Lattice-Based Public-Key Encryption

Dr. Essam Ghadafi

CyBOK Mapping

The lecture maps to the following CyBOK Knowledge Areas:

- lacktriangle Systems Security o Cryptography
- $\blacksquare \ \, \text{Infrastructure Security} \to \text{Applied Cryptography}$

OUTLINE

- IND-CPA vs IND-CCA Security for Public-Key Encryption
 - A reminder
- Regev's Encryption Scheme
 - Overview and mechanism of encryption
 - Security of the scheme
 - Extending the Message Space
- Kyber Encryption
 - Overview and mechanism of encryption
 - Security & Efficiency of the scheme

Public-Key Encryption – Syntax

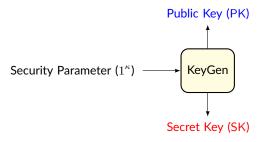
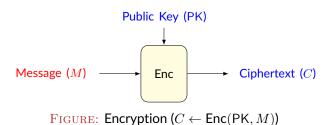


FIGURE: Key Generation: $(PK, SK) \leftarrow KeyGen(1^{\kappa})$

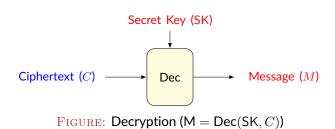
CyBOK Essam Ghadafi

Public-Key Encryption – Syntax



5

Public-Key Encryption – Syntax



CyBOK Essam Ghadafi

5

Correctness of Public-Key Encryption

Correctness: For all security parameters κ , for all key pairs (PK, SK) from KeyGen and all messages M:

$$C \leftarrow \mathsf{Enc}(\mathsf{PK}, M), \quad \mathsf{Dec}(\mathsf{SK}, C) = M$$

PKE SECURITY – INTUITION

Indistinguishability under Chosen-Plaintext Attack (IND-CPA): Adversary sees ciphertexts of chosen messages, but cannot tell which message was encrypted

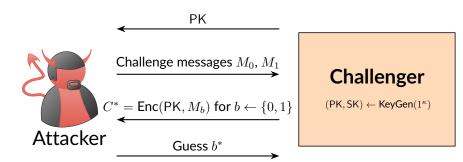
PKE SECURITY – INTUITION

Indistinguishability under Chosen-Plaintext Attack (IND-CPA): Adversary sees ciphertexts of chosen messages, but cannot tell which message was encrypted

Indistinguishability under Chosen-Ciphertext Attack (IND-CCA): Stronger: Adversary can also query a decryption oracle on any ciphertext (except the challenge), yet still cannot break it

IND-CPA FOR PUBLIC-KEY ENCRYPTION

Indistinguishability under Chosen-Plaintext Attack (IND-CPA)



The attacker's advantage is given by:

$$\left| \Pr[b^* = b] - \frac{1}{2} \right|$$

The scheme is *IND-CPA* secure if the advantage is negligible for Cybrall efficient attackers

IND-CCA FOR PUBLIC-KEY ENCRYPTION

Indistinguishability under Chosen-Ciphertext Attack (IND-CCA) is defined similarly to IND-CPA, except the attacker is allowed to request the decryption of any ciphertext other than C^*

REGEV'S PKE

Regev's PKE [3] is based on the Decisional LWE (D-LWE) assumption

Key Generation: This exactly the input generation in LWE

- lacksquare Choose a vector $\mathbf{s} \in \mathbb{Z}_q^n$ uniformly at random
- lacksquare Sample public matrix $\mathbf{A} \in \mathbb{Z}_q^{m imes n}$ uniformly at random
- Sample noise $\mathbf{e} \in \chi^m$
- $\blacksquare \mathsf{Let} \; \mathbf{b} = \mathbf{A}\mathbf{s} + \mathbf{e} \pmod{q}$
- lacksquare Set PK $= \mathbf{A}' = [\mathbf{A} \mid \mathbf{b}] \in \mathbb{Z}_q^{m \times (n+1)}$
- lacksquare Set SK $=\mathbf{s}\in\mathbb{Z}_q^n$

REGEV'S PKE

Intuition: One can think of b part of PK as m secret-key encryptions (using the secret key SK = s) of the message 0

