
Malware and Attack
Technologies
Knowledge Area
Version 1.0.1
Wenke Lee Georgia Institute of Technology

EDITOR
Howard Chivers University of York

REVIEWERS
Alex Berry FireEye
Lorenzo Cavallaro King’s College London
Mihai Christodorescu VISA
Igor Muttik Cyber Curio



The Cyber Security Body Of Knowledge
www.cybok.org

COPYRIGHT

© Crown Copyright, The National Cyber Security Centre 2021. This information is licensed
under the Open Government Licence v3.0. To view this licence, visit:
http://www.nationalarchives.gov.uk/doc/open-government-licence/

When you use this information under the Open Government Licence, you should include the
following attribution: CyBOK © Crown Copyright, The National Cyber Security Centre 2021,
licensed under theOpenGovernment Licence: http://www.nationalarchives.gov.uk/doc/open-
government-licence/.

The CyBOK project would like to understand how the CyBOK is being used and its uptake.
The project would like organisations using, or intending to use, CyBOK for the purposes
of education, training, course development, professional development etc. to contact it at
contact@cybok.org to let the project know how they are using CyBOK.

Version 1.0.1 is a stable public release of the Malware and Attack Technologies Knowledge
Area.

KA Malware and Attack Technologies | July 2021 Page 1

https://www.cybok.org
http://www.nationalarchives.gov.uk/doc/open-government-licence/
http://www.nationalarchives.gov.uk/doc/open-government-licence/
http://www.nationalarchives.gov.uk/doc/open-government-licence/
mailto:contact@cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

CHANGELOG

Version date Version number Changes made
July 2021 1.0.1 Updated copyright statement; amended “issue” to “ver-

sion”
October 2019 1.0

KA Malware and Attack Technologies | July 2021 Page 2

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

INTRODUCTION

Malware is short for ‘malicious software’, that is, any program that performs malicious activi-
ties. We use the terms malware and malicious code interchangeably. Malware comes with a
wide range of shapes and forms, and with different classifications accordingly, e.g., viruses,
Trojans, worms, spyware, botnet malware, ransomware, etc.

Malware carries out many of the cyberattacks on the Internet, including nation-state cyberwar,
cybercrime, fraud and scams. For example, Trojans can introduce a backdoor access to a gov-
ernment network to allow nation-state attackers to steal classified information. Ransomware
can encrypt data on a user’s computer and thus making it unaccessible to the user, and only
decrypt the data after the user pays a sum of money. Botnet malware is responsible for many
of the Distributed Denial-of-Service (DDoS) attacks as well as spam and phishing activities.
We need to study the techniques behind malware development and deployment in order to
better understand cyberattacks and develop the appropriate countermeasures.

As the political and financial stakes become higher, the sophistication and robustness of
both the cyber defence mechanisms and the malware technologies and operation models
have also increased. For example, attackers now use various obfuscation techniques such as
packing and polymorphism as well as metamorphism to evade malware detection systems [1],
and they set up adaptive network infrastructures on the Internet to support malware updates,
command-and-control, and other logistics such as transits of stolen data. In short, it is
becoming more important but also more challenging to study malware.

The rest of this chapter is organised as follows. We will provide a taxonomy of malware
and discuss their typical malicious activities as well as their eco-system and support infras-
tructures. We will then describe the tools and techniques to analyse malware behaviours,
and network- and host- based detection methods to identify malware activities, as well as
processes and techniques including forensic analysis and attribution to respond to malware
attacks.

CONTENT

1 A TAXONOMY OF MALWARE

[2, c6]

There are many types of malware [2]. It is instructive to create a taxonomy to systematically
categorise the wide spectrum of malware types. This taxonomy describes the common char-
acteristics of each type of malware and thus can guide the development of countermeasures
applicable to an entire category of malware (rather than a specific malware). Since there
many facets of malware technologies and attack operations, based on which malware can
be categorised and named, our taxonomy can include many dimensions. We discuss a few
important ones below. It should be borne in mind that other, more specialised, attributes could
also be used such as target processor architecture or operating system.

KA Malware and Attack Technologies | July 2021 Page 3

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

The first dimension of our taxonomy is whether malware is a standalone (or, independent)
program or just a sequence of instructions to be embedded in another program. Standalone
malware is a complete program that can run on its own once it is installed on a compromised
machine and executed. For example, worms and botnet malware belong to this type. The
second type requires a host program to run, that is, it must infect a program on a computer
by inserting its instructions into the program so that when the program is run, the malware
instructions are also executed. For example, document macro viruses and malicious browser
plug-ins belong to this type. In general, it is easier to detect standalone malware because it is
a program or a running process in its own right and its presence can be detected by operating
system or security tools.

The second dimension is whether malware is persistent or transient. Mostmalware is installed
in persistent storage (typically, a file system) as either standalone malware or an infection of
another program that already resides in persistent storage. Other malware is memory-resident
such that if the computer is rebooted or the infected running program terminates, it no longer
exists anywhere on the system. Memory-resident malware can evade detection by many
anti-virus systems that rely on file scanning. Such transient malware also has the advantage
of being easy to clean up (or, cover-up) its attack operations. The traditional way for malware
to become memory-resident is to remove the malware program (that was downloaded and
installed previously) from the file system as soon as it gets executed. Newer approaches
exploit system administrative and security tools such as PowerShell to inject malware directly
into memory [3]. For example, according to one report [4], after an initial exploit that led to the
unauthorised execution of PowerShell, meterpreter code was downloaded and injected into
memory using PowerShell commands and it harvested passwords on the infected computer.

The third dimension generally applies to only persistent malware and categorises malware
based on the layer of the system stack the malware is installed and run on. These layers,
in the ascending order, include firmware, boot-sector, operating system kernel, drivers and
Application Programing Interfaces (APIs), and user applications. Typically, malware in the
lower layers is harder to detect and remove, and wreaks greater havoc because it has more
control of the compromised computer. On the other hand, it is also harder to write malware
that can be installed at a lower layer because there are greater constraints, e.g., a more limited
programming environment in terms of both the types and amount of code allowed.

The fourth dimension is whether malware is run and spread automatically vs. activated by a
user action. When an auto-spreading malware runs, it looks for other vulnerable machines on
the Internet, compromises these machines and installs itself on them; the copies of malware
on these newly infected machines immediately do the same – run and spread. Obviously, auto-
spreading malware can spread on the Internet very quickly, often being able to exponentially
increase the number of compromised computers. On the other hand, user-activated malware
is run on a computer only because a user accidentally downloads and executes it, e.g., by
clicking on an attachment or URL in a received email. More importantly, when this malware
runs, although it can ‘spread’, e.g., by sending email with itself as the attachment to contacts
in the user’s address book, this spreading is not successful unless a user who receives this
email activates the malware.

The fifth dimension is whether malware is static or one-time vs. dynamically updated. Most
modern malware is supported by an infrastructure such that a compromised computer can
receive a software update from a malware server, that is, a new version of the malware is
installed on the compromised computer. From an attacker’s point-of-view, there are many
benefits of updating malware. For example, updated malware can evade detection techniques

KA Malware and Attack Technologies | July 2021 Page 4

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

that are based on the characteristics of older malware instances.

The sixth dimension is whether malware acts alone or is part of a coordinated network (i.e., a
botnet). While botnets are responsible for many cyberattacks such as DDoS, spam, phishing,
etc., isolated malware has become increasingly common in the forms of targeted attack. That
is, malware can be specifically designed to infect a target organisation and perform malicious
activities according to those assets of the organisation valuable to the attacker.

Most modern malware uses some form of obfuscation in order to avoid detection (and hence
we do not explicitly include obfuscation in this taxonomy). There is a range of obfuscation
techniques and there are tools freely available on the Internet for a malware author to use. For
example, polymorphismcan be used to defeat detectionmethods that are based on ‘signatures’
or patterns of malware code. That is, the identifiable malware features are changed to be
unique to each instance of the malware. Therefore, malware instances look different from
each other, but they all maintain the same malware functionality. Some common polymorphic
malware techniques include packing, which involves compressing and encrypting part of the
malware, and rewriting identifiable malicious instructions into other equivalent instructions.

st
an

da
lo
ne

or
ho

st
-p
ro

gr
am

pe
rs
is
te
nt

or
tra

ns
ie
nt

la
ye

rs
of

sy
st
em

st
ac

k

au
to
-s
pr

ea
di
ng

?

dy
na

m
ic
al
ly

up
da

ta
bl
e?

co
or

di
na

te
d?

viruses host-program persistent firmware and up Y Y N
malicious
browser extensions host-program persistent application N Y Y

botnet malware both persistent kernel and up Y Y Y

memory-resident
malware standalone transient kernel and up Y Y Y

Table 1: Use of the Taxonomy to Classify Representative Malware

As an illustration, we can apply this taxonomy to several types (or names) of malware. See
Table 1. In particular, a virus needs a host-program to run because it infects the host-program
by inserting a malicious code sequence into the program. When the host-program runs, the
malicious code executes and, in addition to performing the intended malicious activities, it
can look for other programs to infect. A virus is typically persistent and can reside in all layers
of the system stack except hardware. It can spread on its own because it can inject itself
into programs automatically. A virus can also be dynamically updated provided that it can
connect to a malware update server. A polymorphic malware virus can mutate itself so that
new copies look different, although the algorithm of this mutation is embedded into its own
code. A virus is typically not part of a coordinated network because while the infection can
affect many computers, the virus code typically does not perform coordinated activities.

