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CyBOK Mapping

The lecture maps to the following CyBOK Knowledge Areas:
Systems Security→ Cryptography
Infrastructure Security→ Applied Cryptography
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Outline

A brief Overview of Vectors and Matrices: Basic conceptsof vectors and matrices, essential for understanding lattices
Definition of Lattices: What is a lattice? Examples andintuition
Lattice Basis: How lattices are generated from basis vectors
Determinant/Volume of a Lattice: Fundamentalparallelepiped and its significance
Geometry of Lattices: Orthogonality and geometricproperties
Successive Minima of a Lattice: Understanding latticestructure
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Vectors

A vector is an ordered list of numbers that represents a point ora direction in spaceA 2D vector is written as v = (v1, v2)A nD vector is written as v = (v1, v2, . . . , vn)

Vectors can be thought of as arrows pointing from one positionto another
Example:

x

y

v = (3, 2)
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https://www.cybok.org/media/downloads/Cryptography_v1.0.1.pdf
https://www.cybok.org/media/downloads/Applied_Cryptography_v1.0.0.pdf


Vector Length (p-Norm)

The length (or norm) of a vector is a way to measure its size. Thegeneral formula is:
‖v‖p = (|v1|p + |v2|p + . . .+ |vn|p)

1
p

Special cases of the p-norm:
Euclidean Norm (L2, p = 2): ‖v‖2 =

√
v2

1 + v2
2 + . . .+ v2

n

Manhattan Norm (L1, p = 1): ‖v‖1 = |v1|+ |v2|+ . . .+ |vn|
Maximum Norm (L∞, p→∞):
‖v‖∞ = max(|v1|, |v2|, , . . . , |vn|)

The Euclidean norm is the default, and we will denote it by just
‖ · ‖

Example:
v = (3, 4), ‖v‖ =

√
32 + 42 =

√
9 + 16 = 5
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Matrix

A matrix is a rectangular array of numbers, arranged in rows andcolumns

M =


a11 a12 . . . a1n

a21 a22 . . . a2n... ... . . . ...
am1 am2 . . . amn


A matrix with m rows and n columns is called an m× nmatrix
Special cases:

A square matrix has the same number of rows and columnsA diagonal matrix has nonzero elements only on its diagonalThe identity matrix I has ones on the diagonal and zeroselsewhere
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Matrix Multiplication

You can only multiply compatible matrices
Rule: The number of columns in the LHS matrix must equal thenumber of rows in the RHS matrix
Example: Matrix multiplication of a 2× 2 matrix with a 2× 1matrix (column vector):[

a11 a12
a21 a22

]
×

[
b1
b2

]
=

[
a11b1 + a12b2
a21b1 + a22b2

]

Remember: Multiplying a matrix by its inverse results in theidentity matrix:
A×A−1 = A−1 ×A = I

CyBOK Essam Ghadafi 7

Lattice Definition – Intuition

Lattice: A a set of points in n-dimensional space that exhibits aperiodic structure, i.e. A lattice is just a grid of points
­ Intuition: The lattice is an infinite grid of points arranged in aregular, repeating pattern that extends in multiple dimensions

The position of each point is determined by the lattice basisThe basis vectors define the directions and distances toreach the lattice points

Figure: An example of 3D Lattice
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Why Lattice-Based Cryptography?

Provable security from worst-case assumptions
Stronger security guarantees

Lattice-based assumptions (e.g., LWE, SIS) are “believed” tobe quantum-resistant
Widely used, e.g. NIST PQC candidates are mostlylattice-based
Efficiency

Works over matrices and rings, it mostly involves additionand multiplication so no modular exponentiations or pairings
Relatively more mature than some other PQC approaches
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Lattice Definition

Working over Rn, an n-dimensional lattice L is an (additive)discrete subgroup of Rn, consisting of n-dimensional vectorsfrom RAdditive: For all x ∈ L, −x ∈ L, and for all x, y ∈ L,
x+ y ∈ LAdding/subtracting points in the lattice, results in anotherlattice pointDiscrete: Points are sufficiently far apartSubgroup: A subset that is a group under addition

v1

v2

Figure: Example 2D latticeCyBOK Essam Ghadafi 10

Lattice Basis – Intuition

­ Intuition: The basis of a lattice defines the directions (orvectors) you can use to reach any point in the grid
Each point in the lattice (grid) can be reached by combiningthe basis vectors, using some integer multiples
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Lattice Basis – Intuition

Example: Consider the 2D lattice generated by the basis
b1 = (2, 1) and b2 = (1, 3)Point (3, 4) (in red) is obtained as b1 + b2Point (5, 5) (in blue) is obtained by 2b1 + b2

