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CYyBOK MAaApPPING

The lecture maps to the following CyBOK Knowledge Areas:

m Systems Security — Cryptography
m Infrastructure Security — Applied Cryptography
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OUTLINE

m IND-CPA vs IND-CCA Security for Public-Key Encryption
o Areminder

m RegeVv's Encryption Scheme

o Overview and mechanism of encryption
e Security of the scheme
o Extending the Message Space

m Kyber Encryption

e Overview and mechanism of encryption
o Security & Efficiency of the scheme
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PuUBLIC-KEY ENCRYPTION — SYNTAX

Public Key (PK)

Security Parameter (17) —»

Secret Key (SK)

Ficure: Key Generation: (PK, SK) + KeyGen(1*)
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PuUBLIC-KEY ENCRYPTION — SYNTAX

Public Key (PK)

Message (M) Enc Ciphertext (O)

Ficure: Encryption (C « Enc(PK, M))
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PuUBLIC-KEY ENCRYPTION — SYNTAX

Secret Key (SK)

Ciphertext (C) Dec Message (M)

Ficure: Decryption (M = Dec(SK, C))
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CORRECTNESS OF PUBLIC-KEY ENCRYPTION

Correctness: For all security parameters &, for all key pairs
(PK, SK) from KeyGen and all messages M:

C «+ Enc(PK, M), Dec(SK,C)=M
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PKE SECURITY — INTUITION

Indistinguishability under Chosen-Plaintext Attack (IND-CPA):
Adversary sees ciphertexts of chosen messages, but cannot tell
which message was encrypted

CyYyBOK EssAM GHADAFI



PKE SECURITY — INTUITION

Indistinguishability under Chosen-Plaintext Attack (IND-CPA):
Adversary sees ciphertexts of chosen messages, but cannot tell
which message was encrypted

Indistinguishability under Chosen-Ciphertext Attack (IND-CCA):

Stronger: Adversary can also query a decryption oracle on any
ciphertext (except the challenge), yet still cannot break it
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IND-CPA ror PuBLIC-KEY ENCRYPTION

Indistinguishability under Chosen-Plaintext Attack (IND-CPA)

PK

<
<

Challenge messages M, M;

Challenger

C* = Enc(PK, M,) for b+ {0,1} (PK;SK) = KeyGen(1")

Attacker

Guess b*

The attacker’s advantage is given by:

Prfb = b — 5

:

The scheme is IND-CPA secure if the advantage is negligible for
@l efficient attackers.,..



IND-CCA rOR PuBLIC-KEY ENCRYPTION

Indistinguishability under Chosen-Ciphertext Attack (IND-CCA)
is defined similarly to IND-CPA, except the attacker is allowed
to request the decryption of any ciphertext other than C*
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REGEV’S PKE

Regev’s PKE [3] is based on the Decisional LWE (D-LWE)
assumption

Key Generation: This exactly the input generation in LWE
m Choose a vector s € Zy uniformly at random
m Sample public matrix A € Z;»*™ uniformly at random
m Sample noise e € x™
m letb=As+e (modgq)
= Set PK = A’ =[A |b] € Z/*("+D
m SetSK=s¢€ ZZL
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REGEV’S PKE

One can think of b part of PK as m secret-key
encryptions (using the secret key SK = s) of the message 0

m A secret-key encryption scheme can be constructed by
moving the sampling of A and e to the encryption process

Note: By [A1]A;], we denote the concatenation of both
matrices as columns
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REGEV’S PKE

Encryption: Encrypting a message x € {0, 1} using PK = A’
m Represent message xz € {0,1}asz =z - [{]
m Choose a random vector r € {0,1}™
= Compute ciphertext: ¢ = r’ A’ 4 (0",%) (mod q)

CYyBOK EssAM GHADAFI



REGEV’S PKE

Encryption: Encrypting a message x € {0, 1} using PK = A’
m Represent message xz € {0,1}asz =z - [{]
m Choose a random vector r € {0,1}™
= Compute ciphertext: ¢ = r’ A’ 4 (0",%) (mod q)

Decryption: Decrypting ciphertext c using secret key SK = s
= Compute

r=c [_SI] =r’(As—b)—% (mod q) = —r’e—% (mod q)

= If the noise vector used is small (|[e]|; < ), we can recover
the plaintext x from  as follows:

o 0 if the result of decryption is close to 0
o 1if the result of decryption is close to | £ |
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REGEV’S PKE

Encryption: Encrypting a message x € {0, 1} using PK = A’
m Represent message xz € {0,1}asz =z - [{]
m Choose a random vector r € {0,1}™
= Compute ciphertext: ¢ = r’ A’ 4 (0",%) (mod q)

Decryption: Decrypting ciphertext c using secret key SK = s
= Compute

r=c [_SI] =r’(As—b)—% (mod q) = —r’e—% (mod q)

= If the noise vector used is small (|[e]|; < ), we can recover
the plaintext x from  as follows:

o 0 if the result of decryption is close to 0
o 1if the result of decryption is close to | £ |

Correctness of the scheme is easy to check
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SECURITY OF REGEV’S PKE — PART 1

THEOREM
Regev’s PKE is IND-CPA Secure if D-LWE problem is hard
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SECURITY OF REGEV’S PKE — PART 1

THEOREM
Regev’s PKE is IND-CPA Secure if D-LWE problem is hard

Prof Sketch

m Gameg: The real IND-CPA game where PK is normal,
ie.b=As+e (mod q)
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SECURITY OF REGEV’S PKE — PART 1