Other malware that requires a host-program includes malicious browser plug-ins and exten-
sions, scripts (e.g., JavaScript on a web page), and document macros (e.g., macro viruses
and PDF malware). These types of malware can be updated dynamically, form a coordinated
network, and can be obfuscated.

Botnet malware refers to any malware that is part of a coordinated network with a botnet
infrastructure that provides command-and-control. A botnet infrastructure typically also

KA Malware and Attack Technologies | July 2021 Page 5

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

provides malware update, and other logistic support. Botnet malware is persistent and
typically obfuscated, and usually resides in the kernel, driver, or application layers. Some
botnet malware requires a host-program, e.g., malicious browser plug-ins and extensions,
and needs user activation to spread (e.g., malicious JavaScript). Other botnet malware is
standalone, and can spread automatically by exploiting vulnerable computers or users on
the Internet. These include trojans, key-loggers, ransomware, click bots, spam bots, mobile
malware, etc.

1.1 Potentially unwanted programs (PUPs)

A potentially unwanted program (PUP) is typically a piece of code that is part of a useful
program downloaded by a user. For example, when a user downloads the free version of a
mobile game app, it may include adware, a form of PUP that displays ad banners on the game
window. Often, the adware also collects user data (such as geo-location, time spent on the
game, friends, etc.) without the user’s knowledge and consent, in order to serve more targeted
ads to the user to improve the effectiveness of the advertising. In this case, the adware is also
considered spyware, which is defined as unwanted program that steals information about
a computer and its users. PUPs are in a grey area because, while the download agreement
often contains information on these questionable behaviours, most users tend not to read the
finer details and thus fail to understand exactly what they are downloading.

From the point of view of cybersecurity, it is prudent to classify PUPs towards malware, and
this is the approach taken by many security products. The simple reason is that a PUP has all
the potential to become full-fledged malware; once it is installed, the user is at the mercy of
the PUP operator. For example, a spyware that is part of a spellchecker browser extension
can gather information on which websites the user tends to visit. But it can also harvest user
account information including logins and passwords. In this case, the spyware has become a
malware from just a PUP.

2 MALICIOUS ACTIVITIES BY MALWARE

[2, c6][1, c11-12]

Malware essentially codifies the malicious activities intended by an attacker. Cyberattacks
can be analysed using the Cyber Kill Chain Model [5], which, as shown in Table 2, represents
(iterations of) steps typically involved in a cyberattack. The first step is Reconnaissance where
an attacker identifies or attracts the potential targets. This can be accomplished, for example,
by scanning the Internet for vulnerable computers (i.e., computers that run network services,
such as sendmail, that have known vulnerabilities), or sending phishing emails to a group of
users. The next phase is to gain access to the targets, for example, by sending crafted input
to trigger a vulnerability such as a buffer overflow in the vulnerable network service program
or embedding malware in a web page that will compromise a user’s browser and gain control
of his computer. This corresponds to the Weaponization and Delivery (of exploits) steps in the
Cyber Kill Chain Model. Once the target is compromised, typically another piece of malware is
downloaded and installed; this corresponds to the Installation (of malware) step in the Cyber
Kill Chain Model. This latter malware is the real workhorse for the attacker and can carry out
a wide range of activities, which amount to attacks on:

KA Malware and Attack Technologies | July 2021 Page 6

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

• confidentiality – it can steal valuable data, e.g., user’s authentication information, and
financial and health data;

• integrity – it can inject falsified information (e.g., send spam and phish emails, create
fraudulent clicks, etc.) or modify data;

• availability – it can send traffic as part of a distributed denial-of-service (DDoS) attack,
use up a large amount of compute-resources (e.g., to mine cryptocurrencies), or encrypt
valuable data and demand a ransom payment.

Step Activities

1 Reconnaissance Harvesting email addresses,
identifying vulnerable computers and accounts, etc.

2 Weaponization Designing exploits into a deliverable payload.
3 Delivery Delivering the exploit payload to a victim via email,

Web download, etc.
4 Exploitation Exploiting a vulnerability and

executing malicious code on the victim’s system.
5 Installation Installing (additional) malware on the victim’s system.
6 Command & Control Establishing a command and control channel for attackers

to remotely commandeer the victim’s system.
7 Actions on Objectives Carrying out malicious activities on the victim’s system and network.

Table 2: The Cyber Kill Chain Model

Most modern malware performs a combination of these attack actions because there are
toolkits (e.g., a key-logger) freely available for carrying out many ‘standard’ activities (e.g.,
recording user passwords) [1], and malware can be dynamically updated to include or activate
new activities and take part in a longer or larger ‘campaign’ rather than just performing isolated,
one-off actions. These are the Actions on Objectives in the Cyber Kill Chain Model.

Botnets exemplify long-running and coordinated malware. A botnet is a network of bots (or,
compromised computers) under the control of an attacker. Botnet malware runs on each bot
and communicates with the botnet command-and-control (C&C) server regularly to receive
instructions on specific malicious activities or updates to the malware. For example, every
day the C&C server of a spamming botnet sends each bot a spam template and a list of email
addresses so that collectively the botnet sends a very large number of spam messages. If the
botnet is disrupted because of detection and response actions, e.g., the current C&C server is
taken down, the botnet malware is already programmed to contact an alternative server and
can receive updates to change to a botnet that uses peer-to-peer for C&C. In general, botnets
are quite noisy, i.e., relatively easy to detect, because there are many bots in many networks.
Botnet C&C is an example of the Command & Control step in the Cyber Kill Chain Model.

In contrast to botnets, malware behind the so-called advanced persistent threats (APTs)
typically targets a specific organisation rather than aiming to launch large-scale attacks. For
example, it may look for a particular type of controller in the organisation to infect and cause it
to send the wrong control signals that lead to eventual failures in machineries. APT malware
is typically designed to be long-lived (hence the term ‘persistent’). This means it not only
receives regular updates. but also evades detection by limiting its activity volume and intensity
(i.e., ‘low and slow’), moving around the organisation (i.e., ‘lateral movements’) and covering
its tracks. For example, rather than sending the stolen data out to a ‘drop site’ all at once, it
can send a small piece at a time and only when the server is already sending legitimate traffic;
after it has finished stealing from a server it moves to another (e.g., by exploiting the trust

KA Malware and Attack Technologies | July 2021 Page 7

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

relations between the two) and removes logs and even patches the vulnerabilities in the first
server.

When we use the Cyber Kill Chain Model to analyze a cyberattack, we need to examine its
activities in each step. This requires knowledge of the attack techniques involved. The
ATT&CK Knowledge Base [6] documents the up-to-date attack tactics and techniques based
on real-world observations, and is a valuable reference for analysts.

2.1 The Underground Eco-System

The early-day malware activities were largely nuisance attacks (such as defacing or putting
graffiti on an organisation’s web page). Present-day malware attacks are becoming full-
blown cyberwars (e.g., attacks on critical infrastructures) and sophisticated crimes (e.g.,
ransomware, fake-AntiVirus tools, etc.). An underground eco-system has also emerged to
support the full malware lifecycle that includes development, deployment, operations and
monetisation. In this eco-system, there are actors specialising in key parts of the malware
lifecycle, and by providing their services to others they also get a share of the (financial) gains
and rewards. Such specialisation improves the quality of malware. For example, an attacker
can hire the best exploit researcher to write the part of the malware responsible for remotely
compromising a vulnerable computer. Specialisation can also provide plausible deniability
or at the least limit liability. For example, a spammer only ‘rents’ a botnet to send spam and
is not guilty of compromising computers and turning them into bots; likewise, the exploit
‘researcher’ is just experimenting and not responsible for creating the botnet as long as he did
not release the malware himself. That is, while they are all liable for the damage by malware,
they each bear only a portion of the full responsibility.

