit) is a complex unit vector
al0) + B|1)

where |a?> + |32 =1and o, 3 € C
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Crassic BiT vs. QUANTUM BIT

The state of a quantum bit (qubit) is a complex unit vector
al0) + B|1)
where |a?> + |32 =1and o, 3 € C

We can think of a classic bit as additionally requiring that
la?=0o0r|a> =1
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CrAssic BIT vs. QUANTUM BIT

The state of a quantum bit (qubit) is a complex unit vector
al0) + B|1)
where |a?> + |32 =1and o, 3 € C

We can think of a classic bit as additionally requiring that
la|> =0or|a)> =1

When measuring a qubit, it has probability |«|? of being |0) and
probability | 3|2 of being |1)

m After the measurement, the system is in the measured state
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EXPERT’S OPINIONS

In 2021, experts were asked about the likelihood of a quantum
computer breaking 2048-bit RSA

30 years -l S b3 11 16
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10 years - 9 15

S years - 25 1L

WITHIN THIS MANY YEARS FROM NOW

o 5 10 15 20 25 30 35 40 as
NUMBER OF RESPONDENTS WHO INDICATED A CERTAIN LIKELIHOOD

[https://globalriskinstitute.org/publications/2021-quantum-threat-timeline-report]
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Wnuy Act Now?

Why should we care, even if large-scale quantum computers are
not yet a reality?
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Wnuy Act Now?

Why should we care, even if large-scale quantum computers are
not yet a reality?

m Quantum Threats Loom: Quantum computers will
eventually break current cryptography

m SNDL (Store Now, Decrypt Later): Today's encrypted data
may be stored now and decrypted in the future

m Slow Deployment: New cryptographic standards take years
to be deploy at scale
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QUANTUM ALGORITHMS

m 1994: Shor’s algorithm
o Breaks DLog & factoring with poly many gates and depth
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QUANTUM ALGORITHMS

m 1996: Grover’s algorithm

o Quadratic speed up for search problems, i.e. from O(N) to
(’)(\/]V). Applicable to exhaustive key search (brute-forcing)
and hash collisions
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THE BASIC PROBLEM

Some of today’s Cryptography relies mostly on hard problems
which do not hold against quantum attackers
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THE BASIC PROBLEM

Some of today’s Cryptography relies mostly on hard problems
which do not hold against quantum attackers, e.g.:

m Hardness of factoring large (e.g. 2048-bit) numbers,
e.g. RSA encryption, RSA signatures
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THE BASIC PROBLEM

Some of today’s Cryptography relies mostly on hard problems
which do not hold against quantum attackers, e.g.:

m Hardness of computing discrete logarithms (and related
assumptions), e.g DSA, Diffie-Hellman, EIGamal
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CLASSICAL HARD PROBLEMS

Factoring Problem

Input: n = px ¢ for some large primes p and ¢
Task: Factor n to find p and ¢
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Factoring Problem

Input: n = px ¢ for some large primes p and ¢
Task: Factor n to find p and ¢

Has implications for many other assumptions, e.g. RSA, Strong
RSA, etc.
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CLASSICAL HARD PROBLEMS

Factoring Problem

Input: n = px ¢ for some large primes p and ¢
Task: Factor n to find p and ¢

Has implications for many other assumptions, e.g. RSA, Strong
RSA, etc.

Quantum hardness of factoring is poly(log n)
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CLASSICAL HARD PROBLEMS

Discrete Logarithm (DLog) Problem

Input: Group G = (g) of order p, elements g and X = ¢*
Task: Find z € Z,
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CLASSICAL HARD PROBLEMS

Discrete Logarithm (DLog) Problem

Input: Group G = (g) of order p, elements g and X = ¢*
Task: Find z € Z,

Has implications for many other assumptions, e.g. CDH, DDH,
q-SDH, etc.
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CLASSICAL HARD PROBLEMS

Discrete Logarithm (DLog) Problem

Input: Group G = (g) of order p, elements g and X = ¢*
Task: Find z € Z,

Has implications for many other assumptions, e.g. CDH, DDH,
q-SDH, etc.