THEOREM
Regev’s PKE is IND-CPA Secure if D-LWE problem is hard

Prof Sketch

m Gameg: The real IND-CPA game where PK is normal,
ie.b=As+e (mod q)

m Game;: We replace b part of PK with a random vector

b e Zy
e PK is uniformly random in ZZ”("“) and is independent of
SK
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SECURITY OF REGEV’S PKE — PART 1

THEOREM
Regev’s PKE is IND-CPA Secure if D-LWE problem is hard

Prof Sketch

m Gameg: The real IND-CPA game where PK is normal,
ie.b=As+e (mod q)

m Game;: We replace b part of PK with a random vector

b e Zy
e PK is uniformly random in ZZ”("“) and is independent of
SK

m Gamey: Same as Gameq, but challenge ciphertext c; is
chosen uniformly at random from Z{;“

e ¢y is now independent of z;, = the attacker’s advantage in
guessing the bit b is exactly 1
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SECURITY OF REGEV’S PKE — PART 2

m Claim;: Gamey ~. Gamey, i.e. they are computationally
indistinguishable by the D-LWE assumption

m Claimy: Game; ~, Games, i.e. they are statistically
indistinguishable by the Leftover Hash Lemma
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EXTENDING REGEV’S PKE MESSAGE SPACE

Regev’s PKE originally supports encryption of bits, i.e., the
message space is Zo
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EXTENDING REGEV’S PKE MESSAGE SPACE

Regev’s PKE originally supports encryption of bits, i.e., the
message space is Zs

To extend to Z,, (for some prime p), we modify the encoding as
follows:

= Change encoding fromz =z - [{|toZ == - L%J
m Decrypt by rounding 7 to the nearest multiple of %

This works if [le[|o < 7
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KYBER ENCRYPTION

Kyber [1], which was standardized by NIST as ML-KEM (FIPS
203) [2], is a lattice-based key-encapsulation mechanism

IND-CCA secure and relies on Decisional M-LWE (D-M-LWE)

3 Security Levels:
m Kyber-512: Equivalent to AES-128,i.e. k = 2
m Kyber-768: Equivalent to AES-192,ie. k =3
m Kyber-1024: Equivalent to AES-256, i.e. k =4
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KyYBER IND-CPA PuBLIC-KEY ENCRYPTION

Let R, = Zy[X]/(X?° + 1), ¢ = 3329, Kyber security level is
parametrised by k € {2,3,4}
Also, we require two distributions x. and x, over R,
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KyYBER IND-CPA PuBLIC-KEY ENCRYPTION

Let R, = Zy[X]/(X?° + 1), ¢ = 3329, Kyber security level is
parametrised by k € {2,3,4}
Also, we require two distributions x. and x, over R,

m Key Generation:

o Sample a uniform matrix A € Ri**
Sample secret vector s € R’; according to
Sample error vector e € R’; according to x.
Secret key: SK =s € R¥
Public key: PK = (A,b = As +e) € Ri*F x RE
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KyYBER IND-CPA PuBLIC-KEY ENCRYPTION

m Encryption of a message m € {0,1}":
o Encode m as polynomial m(X) (with 0/1 coefficients) in R,
» Encode m = (mo,ma,...,mnp—1) € {0,1}" as the polynomial
m(X) =12, miX' € Ry
Sample r € R} according toy
Sample e; € R, e; € R, according to x.
Compute ciphertext:

u=ATr+e;, v=bTr+e+ L%J m(X)

Ciphertext: ¢ = (u,v) € Rf x R,
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KyYBER IND-CPA PuBLIC-KEY ENCRYPTION

m Encryption of a message m € {0,1}":
o Encode m as polynomial m(X) (with 0/1 coefficients) in R,
» Encode m = (mo, ma,...,mnp—1) € {0,1}" as the polynomial
m(X) =12, miX' € Ry
o Sample r € RF according toy,
o Sample e; € RE, ey € R, according to x.
o Compute ciphertext:

u=ATr+e;, v=blr+e+ 2] m(X)
o Ciphertext: ¢ = (u,v) € RF x R,
m Decryption:

o Compute v — s"u~ |£]| m(X), then recover m € {0,1}"
from the coefficients of m(X) by thresholding around £

0, if coefficient c; is closer to 0 than to 4 (mod ¢),

T

m; =
1, if coefficient ¢; is closer to £ than to 0 (mod g).
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SECURITY OF IND-CPA KyYBER PKE

The scheme is IND-CPA secure if the Decisional M-LWE
(D-M-LWE, 111 k,x..x.) Problem is hard
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SECURITY OF IND-CPA KyYBER PKE

The scheme is IND-CPA secure if the Decisional M-LWE
(D-M-LWE, 111 k,x..x.) Problem is hard

To obtain IND-CCA security, one applies the Fujisaki-Okamoto
transformation, which transforms any IND-CPA PKE into an
IND-CCA secure PKE
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KYBER IND-CCA KEM EFFICIENCY

TABLE: Public key and ciphertext sizes for NIST-standardized Kyber

IND-CCA KEMs
Variant PK (bytes) | Ciphertext (bytes)
Kyber-512 (128-bit security) 800 768
Kyber-768 (192-bit security) 1184 1088
Kyber-1024 (256-bit security) 1568 1568
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KEY TAKEAWAYS

m RegeVv’s Encryption is based on the Decisional LWE
assumption
o The message space can be extended to allow more efficient
encoding of messages

m Kyber Encryption is based on the Decisional Module-LWE
assumption
o Efficient, IND-CCA secure, and comes in 3 security levels
o Standardised by NIST
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