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CyBOK Mapping

The lecture maps to the following CyBOK Knowledge Areas:
Systems Security→ Cryptography
Infrastructure Security→ Applied Cryptography
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Definition and key differencesExamples in cryptography

SVP and its Variants (Shortest Vector Problem)
Problem description, Hardness and Variants

CVP and its Variants (Closest Vector Problem)
Problem description, Hardness and Variants

SIS (Short Integer Solution) Problem
Problem description, Hardness and Variants

LWE (Learning With Errors) Problem
Problem description, Hardness and Variants
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Worst-Case vs. Average-Case Problems

Average-Case Problems: The attacker must succeed insolving some random instances of the problem
Example: Average-Case Factoring Problem: Given acomposite integer N = p× q from a distribution DN overproducts of two large primes, find p and q

Worst-Case Problems: The attacker must succeed insolving all instances of the problem
Example: Worst-Case Factoring Problem: Given acomposite integer N = p× q, where p and q are largeprimes, find p and q

Some problems are hard in the worst-case but easy on average.Basing security on worst-case hardness provides strongerguarantees
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Shortest Vector Problem (SVP)

­ Intuition: Which point in the point grid is closest to the originpoint (centre of the grid)?

The Shortest Vector Problem (SVP):
Given a basis B for a lattice L(B), find the shortestnon-zero vector v in the lattice
Mathematically:

||v|| = min
w∈L(B)\{0}

||w||

equivalently
||v|| = λ1(L(B))

Remember the 1st successive minimum λ1 denotes theshortest non-zero vector in the lattice
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Shortest Vector Problem (SVP)

How hard is the problem?
Hard because finding the shortest vector is NP-hard
Easy to solve when the basis vectors {b1,b2, . . . ,bn} are
orthogonal, i.e. bTi bj = 0 for all i, j ∈ {1, . . . , n} where i 6= j.In this case the shortest vector is the shortest base vector
bi

‖vSVP‖ = min
1≤i≤n

‖bi‖

CyBOK Essam Ghadafi 6



Approximate SVP (γ-SVP)

A related variant to SVP
The goal is to find a vector v that is at most γ times the length ofthe shortest vector where γ ≥ 1

Given a basis B for a lattice L(B), find a vector
v ∈ L(B) \ {0} where ||v|| ≤ γ · λ1(L(B))

Remember the 1st successive minimum λ1 denotes theshortest non-zero vector in the lattice
The larger γ, the easier the problem. 1-SVP is SVP
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SVP variants

Short Independent Vectors Problem (SIVP) denoted by(SIVPγ ):
Input: Basis B ∈ Zm×nq for L(B)
Task: Find n linearly independent vectors v1, . . . ,vn ∈ L(B)such that ‖vi‖ ≤ γλn(L(B)) for all i = 1, . . . , n

GAP SVP (GapSVPγ ):
Input: Basis B ∈ Zm×nq for L(B)
Task: Decide whether λ1(L(B)) ≤ 1 or λ1(L(B)) > γ
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Closest Vector Problem (CVP)

­ Intuition: From a location (which may not be a point) on thegrid, find the nearest grid point

Closest Vector Problem (CVP)Given a basis B for a lattice L(B) and a target point t, findthe closest lattice vector v ∈ L(B)
Mathematically: minv∈L(B) ||v− t||

t

Harder than SVP and is NP-hardSVP is a special case where t = 0. If one can solve CVP, onecan solve SVP. i.e. SVP ≤ CVP
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Approximate CVP (γ-CVP)

The Approximate CVP (γ-CVP) is a variant of CVP
Instead of finding the closest vector v ∈ L(B) to t, the task isinstead to find v ∈ L(B) where the distance between v and t isat most γ times the distance between t and the closest vector inthe lattice
Mathematically:

min
v∈L(B)

‖v− t‖ ≤ γ · min
v′∈L(B)

∥∥v′ − t
∥∥

At least as hard as γ-SVP, i.e. γ-SVP ≤ γ-CVP
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Bounded Distance Decoding (BDD)

The Bounded Distance Decoding (BDD) problem is a specialcase of CVP where the target t is close to a lattice point
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Short Integer Solution (SIS)

The SIS problem introduced by Ajtai [1] is parametrised byparameters m,n, q, γ and is denoted by SISm,n,q,γGiven a random matrix A ∈ Zm×nq , find a short non-zerovector x ∈ Zn such that ‖x‖ ≤ γ and
Ax ≡ 0 mod q

A x = 0m

n

n

1

Generally, γ < qn, as otherwise, s = (q, 0, . . . , 0) is a validsolution
The bigger m, the harder the problem
The problem is trivial when n < m
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Short Integer Solution (SIS)

SIS is used in some hash functions and digital signatures

The Inhomogeneous Short Integer Solution (ISIS) problem issimilar to SIS, except the right-hand side is y ∈ Znq instead of 0