Quantum hardness of DLog is poly(log p)
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SHOR’S ALGORITHM & FACTORING

m Factoring < Order-Finding
o Factoring reduces to order-finding

> An efficient algorithm to find the order of elements modulo
N = we can factor N efficiently

m Order-Finding ~ Period-Finding

o Order-finding and period-finding are approximately
equivalent
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SHOR’S ALGORITHM

Steps of Shor's Algorithm:
® Choose a random number a
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® Choose a random number a
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SHOR’S ALGORITHM

Steps of Shor's Algorithm:
® Choose a random number a
® Compute ged (a, N). If it’s non-trivial, we are done

® Find the period r of f(x) = a® mod N using Quantum
Fourier Transform (QFT)

o 7 is the order of a mod N, i.e. smallest r > 1
st.a" =1mod N

This step can be efficiently computed
in time O((log N)? loglog V) on a quantum computer
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SHOR’S ALGORITHM

Steps of Shor's Algorithm:
® Choose a random number a
® Compute ged (a, N). If it’s non-trivial, we are done

® Find the period r of f(z) = a® mod N using Quantum
Fourier Transform (QFT)

o 7 is the order of a mod N, i.e. smallest r > 1
st.a" =1mod N

@ Compute ged (cﬁ — 1, N) to get a non-trivial factor

This step can be efficiently computed
in time O((log N)? loglog V) on a quantum computer
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SHOR’S ALGORITHM — EXAMPLE

Example: Factoring 21:
m Choose a = 2, compute powers: 2% mod 21
= Sequence: 2,4,8,16,11,1,2,4,8,16,11,1,... (Period r = 6)
= Compute ged (28 — 1,21) = ged(7,21) =7
m Factors: 3,7,thus 21 =3 x 7

Factoring is easy to solve if we can find the period r efficiently
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GROVER’S ALGORITHM

What does it do?
m Quantum search algorithm
m Finds a marked item in an unsorted database of size N in
O(VN)
m Quadratic speedup over classical brute-force search (

O(V/N) vs. O(N))
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PQ Security Requirement R

‘Security Proof‘ = EUF-CMA-PQ
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PQ Hard Problem P
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PosT-QuaNTUM (PQ) SECURITY

‘ Security Proof ‘ =

If attacker violates requirement R, we solve problem P.

PQ Security Requirement R
e.g. EUF-CMA-PQ

+

PQ Hard Problem P
e.g. LWE, SIS

+
\A reduction from R to P

Caters for quantum attackers
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POST-QUANTUM HARD PROBLEMS

PSPACE problems

NP problems
NP complete

\ P problems BQP |)
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POST-QUANTUM HARD PROBLEMS

PSPACE problems

NP problems
NP complete

m Class P: Can be efficiently solved by a classical computer
Example: Primality Testing, Linear Programming, etc.
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POST-QUANTUM HARD PROBLEMS

PSPACE problems

NP problems
NP complete

m Class BQP: Can be efficiently solved by a quantum
computer
o Factoring and DLog belong to this class

CyYyBOK EssAM GHADAFI
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POST-QUANTUM HARD PROBLEMS

PSPACE problems

NP problems
NP complete

Some potential post-quantum candidates:
m Solving multivariate non-linear equations over a finite field
m Bounded distance decoding over finite fields
m Finding closest & shortest lattice vectors
m Breaking cryptographic hash functions
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EXISTING /PREVIOUS STANDARDS

m NIST public-key crypto standards

o SP 800-56A: Diffie-Hellman, ECDH
o SP 800-56B: RSA encryption
o FIPS 186: RSA, DSA, and ECDSA signatures

All of the above can be easily broken by a large scale quantum
computer
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PosT-QUANTUM SYMMETRIC CRYPTO

A large scale quantum computer would also impact symmetric
Cryptography, e.g. AES, SHA-3, but not by much
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PosT-QUANTUM SYMMETRIC CRYPTO

A large scale quantum computer would also impact symmetric
Cryptography, e.g. AES, SHA-3, but not by much

m Quantum hardness of searching X is ®(|X\%) vs. O(| X))
classic hardness
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PosT-QUANTUM SYMMETRIC CRYPTO

A large scale quantum computer would also impact symmetric
Cryptography, e.g. AES, SHA-3, but not by much

m Quantum hardness of searching X is @(|X\%) vs. O(| X))
classic hardness

= Quantum hardness of finding collisions @(|X|%)
VS. (9(|/'\,’]%) classic hardness
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PosT-QUANTUM SYMMETRIC CRYPTO

A large scale quantum computer would also impact symmetric
Cryptography, e.g. AES, SHA-3, but not by much

m Quantum hardness of searching X is @(|X\%) vs. O(| X))
classic hardness

= Quantum hardness of finding collisions @(|X|%)
VS. (9(|/'\,’]%) classic hardness

e.g. To get same security level of AES, double key size
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PQC APPROACHES