■ A secret-key encryption scheme can be constructed by moving the sampling of **A** and **e** to the encryption process

Note: By $[A_1|A_2]$, we denote the concatenation of both matrices as columns

REGEV'S PKE

Encryption: Encrypting a message $x \in \{0, 1\}$ using PK = A'

- \blacksquare Represent message $x \in \{0,1\}$ as $\tilde{x} = x \cdot \lfloor \frac{q}{2} \rfloor$
- \blacksquare Choose a random vector $\mathbf{r} \in \{0,1\}^m$
- Compute ciphertext: $\mathbf{c} = \mathbf{r}^T \mathbf{A}' + (\mathbf{0}^n, \tilde{x}) \pmod{q}$

Regev's PKE

Encryption: Encrypting a message $x \in \{0, 1\}$ using PK = A'

- \blacksquare Represent message $x \in \{0,1\}$ as $\tilde{x} = x \cdot \lfloor \frac{q}{2} \rfloor$
- \blacksquare Choose a random vector $\mathbf{r} \in \{0,1\}^m$
- Compute ciphertext: $\mathbf{c} = \mathbf{r}^T \mathbf{A}' + (\mathbf{0}^n, \tilde{x}) \pmod{q}$

Decryption: Decrypting ciphertext c using secret key SK = s

Compute

$$\ddot{x} = \mathbf{c} \begin{bmatrix} \mathbf{s} \\ -1 \end{bmatrix} = \mathbf{r}^T (\mathbf{A}\mathbf{s} - \mathbf{b}) - \tilde{x} \pmod{q} = -\mathbf{r}^T \mathbf{e} - \tilde{x} \pmod{q}$$

- If the noise vector used is small ($\|\mathbf{e}\|_1 < \frac{q}{4}$), we can recover the plaintext x from \breve{x} as follows:
 - 0 if the result of decryption is close to 0
 - 1 if the result of decryption is close to $\lfloor \frac{q}{2} \rfloor$

Regev's PKE

Encryption: Encrypting a message $x \in \{0, 1\}$ using PK = A'

- \blacksquare Represent message $x \in \{0,1\}$ as $\tilde{x} = x \cdot \lfloor \frac{q}{2} \rfloor$
- \blacksquare Choose a random vector $\mathbf{r} \in \{0,1\}^m$
- Compute ciphertext: $\mathbf{c} = \mathbf{r}^T \mathbf{A}' + (\mathbf{0}^n, \tilde{x}) \pmod{q}$

Decryption: Decrypting ciphertext c using secret key SK = s

Compute

$$\ddot{x} = \mathbf{c} \begin{bmatrix} \mathbf{s} \\ -1 \end{bmatrix} = \mathbf{r}^T (\mathbf{A}\mathbf{s} - \mathbf{b}) - \tilde{x} \pmod{q} = -\mathbf{r}^T \mathbf{e} - \tilde{x} \pmod{q}$$

- If the noise vector used is small ($\|\mathbf{e}\|_1 < \frac{q}{4}$), we can recover the plaintext x from \breve{x} as follows:
 - ullet 0 if the result of decryption is close to 0
 - 1 if the result of decryption is close to $\lfloor \frac{q}{2} \rfloor$

Correctness of the scheme is easy to check

Cybok Essam Ghadafi

12

THEOREM

Regev's PKE is IND-CPA Secure if D-LWE problem is hard

THEOREM

Regev's PKE is IND-CPA Secure if D-LWE problem is hard Prof Sketch

■ Game₀: The real IND-CPA game where PK is normal, i.e. $\mathbf{b} = \mathbf{A}\mathbf{s} + \mathbf{e} \pmod{q}$

THEOREM

Regev's PKE is IND-CPA Secure if D-LWE problem is hard Prof Sketch

- Game₀: The real IND-CPA game where PK is normal, i.e. $\mathbf{b} = \mathbf{A}\mathbf{s} + \mathbf{e} \pmod{q}$
- Game₁: We replace $\mathbf b$ part of PK with a random vector $\mathbf b \in \mathbb Z_q^m$
 - \bullet PK is uniformly random in $\mathbb{Z}_q^{m\times (n+1)}$ and is independent of SK