3 MALWARE ANALYSIS

[1, c1-10] [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]

There aremany benefits in analysingmalware. First, we can understand the intendedmalicious
activities to be carried out by the malware. This will allow us to update our network and
endpoint sensors to detect and block such activities, and identify which machines have
the malware and take corrective actions such as removing it or even completely wiping the
computer clean and reinstalling everything. Second, by analysing the malware structure (e.g.,
the libraries and toolkits that it includes) and coding styles, we may be able to gain information
that is potentially useful to attribution, which means being able to identify the likely author
and operator. Third, by comparing it with historical as well as geo-location data, we can better
understand and predict the scope and trend of malware attacks, e.g., what kinds of activities
(e.g., mining cryptocurrencies) are on the rise and if a cybercrime is moving from one region to
another. In short, malware analysis is the basis for detecting and responding to cyberattacks.

Malware analysis typically involves running a malware instance in an analysis environment.
There are ways to ‘capture’ malware instances on the infection sites. A network sensor
can examine traffic (e.g., web traffic, email attachment) to identify possible malware (e.g.,
payload that contains binary or program-like data from a website with a low reputation) and
run it in a sandbox to confirm. If a network sensor is able to detect outgoing malicious
traffic from an internal host, a host-based sensor can further identify the program, i.e., the
malware, responsible for such traffic. There are also malware collection and sharing efforts

KA Malware and Attack Technologies | July 2021 Page 8

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

where trusted organisations can upload malware samples found in their networks and also
receive samples contributed by other organisations. Academic researchers can typically
just obtain malware samples without needing to contribute. When acquiring and sharing
malware samples, we must consider our legal and ethical responsibilities carefully [19]. For
example, we must protect the identities of the infection sites fromwhich the malware samples
were captured, and we must not share the malware samples with any organisation that is an
unknown entity or that does not have the commitment or technical capabilities to analyse
malware safely.

The malware analysis pipeline typically includes the following steps: 1) identifying the format
of a malware sample (e.g., binary or source code, Windows or Linux, etc.), 2) static analysis
using disassembly (if the malware is in binary format), program analysis, statistical analysis
of the file contents, etc., and 3) dynamic analysis using an analysis environment. Steps 2 and
3 can be combined and iterated.

3.1 Analysis Techniques

Malware analysis is the process of learning malware behaviours. Due to the large volume
and increasing complexity of malware, we need to be able to rapidly analyse samples in a
complete, reliable and scalable way. To achieve this, we need to employ techniques such
as static analysis, dynamic analysis, symbolic execution and concolic execution [1]. These
program analysis techniques have been developed to support the software development cycle,
and they often need to be customized or extended for malware analysis because malicious
programs typically include code constructed specifically to resist analysis. That is, the main
challenge in malware analysis is to detect and bypass anti-analysis mechanisms.

3.1.1 Static Analysis

Static analysis involves examining the code (source, intermediate, or binary) to assess the
behaviours of a program without actually executing it [1]. A wide range of malware analysis
techniques fall into the category of static analysis. One limitation is that the analysis output
may not be consistent with the actual malware behaviours (at runtime). This is because in
many cases it is not possible to precisely determine a program’s behaviours statically (i.e.,
without the actual run-time input data). A more serious problem is that malware authors
are well aware of the limitations of static analysis and they leverage code obfuscation and
packing to thwart static-analysis altogether. For example, the packed code cannot be statically
analysed because it is encrypted and compressed data until unpacked into executable code
at run-time.

KA Malware and Attack Technologies | July 2021 Page 9

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

3.1.2 Dynamic analysis

Dynamic analysis monitors the behaviours of malware execution in order to identify mali-
cious behaviours [1]. Static analysis can provide more comprehensive coverage of program
behaviours but may include unfeasible ones. Dynamic analysis identifies the precise program
behaviours per the test input cases but misses behaviours that are not triggered by the input.
Additionally, dynamical analysis can defeat code obfuscation techniques designed to evade
static analysis. For example, whenmalware at run-time unpacks and executes its packed code,
dynamic analysis is able to identify the (run-time) malicious behaviours in the originally packed
code. When performing dynamic analysis, the main questions to consider are: what types of
malicious behaviours need to be identified and correspondingly, what run-time features need
to be collected and when to collect (or sample), and how to isolate the effects on the malware
from those of benign system components. Typically, the run-time features to be collected
need to be from a layer lower than the malware itself in the system stack so that the malware
cannot change the collected information. For example, instruction traces certainly cover all
the details of malicious behaviours but the data volume is too large for efficient analysis [20].
On the other hand, system call (or API call) traces are coarser but summarise how malware
interacts with the run-time system, including file I/O and networking activities [21]. Another
advantage of dynamic analysis is that it is independent of the malware format, e.g., binary,
script, macro, or exploit, because all malware is executed and analysed in a similar fashion.

3.1.3 Fuzzing

Fuzzing is a method for discovering vulnerabilities, bugs and crashes in software by feeding
randomised inputs to programs. Fuzzing tools [22] can also be used to trigger malware
behaviours. Fuzzing can explore the input space, but it is limited due to code-coverage
issues [7], especially for inputs that drive the program down complex branch conditions.
In contrast, concolic execution (see 3.1.5 Concolic Execution) is good at finding complex
inputs by formulating constraints, but is also expensive and slow. To take advantage of both
approaches, a hybrid approach [23] called hybrid fuzzing can be used.

3.1.4 Symbolic Execution

Symbolic execution [24, 25, 26, 7, 10] has been used for vulnerability analysis of legitimate
programs as well as malware analysis [8]. It treats variables and equations as symbols and
formulas that can potentially express all possible program paths. A limitation of concrete
execution (i.e., testing on particular inputs), including fuzzing, for malware analysis is that
the program has to be executed end-to-end, one run at a time. Unlike concrete execution,
symbolic execution can explore multiple branches simultaneously. To explore unseen code
sections and unfold behaviours, symbolic execution generalises the input space to represent
all possible inputs that could lead to points of interest.

KA Malware and Attack Technologies | July 2021 Page 10

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

3.1.5 Concolic Execution

While symbolic execution can traverse all paths in theory, it has major limitations [24], e.g.,
it may not converge quickly (if at all) when dealing with large symbol space and complex
formulas and predicates. Concolic execution, which combines CONCrete and symbOLIC
execution, can reduce the symbolic space but keep the general input space.

Offline Concolic Execution is a technique that uses concrete traces to drive symbolic execution;
it is also known as a Trace Based Executor [9]. The execution trace obtained by concrete
execution is used to generate the path formulas and constraints. The path formulas for the
corresponding branch is negated and Satisfiability Modulo Theories (SMT) solvers are used
to find a valid input that can satisfy the not-taken branches. Generated inputs are fed into
the program and re-run from the beginning. This technique iteratively explores the feasible
not-taken branches encountered during executions. It requires the repetitive execution of all
the instructions from the beginning and knowledge of the input format.

Online Concolic Execution is a technique that generates constraints along with the concrete
execution [10]. Whenever the concrete execution hits a branch, if both directions are feasible,
execution is forked to work on both branches. Unlike the offline executor, this approach can
explore multiple paths.

Hybrid Execution: This approach switches automatically between online and offline modes to
avoid the drawbacks of non-hybrid approaches [11].

Concolic Execution can use whole-system emulators [10, 27] or dynamic binary instrumenta-
tion tools [11, 25]. Another approach is to interpret Intermediate Representation (IR) to imitate
the effects of execution [8, 12]. This technique allows context-free concolic execution, which
analyses any part of the binary at function and basic block levels.

Path Exploration is a systematical approach to examine program paths. Path explosion is
also inevitable in concolic execution due to the nature of symbolic space. There are a variety
of algorithms used to prioritise the directions of concolic execution, e.g., Depth-First Search
(DFS) or distance computation [28]. Another approach is to prioritise the directions favouring
newly explored code blocks or symbolic memory dependence [11]. Other popular techniques
include path pruning, state merging [10, 29, 30], under-constrained symbolic execution [12]
and fuzzing support [7, 9].