One-way
functions

Isogenies

Post-quantum
Cryptography

Multivariate
Equations

m Various intractability assumptions
m Sometimes not easy to compare like-for-like
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LATTICE-BASED CRYPTOGRAPHY

A lattice is a set generated by integer linear combinations of the
columns of a matrix

m Key idea: Use a good reduced basis as SK and a bad basis as
PK

m Enabled the first realisation of fully homomorphic
encryption
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LATTICE-BASED CRYPTOGRAPHY

Example: Closest Vector Problem (CVP)

.0.0.:......<®‘.:. ...0.:.....60.:.

@ Intuition: Find the closest lattice point to a given target
m Hard in high dimensions

CyYyBOK EssAM GHADAFI
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MULTIVARIATE CRYPTOGRAPHY

MQ Problem

Input: Quadratic polynomials fi, ..., fm € Flz1,...,z,] of

degree < 2
Task: Findy e F" s.t. fi(y) =0foralli=1,...,m

Solve a system of quadratic equations over a finite
field
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MULTIVARIATE CRYPTOGRAPHY

MQ Problem

Input: Quadratic polynomials fi, ..., fm € Flz1,...,z,] of

degree < 2
Task: Findy e F" s.t. fi(y) =0foralli=1,...,m

Solve a system of quadratic equations over a finite
field

m Even small systems are hard to solve efficiently
m Decisional MQ problem is NP-Complete

m Cryptosystems typically have large keys, but small
signatures/ciphertexts (e.g., Rainbow signature scheme

(Broken!))

CYyBOK EssAM GHADAFI



HAsSH-BASED CRYPTOGRAPHY

Used mainly for digital signatures (e.g., Lamport scheme)
m Signature schemes based on hash functions
m Security reduces to finding collisions in the hash

m Large signatures and slower signing (SPHINCS+ signature
scheme standardised by NIST)
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CODE-BASED CRYPTOGRAPHY

Syndrome Decoding Problem

Input: A (binary) matrix A € F7*™, syndrome s € F}
Task: Find e € 3" of small Hamming weight s.t. Ae =s

Solve a linear system over F,, constrained to a
sparse (low-weight) solution

N
=
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CODE-BASED CRYPTOGRAPHY

Syndrome Decoding Problem

Input: A (binary) matrix A € F7*™, syndrome s € F}
Task: Find e € 3" of small Hamming weight s.t. Ae =s

Solve a linear system over F,, constrained to a
sparse (low-weight) solution

m Large keys (e.g., 220kB for 128-bit security in McEliece
Encryption)

m Some schemes broken recently, but still practical for high
security

m Modern variant: HQC (Hamming Quasi-Cyclic encryption),
selected by NIST in 2025 for standardization

CYyBOK EssAM GHADAFI
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ISOGENY-BASED CRYPTOGRAPHY

Isogeny Problem

Input: Two isogenous elliptic curves E1, Fs
Task: Compute a map (isogeny) ¢ : E, — Es

Find a secret transformation between two elliptic
curves

m Easy to verify once known, but hard to compute without
the secret
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ISOGENY-BASED CRYPTOGRAPHY

Isogeny Problem

Input: Two isogenous elliptic curves E1, Fs
Task: Compute a map (isogeny) ¢ : E, — Es

Find a secret transformation between two elliptic
curves

m Easy to verify once known, but hard to compute without
the secret

m Yield compact cryptosystems

m Some schemes broken recently (SIDH/SIKE), but
conceptually promising
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PQC FROM SYMMETRIC-KEY CRYPTOGRAPHY

Based on classical primitives (block ciphers, hash functions, etc.)
with quantum-safe parameters
Example:

m AES with 256-bit key (resistant to Grover’s algorithm)
m Hash-based constructions for signatures
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PQC FROM SYMMETRIC-KEY CRYPTOGRAPHY