Security of Regev's PKE — Part 1

THEOREM

Regev's PKE is IND-CPA Secure if D-LWE problem is hard

Prof Sketch

- Game₀: The real IND-CPA game where PK is normal, i.e. $\mathbf{b} = \mathbf{A}\mathbf{s} + \mathbf{e} \pmod{q}$
- Game₁: We replace **b** part of PK with a random vector $\mathbf{b} \in \mathbb{Z}_q^m$
 - \bullet PK is uniformly random in $\mathbb{Z}_q^{m\times (n+1)}$ and is independent of SK
- Game₂: Same as Game₁, but challenge ciphertext \mathbf{c}_b is chosen uniformly at random from \mathbb{Z}_n^{n+1}
 - \mathbf{c}_b is now independent of $x_b\Rightarrow$ the attacker's advantage in guessing the bit b is exactly $\frac{1}{2}$

- Claim₁: Game₀ \approx_c Game₁, i.e. they are computationally indistinguishable by the D-LWE assumption
- Claim₂: Game₁ \approx _s Game₂, i.e. they are statistically indistinguishable by the Leftover Hash Lemma

EXTENDING REGEV'S PKE MESSAGE SPACE

Regev's PKE originally supports encryption of bits, i.e., the message space is \mathbb{Z}_2

EXTENDING REGEV'S PKE MESSAGE SPACE

Regev's PKE originally supports encryption of bits, i.e., the message space is \mathbb{Z}_2

To extend to \mathbb{Z}_p (for some prime p), we modify the encoding as follows:

- Change encoding from $\tilde{x} = x \cdot \lfloor \frac{q}{2} \rfloor$ to $\tilde{x} = x \cdot \lfloor \frac{q}{p} \rfloor$
- \blacksquare Decrypt by rounding \tilde{x} to the nearest multiple of $\frac{q}{p}$

This works if $\|\mathbf{e}\|_{\infty} < \frac{q}{2p}$

Kyber Encryption

Kyber [1], which was standardized by NIST as ML-KEM (FIPS 203) [2], is a lattice-based key-encapsulation mechanism

IND-CCA secure and relies on Decisional M-LWE (D-M-LWE)

3 Security Levels:

- Kyber-512: Equivalent to AES-128, i.e. k = 2
- Kyber-768: Equivalent to AES-192, i.e. k = 3
- Kyber-1024: Equivalent to AES-256, i.e. k=4

KYBER IND-CPA PUBLIC-KEY ENCRYPTION

Let $R_q=\mathbb{Z}_q[X]/(X^{256}+1),$ q=3329, Kyber security level is parametrised by $k\in\{2,3,4\}$ Also, we require two distributions χ_e and χ_s over R_q

17

Kyber IND-CPA Public-Key Encryption

Let $R_q = \mathbb{Z}_q[X]/(X^{256}+1)$, q=3329, Kyber security level is parametrised by $k \in \{2,3,4\}$ Also, we require two distributions χ_e and χ_s over R_q

■ Key Generation:

- Sample a uniform matrix $\mathbf{A} \in R_q^{k \times k}$
- Sample secret vector $\mathbf{s} \in R_q^k$ according to χ_s
- Sample error vector $\mathbf{e} \in R_q^k$ according to χ_e
- Secret key: $\mathsf{SK} = \mathbf{s} \in R_q^k$
- Public key: $PK = (A, b = As + e) \in R_q^{k \times k} \times R_q^k$

Kyber IND-CPA Public-Key Encryption

- Encryption of a message $\mathbf{m} \in \{0,1\}^n$:
 - Encode **m** as polynomial m(X) (with 0/1 coefficients) in R_q
 - ▶ Encode $\mathbf{m}=(m_0,m_1,\dots,m_{n-1})\in\{0,1\}^n$ as the polynomial $m(X)=\sum_{i=0}^{n-1}m_iX^i\in R_q$
 - Sample $\mathbf{r} \in R_q^k$ according $\mathsf{to}\chi_s$
 - Sample $\mathbf{e}_1 \in R_q^k, e_2 \in R_q$ according to χ_e
 - Compute ciphertext:

$$\mathbf{u} = \mathbf{A}^T \mathbf{r} + \mathbf{e}_1, \quad v = \mathbf{b}^T \mathbf{r} + e_2 + \left\lfloor \frac{q}{2} \right\rfloor m(X)$$