3.2 Analysis Environments

Malware analysis typically requires a dedicated environment to run the dynamic analysis
tools [1]. The design choice of the environment determines the analysis methods that can be
utilised and, therefore, the results and limitations of analysis. Creating an environment requires
balancing the cost it takes to analyse a malware sample against the richness of the resulting
report. In this context, cost is commonly measured in terms of time and manual human
effort. For example, having an expert human analyst study a sample manually can produce a
very in-depth and thorough report, but at great cost. Safety is a critical design consideration
because of the concern that malware being executed and analysed in the environment can
break out of its containment and cause damage to the analysis system and its connected
network including the Internet (see 3.2.1 Safety and Live-Environment Requirements). An
example is running a sample of a botnet malware that performs a DDoS attack, and thus if
the analysis environment is not safe, it will contribute to that attack.

KA Malware and Attack Technologies | July 2021 Page 11

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

Machine Emulator Type 2 Hypervisor Type 1 Hypervisor Bare-metal machine
A
rc
hi
te
ct
ur

e

Code-based
architecture emulation

Runs in host OS,
provides virtualisation
service for hardware

Runs directly on
system hardware No virtualisation

A
dv

an
ta
ge

s Easy to use,
Fine-grained
introspection,
Powerful control over
the system state

Easy to use,
Fine-grained
introspection,
Powerful control over
the system state

Medium transparency,
Fine-grained
introspection, Low
overhead for hardware
interaction

High transparency, No
virtual environment
artifacts

Di
sa

dv
an

ta
ge

s

Low transparency,
Unreliability support of
architecture semantics

Low transparency,
Artifacts from
para-virtualisation

Less control over the
system state

Lack of fine-grained
introspection,
Scalability and cost
issues, Slower to
restore to clean state

Ex
am

pl
es

Unicorn [31],
QEMU [32], Bochs [33]

VirtualBox [34],
KVM [35], VMware [36]

VMwareESX [37],
Hyper-V [38], Xen [39]

NVMTrace [40],
BareCloud [16]

Table 3: Comparison of Malware Analysis Environments

Table 3 highlights the advantages and disadvantages of common environments used for
run-time (i.e., dynamic) analysis of malware. We can see that some architectures are eas-
ier to set up and give finer control over the malware’s execution, but come at the cost of
transparency (that is, they are easier for the malware to detect) compared to the others. For
example, bare-metal systems are very hard for malware to detect, but because they have no
instrumentation, the data that can be extracted are typically limited to network and disk I/O.
By contrast, emulators like QEMU can record every executed instruction and freely inspect
memory. However, QEMU also has errors that do not exist in real hardware, which can be
exploited to detect its presence [41]. A very large percentage of modern malware detect
emulated and virtualised environments and if they do, then they do not perform their malicious
actions in order to avoid analysis.

3.2.1 Safety and Live-Environment Requirements

Clearly, safety is very important when designing a malware analysis environment because
we cannot allow malware to cause unintended damage to the Internet (e.g., via mounting a
denial-of-service attack from inside the analysis environment) and the analysis system and its
connected network. Unfortunately, although pure static techniques, i.e., code analysis without
program execution, are the safest, they also have severe limitations. In particular, malware
authors know their code may be captured and analysed, and they employ code obfuscation
techniques so that code analysis alone (i.e., without actually running the malware) will yield
as little information as possible.

Malware typically requires communication with one or more C&C servers on the Internet,
e.g., to receive commands and decrypt and execute its ‘payload’ (or the code that performs
the intended malicious activities). This is just one example that highlights how the design
of a live-environment is important for the malware to be alive and thus exhibit its intended
functionality. Other examples of live-environment requirements include specific run-time

KA Malware and Attack Technologies | July 2021 Page 12

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

libraries [42], real user activities on the infected machine [43], and network connectivity to
malware update servers [44].

3.2.2 Virtualised Network Environments

Given the safety and live-environment requirements, most malware analysis environments
are constructed using virtualisation technologies. Virtualisation enables operating systems
to automatically and efficiently manage entire networks of nodes (e.g., hosts, switches), even
within a single physical machine. In addition, containment policies can be applied on top of
the virtual environments to balance the live-environment and safety requirements to 1) allow
malware to interact with the Internet to provide the necessary realism, and 2) contain any
malicious activities that would cause undesired harm or side-effects.

Example architectures [13] include: 1) the GQ system, which is designed based on multiple
containment servers and a central gateway that connects them with the Internet allowing for
filtering or redirection of the network traffic on a per-flow basis, and 2) the Potemkin system,
which is a prototype honeyfarm that uses aggressive memory sharing and dynamically binds
physical resources to external requests. Such architectures are used to not only monitor, but
also replay network-level behaviours. Towards this end, we first need to reverse-engineer the
C&C protocol used by malware. There are several approaches based on network level data
(e.g., Roleplay [45], which uses bytestream alignment algorithms), or dynamic analysis of
malware execution (e.g., Polyglot and dispatcher [46]), or a combination of the two.

3.3 Anti-Analysis and Evasion Techniques

Malware authors arewell aware that security analysts use programanalysis to identifymalware
behaviours. As a result, malware authors employ several techniques to make malware hard to
analyse [1].

3.3.1 Evading the Analysis Methods

The source code of malware is often not available and, therefore, the first step of static
analysis is to disassemble malware binary into assembly code. Malware authors can apply a
range of anti-disassembly techniques (e.g., reusing a byte) to cause disassembly analysis
tools to produce an incorrect code listing [1].

The most general and commonly used code obfuscation technique is packing, that is, com-
pressing and encrypting part of the malware. Some trivially packed binaries can be unpacked
with simple tools and analysed statically [47], but for most modern malware the packed code
is unpacked only when it is needed during malware execution. Therefore, an unpacking tool
needs to analyse malware execution and consider the trade-offs of robustness, performance,
and transparency. For example, unpackers based on virtual machine introspection (VMI) [14]
are more transparent and robust but also slower. By contrast, unpackers built on dynamic
binary instrumentation (DBI) [18] are faster, but also easier to detect because the DBI code
runs at the same privilege level as the malware.

Many techniques aim at obfuscating the intended control-flows of a malware, e.g., by adding
more basic blocks and edges to its control-flow graph [1, 48, 49]. A countermeasure is to
analyze malware samples by their dynamic features (i.e., what a malware does). The reason
is that static analysis can be made impossible via advanced obfuscation using opaque

KA Malware and Attack Technologies | July 2021 Page 13

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

constants [50], which allows the attacker to hide what values will be loaded into registers
during runtime. This in turn makes it very hard for static malware analysis to extract the
control-flow graph and variables from the binary. A more effective approach is to combine
static and dynamic analysis. For example, such an approach has been shown to be able to
disassemble the highly obfuscated binary code [51].

A less common but much more potent obfuscation technique is code emulation. Borrowing
techniques originally designed to provide software copyright protection [52], malware authors
convert native malware binaries into bytecode programs using a randomly generated instruc-
tion set, paired with a native binary emulator that interprets the instruction set. That is, with this
approach, the malware ‘binary’ is the emulator, and the original malware code becomes ‘data’
used by the emulator program. Note that, for the same original malware, the malware author
can turn it into many instances of emulated malware instances, each with its own random
bytecode instruction set and a corresponding emulator binary. It is extremely hard to analyse
emulated malware. Firstly, static analysis of the emulator code yields no information about
the specific malware behaviours because the emulator processes all possible programs in the
bytecode instruction set. Static analysis of the malware bytecode entails first understanding
the instruction set format (e.g., by static analysing the emulator first), and developing tools
for the instruction set; but this process needs to be repeated for every instance of emulated
malware. Secondly, standard dynamic analysis is not directly useful because it observes the
run-time instructions and behaviours of an emulator and not of the malware.

A specialised dynamic analysis approach is needed to analyse emulated malware [17]. The
main idea is to execute the malware emulator and record the entire instruction traces. Ap-
plying dynamic dataflow and taint analysis techniques to these traces, we then identify data
regions containing the bytecode, syntactic information showing how bytecodes are parsed
into opcodes and operands, and semantic information about control transfer instructions. The
output of this approach is data structures, such as a control-flow graph (CFG) of the malware,
which provides the foundation for subsequent malware analysis.