Based on classical primitives (block ciphers, hash functions, etc.)
with quantum-safe parameters
Example:

m AES with 256-bit key (resistant to Grover’s algorithm)

m Hash-based constructions for signatures

Advantages: Efficient, simple, well-studied
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NEw PQC STANDARDS

m 2016: NIST called for quantum-resistant cryptographic
algorithms for new public-key cryptography standards
(Digital signatures, Encryption & Key-establishment)
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m 2016: NIST called for quantum-resistant cryptographic
algorithms for new public-key cryptography standards
(Digital signatures, Encryption & Key-establishment)

m 2022: NIST announced chosen candidates:
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NEw PQC STANDARDS

m 2016: NIST called for quantum-resistant cryptographic
algorithms for new public-key cryptography standards
(Digital signatures, Encryption & Key-establishment)

m 2022: NIST announced chosen candidates:
e Encryption & Key Establishment:
» CRYSTALS-KYBER (Lattice-based)
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NEw PQC STANDARDS

m 2016: NIST called for quantum-resistant cryptographic
algorithms for new public-key cryptography standards
(Digital signatures, Encryption & Key-establishment)

m 2022: NIST announced chosen candidates:
e Encryption & Key Establishment:
» CRYSTALS-KYBER (Lattice-based)

o Digital Signatures:

» CRYSTALS-DILITHIUM (Lattice-based)
» FALCON (Lattice-based)
» SPHINCS+ (Hash-based)
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NEw PQC STANDARDS

2024: Finalized NIST standards published:

m FIPS 203: Module-Lattice-Based Key-Encapsulation
Mechanism (ML-KEM) - CRYSTALS-KYBER

m FIPS 204: Module-Lattice-Based Digital Signature
Algorithm (ML-DSA) - CRYSTALS-DILITHIUM

m FIPS 205: Stateless Hash-Based Digital Signature Algorithm
(SLH-DSA) - SPHINCS+

CYyBOK EssAM GHADAFI
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NIST PQC — ADDITIONAL SIGNATURES

m Key Dates
o NIST issues a call for Additional Signatures published: 6 Sep,
2022
o Submission deadline: 1 Jun, 2023
o Round 1 candidates announced (40): 17 Jul, 2023
o Round 2 candidates announced (14): 24 Oct, 2024
o Deadline for updated Round 2 packages: 17 Jan, 2025

CyYyBOK EssAM GHADAFI 32



NIST PQC — ADDITIONAL SIGNATURES

m Key Dates

o NIST issues a call for Additional Signatures published: 6 Sep,
2022

o Submission deadline: 1 Jun, 2023

o Round 1 candidates announced (40): 17 Jul, 2023

o Round 2 candidates announced (14): 24 Oct, 2024

o Deadline for updated Round 2 packages: 17 Jan, 2025

Round 2 Candidates by Approach (Total: 14)
Approach Number

MPC-in-the-Head (Zero-Knowledge based)
Multivariate
Code-based
Isogeny-based
Lattice-based
Symmetric-based

PR R, N0
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NIST HQC STANDARD

CyYyBOK

m HQC (Hamming Quasi Cyclic) is a code-based Key
Encapsulation Mechanism

m Selected by NIST on 11 Mar, 2025 as the 5th PQC standard
and backup to ML KEM

o Provides algorithmic diversity beyond lattice assumptions

m Security relies on the Quasi Cyclic Syndrome Decoding
problem

m Draft standard expected in 2026 and final standard in 2027
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EFFICIENCY COMPARISON (128-BIT SECURITY)

CyYyBOK

Scheme Signature Size | PK Size
RSA-3072 384 384
ECDSA-256 64 64
CRYSTALS-DILITHIUM 2,420 1,312
FALCON 666 897
SPHINCS+ 17,088 32

Sizes are in bytes

EssAM GHADAFI
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SOME CHALLENGES IN PQC

Larger keys, signatures, and ciphertexts

Higher resource demands (time, hardware, memory)
New operations and assumptions
o Some assumptions (e.g., SIDH) have been broken

Side-channel attacks
More complex implementations

o Non-uniform sampling, sampling rejection, decryption
failures, etc.

CyYyBOK EssAM GHADAFI
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KEY TAKEAWAYS

m Shor’s and Grover’s Algorithms threaten classical
cryptosystems by efficiently solving hard problems

m Post-Quantum Cryptography aims to develop
quantum-resistant cryptosystems to secure future
communications

m Challenges in PQC include balancing efficiency and
security, and some approaches are not as mature as their
classical counterparts
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ADDITIONAL RESOURCES & READING

m NIST PQC Standardization Project: https://csrc.nist.
gov/projects/post—quantum—-cryptography

m Open Quantum Safe Project:
https://github.com/open—-quantum-safe

m Shor's Paper:
https://arxiv.org/abs/quant-ph/9508027
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