• Ciphertext: $c = (\mathbf{u}, v) \in R_q^k \times R_q$

Cybok Essam Ghadafi

18

Kyber IND-CPA Public-Key Encryption

- Encryption of a message $\mathbf{m} \in \{0,1\}^n$:
 - Encode m as polynomial m(X) (with 0/1 coefficients) in R_q
 - ► Encode $\mathbf{m} = (m_0, m_1, \dots, m_{n-1}) \in \{0, 1\}^n$ as the polynomial $m(X) = \sum_{i=0}^{n-1} m_i X^i \in R_q$
 - Sample $\mathbf{r} \in R_q^k$ according $\mathsf{to}\chi_s$
 - Sample $\mathbf{e}_1 \in R_q^k, e_2 \in R_q$ according to χ_e
 - Compute ciphertext:

$$\mathbf{u} = \mathbf{A}^T \mathbf{r} + \mathbf{e}_1, \quad v = \mathbf{b}^T \mathbf{r} + e_2 + \left\lfloor \frac{q}{2} \right\rfloor m(X)$$

- Ciphertext: $c = (\mathbf{u}, v) \in R_q^k \times R_q$
- Decryption:
 - $\begin{aligned} \bullet & \text{ Compute } v \mathbf{s}^T \mathbf{u} \approx \left\lfloor \frac{q}{2} \right\rfloor m(X), \text{ then recover } \mathbf{m} \in \{0,1\}^n \\ & \text{ from the coefficients of } m(X) \text{ by thresholding around } \frac{q}{2} \\ & m_i = \begin{cases} 0, & \text{if coefficient } c_i \text{ is closer to } 0 \text{ than to } \frac{q}{2} \pmod{q}, \\ 1, & \text{if coefficient } c_i \text{ is closer to } \frac{q}{2} \text{ than to } 0 \pmod{q}. \end{cases}$

SECURITY OF IND-CPA KYBER PKE

The scheme is IND-CPA secure if the Decisional M-LWE (D-M-LWE $_{q,k+1,k,\chi_s,\chi_e}$) problem is hard

SECURITY OF IND-CPA KYBER PKE

The scheme is IND-CPA secure if the Decisional M-LWE (D-M-LWE $_{q,k+1,k,\chi_s,\chi_e}$) problem is hard

To obtain IND-CCA security, one applies the Fujisaki-Okamoto transformation, which transforms any IND-CPA PKE into an IND-CCA secure PKE

KYBER IND-CCA KEM EFFICIENCY

TABLE: Public key and ciphertext sizes for NIST-standardized Kyber IND-CCA KEMs

Variant	PK (bytes)	Ciphertext (bytes)
Kyber-512 (128-bit security)	800	768
Kyber-768 (192-bit security)	1184	1088
Kyber-1024 (256-bit security)	1568	1568

CyBOK Essam Ghadafi 20

KEY TAKEAWAYS

- Regev's Encryption is based on the Decisional LWE assumption
 - The message space can be extended to allow more efficient encoding of messages
- Kyber Encryption is based on the Decisional Module-LWE assumption
 - Efficient, IND-CCA secure, and comes in 3 security levels
 - Standardised by NIST

References

- [1] J. Bos, et al. CRYSTALS Kyber: A CCA-Secure Module-Lattice-Based KEM. IEEE European Symposium on Security and Privacy (EuroS&P), 353-367, 2018.
- [2] National Institute of Standards and Technology.

 Module-Lattice-Based Key-Encapsulation Mechanism

 Standard. (Department of Commerce, Washington, D.C.),

 Federal Information Processing Standards Publication (FIPS)

 NIST FIPS 203, 2024. Available:

 https://doi.org/10.6028/NIST.FIPS.203.
- [3] O. Regev. On lattices, learning with errors, random linear codes, and cryptography. J. ACM, 56(6), Sep 2009.