Malware often uses fingerprinting techniques to detect the presence of an analysis environ-
ment and evade dynamic analysis (e.g., it stops executing the intended malware code). More
generally, malware behaviours can be ‘trigger-based’ where a trigger is a run-time condition
that must be true. Examples of conditions include the correct date and time, the presence
of certain files or directories, an established connection to the Internet, the absence of a
specific mutex object etc. If a condition is not true, the malware does not execute the intended
malicious logic. When using standard dynamic analysis, the test inputs are not guaranteed to
trigger some of these conditions and, as a result, the corresponding malware behaviours may
be missed. To uncover trigger-based behaviours a multi-path analysis approach [15] explores
multiple execution paths of a malware. The analyser monitors how the malware code uses
condition-like inputs to make control-flow decisions. For each decision point, the analyser
makes a snapshot of the current malware execution state and allows the malware to execute
the correct malware path for the given input value; for example, the input value suggests
that the triggering condition is not met and the malware path does not include the intended
malicious logic. The analyser then comes back to the snapshot and rewrites the input value
so that the other branch is taken; for example, now the triggering condition is rewritten to be
true, and the malware branch is the intended malicious logic.

KA Malware and Attack Technologies | July 2021 Page 14

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

3.3.2 Identifying the Analysis Environments

Malware often uses system and network artifacts that suggest that it is running in an analysis
environment rather than a real, infected system [1]. These artifacts are primarily categorised
into four classes: virtualisation, environment, process introspection, and user. In virtualisation
fingerprinting, evasive malware tries to detect that it is running in a virtualised environment.
For example, it can use red pill testing [53], which entails executing specific CPU instruction
sequences that cause overhead, unique timing skews, and discrepancies when compared with
executions on a bare-metal (i.e., non-virtualised) system. Regarding environment artifacts,
virtual machines and emulators have unique hardware and software parameters including
devicemodels, registry values, and processes. In process introspection, malware can check for
the presence of specific programs on operating systems, including monitoring tools provided
by anti-virus companies and virtual machine vendors. Lastly, user artifacts include specific
applications such a web browser (or lack thereof), web browsing history, recently used files,
interactive user prompts, mouse and keyboard activities etc. These are signals for whether a
real human uses the environment for meaningful tasks.

An analysis environment is not transparent if it can be detected by malware. There are
mitigation techniques, some address specific types of evasion while others more broadly
increase transparency. Binary modifications can be performed by dynamically removing or
rewriting instructions to prevent detection [54], and environmental artifacts can be hidden from
malware by hooking operating system functions [55]. Path-exploration approaches [15, 56]
force malware execution down multiple conditional branches to bypass evasion. Hypervisor-
based approaches [14, 57] use introspection tools with greater privilege than malware so that
they can be hidden from malware and provide the expected answers to the malware when it
checks the system and network artifacts. In order to provide the greatest level of transparency,
several approaches [40, 16] perform malware analysis on real machines to avoid introducing
artifacts.

4 MALWARE DETECTION

[1, c11, c14-16, c18] [58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68]

4.1 Identifying the Presence of Malware

The process of locating a malicious program residing within a host involves identifying clues
that are indicative of the malware’s presence on a computer system. We call these clues
‘indicator of compromise’, and they are the ‘features’ or ‘artifacts’ of malware.

KA Malware and Attack Technologies | July 2021 Page 15

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

4.1.1 Finding Malware in a Haystack

In order to identifymalware, wemust first have an understanding of howmalware is distributed
to their victims’ hosts. Malware is commonly distributed via an Internet download [69]. A
vulnerable Internet-facing program running on a computer can be exploited to download
malware onto the computer. A user on the computer can be socially engineered to open an
email attachment or visit a web page, both may lead to an exploit and malware download.

Whilst being downloaded onto a host, the malware’s contents can be seen in the payload
section of the network traffic (i.e., network packet) [1]. As a defense, an Antivirus (AV) solution,
or Intrusion Detection System (IDS), can analyse each network packet transported to an end-
host for knownmalicious content, and block (prevent) the download. On the other hand, traffic
content encrypted as HTTPS is widely and increasingly adopted by websites. Using domain
reputation systems [70], network traffic coming from domains and IP addresses known to
be associated with malicious activities can be automatically blocked without analysing the
traffic’s payload.

After being installed on a computer, malware can reside within the host’s filesystem ormemory
(or both). At this point, the malware can sleep (where the executable does nothing to the
system) until a later point in time [71] as specified by the malware author. An AV or IDS can
periodically scan the host’s filesystem and memory for known malicious programs [1]. As a
first layer of defence, malware detectors can analyse static features that suggest malicious
executable contents. These include characteristics of instructions, control-flow graphs, call
graphs, byte-value patterns [72] etc.

If malware is not detected during its distribution state, i.e., a detection system misses its
presence in the payloads of network traffic or the filesystem and memory of the end-host,
it can still be detected when it executes and, for example, begins contacting its command-
and-control (C&C) server and performing malicious actions over the Internet or on the victim
computer system. An AV or IDS on the network perimeter continuously monitors network
packets travelling out of an end-host. If the AV or IDS sees that the host is contacting known
malicious domain names or IP addresses it can surmise that the host has been infected by
malware. In addition, an AV or IDS on the end-host can look for behaviour patterns that are
associated with known malware activities, such as system or API calls that reveal the specific
files read or written.

Evasion and Countermeasures Since Antivirus and IDS solutions can generate signatures
for malware executables, malware authors often morph the contents of their malware. They
can change the contents of the executables while generating identically functional copies of
their malware (i.e., the malware will perform the same dynamic behaviours when executed).
Since its static contents have been changed, the malware can evade an AV or IDS that uses
these static features. On the other hand, the malware can still be detected by an AV or IDS
that uses the dynamic features (i.e., what the malware does).

Heuristics, e.g., signatures of a packing tool, or high entropy due to encryption, can be used to
detect and block contents that suggest the presence of packed malware, but this may lead to
false alarms because packing can also be used by benign software and services, such as video
games, to protect proprietary information. The most reliable way to detect packed malware
is to simply monitor its run-time behaviours because the packed code will be unpacked and
executed, and the corresponding malicious behaviours can then be identified [58].

In addition to changing the malware executable, an attacker can also change the contents

KA Malware and Attack Technologies | July 2021 Page 16

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

of its malicious network traffic by using polymorphism to modify payloads so that the same
attacks look different across multiple traffic captures. However, classic polymorphic malware
techniques [73] make the payloads look so different that even a naive IDS can easily differ-
entiate them from benign payloads. On the other hand, with polymorphic malware blending
attacks [59] malicious payloads can be made to look statistically similar to benign payloads.

Malware authors often implement updating routines, similar to updates for operating systems
and applications such as web browsers and office tools. This allows malware authors the
flexibility to make changes to the malware to not only include new malicious activities but
also evade detection by AVs and IDS that have started using patterns of the old malware and
its old behaviours.

4.2 Detection of Malware Attacks

We have discussed ways to identify static and behaviour patterns of malware, which can then
be used to detect instances of the same, or similar malware. Although many popular variants
of malware families have existed at one time or another (e.g., Zeus [74, 75], Spyeye [76, 77],
Mirai [78]), there will always be new malware families that cannot be detected by malware
detection models (such as AV signatures). Therefore, we need to go beyond identifying
specific malware instances: we need to detect malicious activities in general.

4.2.1 Host-based and Network-Based Monitoring

The most general approach to detect malicious activities is anomaly detection [60, 79, 61]. An
anomaly in system or network behaviour is an activity that deviates from normal (or seen)
behaviour. Anomaly detection can identify both old and new attacks. It is important to note
that an anomalous behaviour is not the same as amalicious behaviour. Anomalous behaviours
describe behaviours that deviate from the norm, and of course it is possible to have abnormal
benign activities occurring on a system or network.

On the other hand, a more efficient and arguably more accurate approach to detect an old
attack is to find the patterns or signatures of the known attack activities [1]. This is often
called the misuse detection approach. Examples of signatures include: unauthorised write to
system files (e.g., Windows Registry), connection to known botnet C&C servers, etc.

Two different, but complementary approaches to deploy attack detection systems are: 1)
host-based monitoring of system activities, and 2) network-based monitoring of traffic. Host-
based monitoring systems monitor activities that take place in a host, to determine if the
host is compromised. These systems typically collect and monitor activities related to the
file system, processes, and system calls [1, 62]. Network-based monitoring systems analyse
activities that are network-wide, e.g., temporal characteristics of access patterns of network
traffic flows, the domain names the network hosts reach out to, the characteristics of the
network packet payloads that cross the network perimeter, etc. [1, 63].

Let us look at several examples of malicious activities and the corresponding detection
approaches. The first-generation spam detection systems focused on analysing the email
contents to distinguish legitimate messages from spam. Latter systems included network-
level behaviours indicative of spam traffic [80], e.g., spikes in email traffic volumes due to
large amount of spam messages being sent.