ISIS is parametrised by m,n, q, γ and denoted by ISISm,n,q,γ
Given a random matrix A ∈ Zm×nq and a random vector
y ∈ Zmq find a short vector x ∈ Zn such that ‖x‖ ≤ γ and

Ax ≡ y mod q

ISIS is as hard as SIS
I SIS requires solving Ax = 0 vs. solving Ax − y = 0 in ISIS
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SIS as a Lattice Problem

SIS is a lattice problem as well
We use the matrix A ∈ Zm×nq to define the lattice:

L(A) = {e ∈ Zn : Ae = 0 mod q}

SIS is then defined as finding a short vector e in this lattice
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LWE – Setting the scene

Consider a system of m linear equations of the form:
n∑
i=1

a1,isi = b1 mod q

...
n∑
i=1

am,isi = bm mod q

where aj,i ∈ Zq are known coefficients, bj ∈ Zq are knownresults, and si ∈ Zq are the unknowns we seek to solve for.

We can represent the system as
As = b mod q

This system of equations is straightforward to solve (in polytime), e.g., using Gaussian elimination
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Learning with Errors (LWE)

LWE introduced by Regev [6] adds small noise to linearequations, making them hard to solve even for quantumcomputers
LWE and its variants have been used to construct various typesof cryptosystems, including:

Public-Key Encryption
Key Exchange
Identity-Based Encryption
Zero-Knowledge Proofs
. . .
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Learning With Errors (LWE)

Definition: Let m,n, q be positive integers, and let χ be aprobability distribution over Zq
The (search) LWE problem denoted by (LWEm,n,q,χ) is:

Randomly choose a secret vector s ∈ ZnqChoose a uniformly random matrix A ∈ Zm×nqChoose a random error/noise vector e according to χm
i.e., each coordinate ei is independently drawn from χ

Input: (A,b) where As + e ≡ b mod q where b ∈ Zmq
Task: Recover s
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Decisional LWE

The (decision) LWE problem denoted by (D-LWEm,n,q,χ) is:
A, s, and e are all chosen as in the search LWE problem
Challenge Generation:

Case 0 (real): Compute b0 = As + e mod q
Case 1 (fake): Choose b1 ∈ Zmq uniformly at random

Input: (A,bb) where b ∈ {0, 1} is chosen uniformly at random
Task: Guess the case b

Interestingly, LWE can be reduced to D-LWE
An algorithm solving D-LWE can also solve LWE. Thereverse implication is trivial

This means equivalence of the two variants of LWE
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Hardness of LWE

If one can solve SISm,n,q,γ , one can solve LWEm,n,q,χ, i.e.LWEm,n,q,χ ≤ SISm,n,q,γ

If one can solve LWEm,n,q,χ, one can solve GapSVPγe.g. [6, 2]: GapSVPγ , SIVPγ ≤ LWEm,n,q,χ
Note: In [6] the reduction is quantum, while in [2] it is
classical but only for polynomial modulus q, with some lossesin dimension and noise
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Ring-LWE – Setting the Scene

Ring-LWE (R-LWE) [4] is a LWE variant adapted topolynomial rings (instead of integers) to improve efficiency
Remember: A polynomial is of the form d∑

i=0
cix

i, where:
x is the indeterminate, d is the degree of the polynomial (i.e.the highest power of x), and ci ∈ Z are the coefficients

Polynomials can be represented by their coefficient vector
c = (c0, c1, . . . , cd)
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Ring-LWE – Setting the Scene

Polynomial Ring R: Let R = Z[x]/f(x) for some monicpolynomial f(x) of degree d = n, (e.g. f(x) = xn + 1)Elements of R are polynomials of degree < n with integercoefficients
I R is a set of polynomials reduced modulo f(x)

Polynomial Ring Rq: Let Rq = Zq[x]/f(x)
Elements of Rq are polynomials of degree < n withcoefficients in in Zq
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Ring-LWE

Definition: Given polynomial rings R and Rq , and an errordistribution χ over small elements of ring R
The (Search) Ring-LWE (R-LWE) problem, denoted by
(R-LWEq,n,χ), is defined as follows:

Sample polynomials a1, . . . , an ∈ Rq independently anduniformly at random. Let a = (a1, . . . , an)
Sample error polynomials e1, . . . , en independently from χ.Let e = (e1, . . . , en)

Input: (a,b = s a + e mod qR), for some fixed polynomial
s ∈ Rq
Task: Recover s

Note: mod qR means reducing polynomial coefficients modulo
q, where qR is the ideal in R generated by q
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Decisional Ring-LWE

The Decisional Ring-LWE (D-R-LWE) problem denoted by(D-R-LWEq,n,χ) can be defined similarly where the task is todistinguish (a,b), where
b = sa + e mod qR

from a uniform tuple (a,b) ∈ Rnq ×Rnq
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Hardness of Ring-LWE

Lyubashevsky, et al. [4, 5] gave the following results
Ideal-SIVPγ (worst case) ≤quantum polytime D-R-LWEq,n,χ
If you can solve D-R-LWE, there is a quantum algorithmthat can solve Ideal-SIVPγ (worst case)