. . .

x

y

(2, 1)

(1, 3)
(3, 4)

(5, 5)

Figure: 2D-Lattice generated by the basis b1 = (2, 1) and b2 = (1, 3)
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Lattice Basis

A basis of a lattice is a set of k linearly independent vectors
b1,b2, . . . ,bk ∈ Rn (points in the lattice) s.t. any vector v in thelattice can be written as an integer linear combination of thebasis vectors:

v =
k∑

i=1
cibi, ci ∈ Z

We can think of the basis as a matrix B ∈ Rn×k with k-linearlyindependent vectors b1, . . . ,bk ∈ Rn as columns:
B =

[
b1 b2 . . . bk

]

We denote the lattice generated by the basis matrix B ∈ Rn×k

by L(B)
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Mathematical Lattice

L(B) is a discrete set of points in Rn that can be describedas:

L(B) =
{

k∑
i=1

αibi | αi ∈ Z
}

where αi ∈ Z are integers.
Alternatively, we can define the lattice as:

L(B) =
{

v ∈ Rn | v = Bα for some α ∈ Zk
}
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Lattice Quiz

Quiz: Can you think of a matrix B (of any size) with entries from
R that cannot serve as a lattice basis?

Hint: The basis span does not form an additive discretesubgroup . . .
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Lattice Rank

Lattice Rank is the number of vectors in its basis (i.e., k)
­ Intuition: The rank is the number of independent directionsneeded to span the lattice space, i.e. to navigate the entire pointgrid
A lattice has full rank iff k = n, meaning it has a square basismatrix B ∈ Rn×n with full rank n, i.e., det(B) 6= 0.
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Fundamental Parallelepiped – Intuition

­ Intuition: The fundamental parallelepiped is the smallestregion (box) formed by the lattice basis vectors, containing onelattice point and repeating throughout the lattice
The smallest building block/tile of the point gridThe lattice is created by shifting this tile in differentdirections, forming the entire point grid

b1 = (1, 2)

b2 = (2, 1)

Figure: Fundamental parallelepiped of a 2D lattice with basis vectors b1 = (1, 2) and b2 = (2, 1)
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Fundamental Parallelepiped

Tiling of the lattice with its basis’s fundamental parallelepiped

x

y

b1
b2

Figure: Tiling of the 2D lattice with basis vectors b1 = (1, 2) and b2 = (2, 1)
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Fundamental Parallelepiped

The fundamental parallelepiped of a basis matrix B ∈ Rn×k

denoted by P(B) is the region of space spanned by B whereeach point within the parallelepiped is a convex combination ofthe basis vectors with the coefficients λi satisfying 0 ≤ λi < 1

P(B) =
{

k∑
i=1

λibi with 0 ≤ λi < 1
}

The volume (or n-dimensional measure) of the fundamentalparallelepiped is given by the absolute value of the determinantof the basis matrix:
Volume = |det(B)|
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Fundamental Parallelepiped

Some useful properties:
B can only be a basis for the lattice L(B) if P(B) does notcontain any points in L(B) other than the origin,i.e. L(B) ∩ P(B) = {0}

L(B) can be fully tiled by placing P(B) at each point in
L(B) (as we have seen earlier)
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Determinant (Volume) of Lattice

The determinant of a lattice classifies the lattice density (howspread out the points are):
A larger determinant⇒ a more “spread-out” lattice (lowerdensity)
A smaller determinant⇒ a denser packing of lattice points(higher density)

For a lattice L(B) ⊆ Rn, the determinant (volume) of the lattice
is det(L(B)) = Volume(P(B)) = | det(B)| ≤

k∏
i=1
‖bi‖
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Lattice Basis

An n-dimensional lattice, for n > 1, will have infinitely manybases that can generate it
Two matrices B ∈ Rn×n and B′ ∈ Rn×n are bases for the samelattice (i.e. generate the same lattice) if and only if

B = B′U

for some unimodular matrix U ∈ Rn×n, where |det(U)| = 1

This means we have
det(B) = ±det(B′)

This means the volume of a parallelepiped formed by the latticebasis vectors is invariant, i.e. Volume(P(B)) = Volume(P(B′))

Note: The same applies when the lattice is not full rank (whenthe basis matrix is not square)
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Lattice Basis

Example: Consider the lattice in R2 generated by the basis:
B1 =

[
1 0
0 1

]

Another valid basis for the same lattice is
B2 =

[
2 1
1 1

]

We have
B2 = B1U

where
U =

[
2 1
1 1

]
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Lattice Basis – The Good, the Bad

­ Intuition:
A good lattice basis has clear, direct steps, making it easy tonavigate and quickly reach any point in the grid.