For DDoS detection, the main idea is to analyse the statistical properties of traffic, e.g., the

KA Malware and Attack Technologies | July 2021 Page 17

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

number of requests within a short time window sent to a network server. Once a host is
identified to be sending such traffic, it is considered to be participating in a DDoS attack and
its traffic is blocked. Attackers have evolved their techniques to DDoS attacks, in particular,
by employing multiple compromised hosts, or bots, to send traffic in a synchronised manner,
e.g., by using DDoS-as-a-service malware kits [81]. That is, each bot no longer needs to send
a large amount of traffic. Correspondingly, DDoS detection involves correlating hosts that
send very similar traffic to the victim at the same time.

For ransomware detection, the main approaches include monitoring host activities involved in
encryption. If there is a process making a large number of significant modifications to a large
number of files, this is indicative of a ransomware attack [82]. The ‘significant’ modifications
reflect the fact that encrypting a file will result in its contents changing drastically from its
original contents.

Host-based and network-based monitoring approaches can be beneficially combined. For
example, if we see contents from various sensitive files on our system (e.g., financial records,
password-related files, etc.) being transmitted in network traffic, it is indicative that data are
being exfiltrated (without the knowledge and consent of the user) to an attacker’s server. We
can then apply host-based analysis tools to further determine the attack provenance and
effects on a victim host [83].

Since many malicious activities are carried out by botnets, it is important to include botnet
detection methods. By definition, bots of the same botnet are controlled by the same attacker
and perform coordinated malicious activities [84, 64]. Therefore, a general approach to botnet
detection is to look for synchronised activities both in C&C like traffic and malicious traffic
(e.g., scan, spam, DDoS, etc.) across the hosts of a network.

4.2.2 Machine Learning-Based Security Analytics

Since the late 1990s, machine learning (ML) has been applied to automate the process of
building models for detecting malware and attacks. The benefit of machine learning is its
ability to generalise over a population of samples, given various features (descriptions) of
those samples. For example, after providing an ML algorithm samples of different malware
families for ‘training’, the resultant model is able to classify new, unseen malware as belonging
to one of those families [65].

Both static and dynamic features of malware and attacks can be employed by ML-based
detection models. Examples of static features include: instructions, control-flow graphs,
call graphs, etc. Examples of dynamic features include: system call sequences and other
statistics (e.g., frequency and existence of system calls), system call parameters, data-flow
graphs [85], network payload features, etc.

An example of success stories in applying machine learning to detect malware and attacks is
botnet detection [86]. ML techniques were developed to efficiently classify domain names as
ones produced by domain generation algorithm (DGA), C&C domains, or legitimate domains
using features extracted from DNS traffic. ML techniques have also been developed to identify
C&C servers as well as bots in an enterprise network based on features derived from network
traffic data [64].

A major obstacle in applying (classical) machine learning to security is that we must select or
even engineer features that are useful in classifying benign and malicious activities. Feature
engineering is very knowledge- and labour- intensive and is the bottleneck in applying ML to

KA Malware and Attack Technologies | July 2021 Page 18

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

any problem domain. Deep learning has shown some promise in learning from a large amount
of data without much feature engineering, and already has great success in applications such
as image classification [87]. However, unlike many classical ML models (such as decision
trees and inductive rules) that are human-readable, and hence reviewable by security analysts
before making deployment decisions, deep learning outputs blackbox models that are not
readable and not easily explainable. It is often not possible to understand what features are
being used (and how) to arrive at a classification decision. That is, with deep learning, security
analysts can no longer check if the output even makes sense from the point-of-view of domain
or expert knowledge.

4.2.3 Evasion, Countermeasures, and Limitations

Attackers are well aware of the detection methods that have been developed, and they are
employing evasion techniques to make their attacks hard to detect. For example, they can
limit the volume and intensity of attack activities to stay below the detection threshold, and
they can mimic legitimate user behaviours such as sending stolen data (a small amount at a
time) to a ‘drop site’ only when a user is also browsing the Internet. Every misuse or anomaly
detection model is potentially evadable.

It should also come as no surprise that no sooner had researchers begun using ML than
attackers started to find ways to defeat the ML-based detection models.

One of the most famous attacks is the Mimicry attack on detection models based on system
call data [66]. The idea is simple: the goal is to morph malicious features to look exactly the
same as the benign features, so that the detection models will mistakenly classify the attack
as benign. The Mimicry attack inserts system calls that are inconsequential to the intended
malicious actions so that the resultant sequences, while containing system calls for malicious
activities, are still legitimate because such sequences exist in benign programs. A related
attack is polymorphic blending [59] that can be used to evade ML models based on network
payload statistics (e.g., the frequency distribution of n-grams in payload data to a network
service). An attack payload can be encoded and padded with additional n-grams so that it
matches the statistics of benign payloads. Targeted noise injection [67] is an attack designed
to trick a machine-learning algorithm, while training a detection model, to focus on features
not belonging to malicious activities at all. This attack exploits a fundamental weakness of
machine learning: garbage in, garbage out. That is, if you give a machine-learning algorithm
bad data, then it will learn to classify data ‘badly’. For example, an attacker can insert various
no-op features into the attack payload data, which will statistically produce a strong signal for
the ML algorithm to select them as ‘the important, distinguishing features’. As long as such
features exist, and as they are under the attacker’s control, any ML algorithm can be misled to
learn an incorrect detection model. Noise injection is also known as ‘data poisoning’ in the
machine learning community.

We can make attacks on ML harder to succeed. For example, one approach is to squeeze
features [88] so that the feature set is not as obvious to an attacker, and the attacker has a
smaller target to hit when creating adversarial samples. Another approach is to train separating
classes, which distance the decision boundary between classes [89]. This makes it more
difficult for an attacker to simply make small changes to features to ‘jump’ across decision
boundaries and cause the model to misclassify the sample. Another interesting approach
is to have an ML model forget samples it has learned over time, so that an attacker has to
continuously poison every dataset [90].

KA Malware and Attack Technologies | July 2021 Page 19

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

A more general approach is to employ a combination of different ML-based detection models
so that defeating all of them simultaneously is very challenging. For example, we can model
multiple feature sets simultaneously through ensemble learning, i.e., using multiple classifiers
trained on different feature sets to classify a sample rather than relying on singular classifier
and feature set. This would force an attacker to have to create attacks that can evade each
and every classifier and feature set [68].

As discussed earlier, deep learning algorithms producemodels that cannot be easily examined.
But if we do not understand how a detection model really works, we cannot foresee how
attackers can attempt to defeat it and how we can improve its robustness. That is, a model
that seemingly performs very well on data seen thus far can, in fact, be very easily defeated in
the future - we just have no way of knowing. For example, in image recognition it turned out
that some deep learning models focused on high-frequency image signals (that are not visible
to the human eye) rather than the structural and contextual information of an image (which is
more relevant for identifying an object) and, as a result, a small change in the high-frequency
data is sufficient to cause a mis-classification by these models, while to the human eye the
image has not changed at all [91].

There are promising approaches to improve the ‘explainability’ of deep learning models. For
example, an attention model [92] can highlight locations within an image to show which
portions it is focusing on when classifying the image. Another example is LEMNA [93], which
generates a small set of interpretable features from an input sample to explain how the sample
is classified, essentially approximating a local area of the complex deep learning decision
boundary using a simpler interpretable model.

In both the machine learning and security communities, adversarial machine learning [94]
is and will continue to be a very important and active research area. In general, attacks on
machine learning can be categorised as data poisoning (i.e., injecting malicious noise into
training data) and evasion (i.e., morphing the input to cause mis-classification). What we
have discussed above are just examples of evasion and poisoning attacks on ML models for
security analytics. These attacks have motivated the development of new machine-learning
paradigms that are more robust against adversarial manipulations, and we have discussed
here examples of promising approaches.

In general, attack detection is a very challenging problem. A misuse detection method which
is based on patterns of known attacks is usually not effective against new attacks or even new
variants of old attacks. An anomaly detection method which is based on a normal profile can
produce many false alarms because it is often impossible to include all legitimate behaviours
in a normal profile. While machine learning can be used to automatically produce detection
models, potential ‘concept drift’ can render the detection models less effective over time [95].
That is, most machine-learning algorithms assume that the training data and the testing data
have the same statistical properties, whereas in reality, user behaviours and network and
system configurations can change after a detection model is deployed.