R-LWEq,n,χ ≤ D-R-LWEq,n,χ
If you can solve Decisional R-LWE, there is a classical
algorithm that can solve Search R-LWE
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Ring-LWE vs. LWE

R-LWE yield more efficient constructions
Multiplication in the polynomial ring is more efficient,e.g. using FFT-like techniquesSmaller element representations (Elements from Rq vs.elements from Z)

I Storage cost in standard LWE: O(m · n) integers (typically
O(n2) since m = O(n))

I Storage cost in Ring-LWE: O(n) integers
Like LWE’s relation to SIS, Ring-LWE retains worst-casehardness due to its close connection to Ring-SIS

Note: R-LWE is defined over structured lattices (ideal latticeswith algebraic structure), whereas LWE works over general,
unstructured lattices

R-LWE assumes hardness for a special class of lattices
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Module-LWE — Intuition

­ Intuition: M-LWE is a bridge between (unstructured) LWEand structured Ring-LWE
LWE: Elements are simple vectors over Znq (unstructured)
Ring-LWE: Elements are polynomials from a ring Rq (highlystructured)

M-LWE: Elements are vectors of polynomials in Rkq , morestructured than LWE but less structured than Ring-LWE
Interpolates between LWE and Ring-LWE

Ring-LWE is a special case of Module-LWE where k = 1
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Module-LWE – Definition

Similarly to the setup for Ring-LWE, given
R = Z[x]/f(x), Rq = R/qR,

a module rank k, and an error distribution χ over small elementsof R

The (Search) Module-LWE (M-LWE) problem, denoted by
(M-LWEq,n,k,χ), is:

Sample elements a1, . . . ,an ∈ Rkq independently and
uniformly at random. Let A = (a1, . . . ,an) ∈ Rn×kq .
Independently sample error elements e1, . . . , en ∈ Rq from
χ. Let e = (e1, . . . , en) ∈ Rnq .

Input: (A,b = As + e) ∈ Rn×kq ×Rnq , for some secret vector of
polynomials s ∈ Rkq
Task: Recover s
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Module-LWE – A Closer Look

A s + e = bn

k

k

1

n

1

n

1

Note: : Some formulations explicitly sample s from a distribution
χs (e.g. discrete Gaussian or binomial); others assume s isuniform in Rkq

Comparison with Ring-LWE:
Ring-LWE is a special case of M-LWE when k = 1

CyBOK Essam Ghadafi 28



Module-LWE – A Closer Look

A s + e = bn

k

k

1

n

1

n

1

Note: : Some formulations explicitly sample s from a distribution
χs (e.g. discrete Gaussian or binomial); others assume s isuniform in Rkq
Comparison with Ring-LWE:

Ring-LWE is a special case of M-LWE when k = 1

CyBOK Essam Ghadafi 28



Hardness of Module-LWE

Langlois & Stehlé [3] showed that
Module-SIVPγ ≤quantum polytime M-LWEq,n,k,χ

If M-LWEq,n,k,χ can be solved efficiently, then worst-caseModule-SIVPγ can also be solved efficiently (by a quantumpolynomial-time algorithm)
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Efficiency of Module-LWE

Storage cost in Module-LWE is O(n · k)

NIST-standard CRYSTALS-Kyber (key encapsulation mechanism)and CRYSTALS-Dilithium (signature) both rely on Module-LWE
Example:In CRYSTALS-Kyber 512, the M-LWE parameters used are:
n = k = 2, f(x) = X256 + 1, and q = 3329
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Decisional Module-LWE – Definition

The setup is similar to search M-LWE

Decisional Module-LWE (D-M-LWE): The problem
(D-M-LWEq,n,k,χ) is to distinguish between:

(A,b = As + e),

for a secret s ∈ Rkq , an error vector e ∈ Rnq with entriesindependently sampled from χ, and A is a uniformly randommatrix over Rn×kq ; and
(A,b) ∈ Rn×kq ×Rnq

sampled uniformly at random
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Main Takeaways

Worst-Case vs. Average-Case Problems:Worst-case: Focus on the hardest instances (e.g., SVP)Average-case: Focus on typical instances (e.g., SIS)Shortest Vector Problem (SVP):Finding the shortest non-zero vector in a latticeClosest Vector Problem (CVP):Finding the closest lattice vector to a given pointShort Integer Solution( SIS):Finding short integer solutions to modular equationsLearning With Errors (LWE):Recovering a secret vector from noisy linear equationsRing Learning With Errors (R-LWE): A variant of LWEdefined over polynomial ringsRecovering a secret polynomial from noisy polynomialequationsModule Learning With Errors (M-LWE): A generalization ofLWE and R-LWE that balances efficiency and securityacross modulesCyBOK Essam Ghadafi 32



Additional Resources & Reading

D. Micciancio. Efficient reductions among lattice problems.In ACM-SIAM symposium on Discrete algorithms (SODA),2008.
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