Used as a secret key in lattice-based cryptosystems
A bad basis still reaches all points, but is inefficient,requiring unnecessary steps and complicating navigation.

Used as a public key in lattice-based cryptosystems
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Lattice Basis and Cryptography

v1

v2

w1w2

Good
Bad

One can classify the basis as Good or Bad:
Good: Consists of short, nearly orthogonal vectors, makingcomputations more efficient and problem-solving easier
Bad: Consists of long and highly skewed vectors (almostparallel), making the lattice computationally difficult towork withCyBOK Essam Ghadafi 25

Lattice Basis Reduction Methods

How to go from bad to good?
Transforming a bad basis to a better one involves shorteningvectors and improving orthogonality among them

Gram-Schmidt: Orthogonal but unstable andorder-dependent
Does not always return a valid lattice basis

LLL (Lenstra-Lenstra-Lovász): Efficient (poly-time), producesshorter, nearly orthogonal vectors. Utilises Gram-SchmidtOrthogonalisation
BKZ (Block Korkine-Zolotarev): Improves LLL with blockreduction, better results but higher cost
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Successive Minima

­ Intuition: The successive minima of a lattice measure howspread out the lattice is by identifying the smallest radii thatenclose at least k independent vectors (points)

λ2

λ1
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Successive Minima

The i-th successive minimum λi(L(B)) of a lattice L(B) ⊆ Rn isthe smallest radius r s.t. i linearly independent vectors
{v1, . . . ,vi} of length ≤ r exist , i.e. ‖vj‖ ≤ r for all j = 1, . . . , i.

λi(L(B)) = inf{r > 0 | dim(span(L(B) ∩B(0, r))) ≥ i}

Where:
B(0, r) denotes the closed ball centdarkred at the originwith radius r
L(B) ∩B(0, r) is the set of lattice points contained withinthis ball

Note: inf denotes the infimum: the largest number that is ≤every element of the set.
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Successive Minima

λ1(L(B)) is the length of the shortest nonzero vector in
L(B)

The shortest vector is not unique, e.g. ‖v‖ = ‖ − v‖
λ2(L(B)) is the radius of the smallest ball containing twolinearly independent vectors
In general, λi(L(B)) is the radius of the smallest ballcontaining i linearly independent lattice vectors

The λn-ball contains a basis for an n-dimensional lattice

λ2

λ1

CyBOK Essam Ghadafi 29

Minimum Distance of a Lattice

The minimum distance of a lattice L, denoted by λ(L), is theshortest distance between any two points in the lattice. Itanswers the question:
Q: How close are the closest two points in the grid?

Formally,
λ(L) = min

v,w∈L,v 6=w
‖v−w‖

The lattice minimum distance is also the length of its shortestnon-zero vector: λ(L) = λ1(L)

Note: Since lattice points are discrete, the minimum distancemust be > 0, as otherwise the set would not be discrete andwould not form a lattice
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Dual Lattice

The dual (or reciprocal) lattice L∗ of a lattice L ⊆ Rn is definedas:
L∗ = {y ∈ Rn | yT x ∈ Z, ∀x ∈ L}

That is, the dual lattice consists of all vectors in Rn that have aninteger inner product with every vector L
The basis of L∗ is is given by:

B∗ = (BT )−1
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Key Takeaways

Lattices are discrete grids of points formed by integercombinations of basis vectors
The basis of a lattice is not unique, but the determinant(volume of the fundamental parallelepiped) is invariant

Good lattice bases are short and nearly orthogonal; badones are long or nearly parallel, leading to inefficiency
The determinant of a lattice represents the “density” of thelattice and plays a crucial role in geometry and applications
Successive minima provide insights into the structure anddensity of the lattice
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Additional Resources & Reading

https://web.eecs.umich.edu/˜cpeikert/pubs/
lattice-survey.pdf

https://link.springer.com/chapter/10.1007/
978-3-642-23082-0_7

https://link.springer.com/chapter/10.1007/
978-3-540-88702-7_5

CyBOK Essam Ghadafi 33

https://web.eecs.umich.edu/~cpeikert/pubs/lattice-survey.pdf
https://web.eecs.umich.edu/~cpeikert/pubs/lattice-survey.pdf
https://link.springer.com/chapter/10.1007/978-3-642-23082-0_7
https://link.springer.com/chapter/10.1007/978-3-642-23082-0_7
https://link.springer.com/chapter/10.1007/978-3-540-88702-7_5
https://link.springer.com/chapter/10.1007/978-3-540-88702-7_5

	Vector & Matrices 
	Lattices
	Lattice Basis

	Fundamental Parallelepiped
	Successive Minima