KA Malware and Attack Technologies | July 2021 Page 20

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

5 MALWARE RESPONSE

[96, 97, 98, 99, 100, 101]

If we have an infected host in front of us, we can remove the malware, and recover the
data and services from secure backups. At the local network access point, we can update
corresponding Firewall and Network intrusion detection system rules, to prevent and detect
future attacks. It is unfeasible to execute these remediation strategies if the infectedmachines
cannot be accessed directly (e.g., they are in private residences), and if the scale of infection
is large. In these cases, we can attempt to take down malware command-and-control (C&C)
infrastructure instead [96, 97], typically at the internet service provider (ISP) or the top-level
domain (TLD) level. Takedowns aim to disrupt the malware communication channel, even if
the hosts remain infected. Last but not least, we can perform attack attribution using multiple
sources of data to identify the actors behind the attack.

5.1 Disruption of Malware Operations

There are several types of takedowns to disrupt malware operations. If the malware uses
domain names to look up and to communicate with centralised C&C servers, we perform
takedown of C&C domains by ‘sinkholing’ the domains, i.e., making the C&C domains resolve to
the defender’s servers so that botnet traffic is ‘trapped’ (that is, redirected) to these servers [96].
If the malware uses peer-to-peer (P2P) protocol as a decentralised C&C mechanism, we can
partition the P2P botnet into isolated sub-networks, create a sinkholing node, or poison the
communication channel by issuing commands to stop themalicious activities [97]. However, it
should be borne in mind that, in most territories active defence or intelligence gathering, such
as hack-backs, access to or modification of servers, DNS, or networks, is unlawful without
appropriate legal authority.

5.1.1 Evasion and Countermeasures

Malware often utilises agility provided by DNS fast-flux network and Domain-name Generation
Algorithms (DGAs) to evade the takedown. A DNS fast-flux network points the C&C domain
names to a large pool of compromised machines, and the resolution changes rapidly [102].
DGAs make use of an algorithm to automatically generate candidate C&C domains, usually
based on some random seed. Among the algorithm-generated domains, the botmaster can
pick a few to register (e.g., on a daily basis) and make them resolve to the C&C servers. What
makes the matter worse are the so-called bullet-proof hosting (BPH) services, which are re-
silient against takedowns because they ignore abuse complaints and takedown requests [98].

We can detect the agile usage of C&C mechanisms. As the botmaster has little control of
the IP address diversity and down-time for compromised machines in a fast-flux network, we
can use these features to detect fast-flux [103]. We can also identify DGA domains by mining
NXDomains traffic using infected hosts features and domain name characteristic features [86],
or reverse-engineering the malware to recover the algorithm. To counter bullet-proof hosting,
we need to put legal, political and economic pressures on hosting providers. For example, the
FBI’s operation ghost click issued a court order for the takedown of DNSChanger [104, 105].

Malware has also become increasingly resilient by including contingency plans. A centralised
botnet can have P2P as a fallback mechanism in case the DNS C&C fails. Likewise, a P2P
botnet can use DNS C&C as a contingency plan. A takedown is effective only if all the C&C

KA Malware and Attack Technologies | July 2021 Page 21

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

channels are removed from the malware. Otherwise, the malware can bootstrap the C&C
communication again using the remaining channels. If we hastily conduct botnet takedowns
without thoroughly enumerating and verifying all the possible C&C channels, we can fail to
actually disrupt the malware operations and risk collateral damage to benign machines. For
example, the Kelihos takedown [106] did not account for the backup P2P channel, and the
3322.org takedown disabled the dynamic DNS service for many benign users.

We need to have a complete view of the C&C domains and other channels that are likely to
be used by a botnet, by using multiple sources of intelligence including domain reputation,
malware query association and malware interrogation [96]. We start from a seed set of C&C
domains used by a botnet. Then, we use passive DNS data to retrieve related historical IP
addresses associated with the seed set. We remove sinkholing, parking, and cloud hosting
provider IP addresses from them to mitigate the collateral damage from the takedowns. The
resulting IPs can also give us related historical domains that have resolved to them. After
following these steps, we have an extended set of domains that are likely to be used by the
botnet. This set captures agile and evasive C&C behaviours such as fast-flux networks. Within
the extended set, we combine 1) low reputation domains, 2) domains related to malware,
and 3) other domains obtained by interrogating the related malware. Malware interrogation
simulates situations where the default C&C communication mechanism fails through blocking
DNS resolution and TCP connection [101]. By doing so, we can force the malware to reveal
the backup C&C plans, e.g., DGA or P2P. After enumerating the C&C infrastructure, we can
disable the complete list of domains to take the botnet down.

5.2 Attribution

Ideally, law enforcement wants to identify the actual criminal behind the attacks. Identifying
the virtual attacker is an important first step toward this goal. An attacker may have consistent
coding styles, reuse the same resources or infrastructures, or use similar C&C practices.

From the malware data, we can compare its ‘characteristics’ with those of known historical
adversaries, e.g., coding styles, server configurations, etc. [99]. At the source code level, we
can use features that reflect programming styles and code quality. For instance, linguistic
features, formatting style, bugs and vulnerabilities, structured features such as execution
path, abstract syntax tree (AST), Control Flow Graph (CFG), and program dependence graph
(PDG) can be used. Other features extracted from the binary file can also indicate authorship,
e.g., the sequence of instructions and register flow graph.

From the enumerated attack infrastructure, we can associate the expanded domain name set
with previously known adversaries. For instance, unknown TDSS/TDL4 botnet ad-fraud C&C
domains share the same IP infrastructure with known domains, and they are registered by the
same set of email addresses and name servers. This allows us to attribute unknown domains
to known TDSS/TDL4 actors [100].

KA Malware and Attack Technologies | July 2021 Page 22

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

5.2.1 Evasion and Countermeasures

Many malware authors reuse different kits for the convenience offered by the business model
of the underground economy. Common for-sale kits allowmalware authors to easily customise
their own malware. They can also evade attribution by intentionally planting ‘false flags’ in
malware.

Domain registration information, WHOIS, is a strong signal for attack attribution. The same
attacker often uses a fake name, address and company information following a pattern.
However, WHOIS privacy protection has become ubiquitous and is even offered for free for the
first year when a user purchases a domain name. This removes the registration information
that could be used for attack attribution.

We need to combine multiple, different streams of data for the analysis. For instance, malware
interrogation helps recover more C&C domains used by the fallback mechanism, which offers
more opportunity for attribution [101, 107].

CONCLUSION

Attackers use malware to carry out malicious activities on their behalf. Malware can reside
in any layer of the system stack, and can be a program by itself or embedded in another
application or document. Modernmalware comeswith a support infrastructure for coordinated
attacks and automated updates, and can operate low-and-slow and cover its tracks to avoid
detection and attribution. While malware can cause wide-spread infection and harm on the
Internet, it can also be customised for attacks targeting a specific organisation. Malware
analysis is an important step in understanding malicious behaviours and properly updating
our attack prevention and detection systems. Malware employs a wide range of evasion
techniques, which include detecting the analysis environment, obfuscating malicious code,
using trigger-conditions to execute, and applying polymorphism to attack payloads, etc.
Accordingly, we need to make analysis environments transparent to malware, continue to
develop specialised program analysis algorithms and machine-learning based detection
techniques, and apply a combination of these approaches. Response to malware attacks
goes beyond detection and mitigation, and can include take-down and attribution, but the
challenge is enumerating the entire malware infrastructure, and correlating multiple pieces of
evidence to avoid false flags planted by the attackers.

CROSS-REFERENCE OF TOPICS VS REFERENCE MATERIAL

KA Malware and Attack Technologies | July 2021 Page 23

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

Sections Cites

1 A taxonomy of Malware [2]:c6
2 Malicious Activities by Malware [2]:c6, [1]:c11-12
3 Malware Analysis
3.1 Analysis Techniques [1]:c1-10
3.1.1 Static Analysis [1]:c4-7
3.1.2 Dynamic analysis [1]:c8-10
3.1.3 Fuzzing [7, 8]
3.1.5 Concolic Execution [9, 10, 11, 12]
3.2 Analysis Environments [1]:c2
3.2.1 Safety and Live-Environment Requirements
3.2.2 Virtualised Network Environments [1]:c2, [13]
3.3.2 Identifying the Analysis Environments [1]:c15-18, [14, 15, 16]
3.3 Anti-Analysis and Evasion Techniques [1]:c15-16, [17, 18, 15]
4 Malware Detection
4.1 Identifying the Presence of Malware
4.1.1 Finding Malware in a Haystack [1]:c11,c14
4.1.1 Evasion and Countermeasures [1]:c15-16,c18, [58, 59]
4.2 Detection of Malware Attacks
4.2.1 Host-based and Network-Based Monitoring [1]:c11,c14, [60, 61, 62, 63, 64]
4.2.2 Machine Learning-Based Security Analytics [65, 64]
4.2.3 Evasion, Countermeasures, and Limitations [66, 67, 68]
5 Malware Response
5.1 Disruption of Malware Operations [96, 97]
5.1.1 Evasion and Countermeasures [98]
5.2 Attribution [99, 100]
5.2.1 Evasion and Countermeasures [101]

REFERENCES

[1] M. Sikorski and A. Honig, Practical Malware Analysis: A Hands-On Guide to Dissecting
Malicious Software. No Starch Press, 2012.

[2] W. Stallings and L. Brown, Computer Security: Principles and Practice, 4th Edition. Pear-
son, 2018.

[3] McAfee, “Fileless malware execution with powershell is easier than you may
realize,” 2017. [Online]. Available: https://www.mcafee.com/enterprise/en-us/assets/
solution-briefs/sb-fileless-malware-execution.pdf

[4] ars TECHNICA, “A rash of invisible, fileless malware is infecting banks around the
globe,” 2017. [Online]. Available: https://arstechnica.com/information-technology/
2017/02/a-rash-of-invisible-fileless-malware-is-infecting-banks-around-the-globe/
?comments=1&post=32786675

[5] Lockheed Martin, “The cyber kill chain.” [Online]. Available: https://www.lockheedmartin.
com/en-us/capabilities/cyber/cyber-kill-chain.html

[6] MITRE, “ATT&CK knowledge base.” [Online]. Available: https://attack.mitre.org
[7] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta, Y. Shoshitaishvili,

C. Kruegel, and G. Vigna, “Driller: Augmenting fuzzing through selective symbolic execu-
tion.” in The Network and Distributed System Security Symposium (NDSS), 2016.

[8] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher, J. Grosen,
S. Feng, C. Hauser, C. Kruegel et al., “Sok: state of the art of war: Offensive techniques
in binary analysis,” in 2016 IEEE Symposium on Security and Privacy (SP). IEEE, 2016,
pp. 138–157.

[9] P. Godefroid, M. Y. Levin, and D. A. Molnar, “Automated whitebox fuzz testing,” in The

KA Malware and Attack Technologies | July 2021 Page 24

https://www.cybok.org
https://www.mcafee.com/enterprise/en-us/assets/solution-briefs/sb-fileless-malware-execution.pdf
https://www.mcafee.com/enterprise/en-us/assets/solution-briefs/sb-fileless-malware-execution.pdf
https://arstechnica.com/information-technology/2017/02/a-rash-of-invisible-fileless-malware-is-infecting-banks-around-the-globe/?comments=1&post=32786675
https://arstechnica.com/information-technology/2017/02/a-rash-of-invisible-fileless-malware-is-infecting-banks-around-the-globe/?comments=1&post=32786675
https://arstechnica.com/information-technology/2017/02/a-rash-of-invisible-fileless-malware-is-infecting-banks-around-the-globe/?comments=1&post=32786675
https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html
https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html
https://attack.mitre.org


The Cyber Security Body Of Knowledge
www.cybok.org

Network and Distributed System Security Symposium (NDSS), 2008.
[10] V. Chipounov, V. Kuznetsov, and G. Candea, “S2E: A platform for in-vivo multi-path

analysis of software systems,” ACM Sigplan Notices, vol. 46, no. 3, pp. 265–278, 2011.
[11] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley, “Unleashing mayhem on binary code,”

in IEEE Symposium on Security and Privacy (SP). IEEE, 2012, pp. 380–394.
[12] D. A. Ramos and D. R. Engler, “Under-constrained symbolic execution: Correctness

checking for real code.” in USENIX Security Symposium, 2015, pp. 49–64.
[13] C. Kreibich, N. Weaver, C. Kanich, W. Cui, and V. Paxson, “GQ: Practical containment

for measuring modern malware systems,” in Proceedings of the 2011 ACM SIGCOMM
conference on Internet measurement conference. ACM, 2011, pp. 397–412.

[14] A. Dinaburg, P. Royal, M. Sharif, and W. Lee, “Ether: malware analysis via hardware
virtualization extensions,” in Proceedings of the 15th ACM conference on Computer and
communications security. ACM, 2008, pp. 51–62.

[15] A. Moser, C. Kruegel, and E. Kirda, “Exploring multiple execution paths for malware
analysis,” in IEEE Symposium on Security and Privacy. IEEE, 2007.

[16] D. Kirat, G. Vigna, and C. Kruegel, “Barecloud: Bare-metal analysis-based evasive mal-
ware detection.” in USENIX Security Symposium, 2014, pp. 287–301.

[17] M. Sharif, A. Lanzi, J. Giffin, and W. Lee, “Automatic reverse engineering of malware
emulators,” in 30th IEEE Symposium on Security and Privacy. IEEE, 2009, pp. 94–109.

[18] S. Mariani, L. Fontana, F. Gritti, and S. D’Alessio, “PinDemonium: a DBI-based generic
unpacker for Windows executables,” in Black Hat USA 2016, 2016.

[19] E. Kenneally, M. Bailey, and D. Maughan, “A framework for understanding and applying
ethical principles in network and security research,” in Workshop on Ethics in Computer
Security Research (WECSR ’10), 2010.

[20] M. K. Shankarapani, S. Ramamoorthy, R. S. Movva, and S. Mukkamala, “Malware detec-
tion using assembly and API call sequences,” Journal in computer virology, vol. 7, no. 2,
pp. 107–119, 2011.

[21] M. Bailey, J. Oberheide, J. Andersen, Z. M. Mao, F. Jahanian, and J. Nazario, “Automated
classification and analysis of internet malware,” in International Workshop on Recent
Advances in Intrusion Detection. Springer, 2007, pp. 178–197.

[22] M. Zalewski, “American fuzzy lop.” [Online]. Available: http://lcamtuf.coredump.cx/afl/
[23] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, “QSYM: A practical concolic execution engine

tailored for hybrid fuzzing,” in Proceedings of the 27th USENIX Security Symposium,
2018.

[24] C. Cadar and K. Sen, “Symbolic execution for software testing: Three decades later,” in
Communications of the ACM, 2013.

[25] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz, “BAP: A binary analysis platform,”
in International Conference on Computer Aided Verification. Springer, 2011.

[26] C. Cadar, D. Dunbar, and D. R. Engler, “KLEE: Unassisted and automatic generation
of high-coverage tests for complex systems programs,” in 8th USENIX Symposium on
Operating Systems Design and Implementation, vol. 8, 2008, pp. 209–224.

[27] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang, Z. Liang, J. Newsome,
P. Poosankam, and P. Saxena, “BitBlaze: A new approach to computer security via binary
analysis,” in International Conference on Information Systems Security. Springer, 2008,
pp. 1–25.

[28] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury, “Directed greybox fuzzing,”
in Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2017, pp. 2329–2344.

[29] V. Kuznetsov, J. Kinder, S. Bucur, and G. Candea, “Efficient state merging in symbolic

KA Malware and Attack Technologies | July 2021 Page 25

https://www.cybok.org
http://lcamtuf.coredump.cx/afl/


The Cyber Security Body Of Knowledge
www.cybok.org

execution,” ACM Sigplan Notices, vol. 47, no. 6, pp. 193–204, 2012.
[30] T. Avgerinos, A. Rebert, S. K. Cha, and D. Brumley, “Enhancing symbolic execution with

veritesting,” in Proceedings of the 36th International Conference on Software Engineer-
ing. ACM, 2014, pp. 1083–1094.

[31] “The unicorn emulator.” [Online]. Available: https://www.unicorn-engine.org/
[32] “The QEMU emulator.” [Online]. Available: https://www.qemu.org/
[33] “The bochs emulator.” [Online]. Available: http://bochs.sourceforge.net/
[34] “The VirtualBox.” [Online]. Available: https://www.virtualbox.org/
[35] “The KVM.” [Online]. Available: https://www.linux-kvm.org/
[36] “The VMware.” [Online]. Available: https://www.vmware.com/
[37] “The VMware ESXi.” [Online]. Available: https://www.vmware.com/products/

esxi-and-esx.html/
[38] “The Hyper-V.” [Online]. Available: https://docs.microsoft.com/en-us/virtualization/

hyper-v-on-windows/about/
[39] “The Xen.” [Online]. Available: https://www.xenproject.org/
[40] P. Royal, “Entrapment: Tricking malware with transparent, scalable malware analysis,”

2012, talk at Black Hat.
[41] T. Raffetseder, C. Kruegel, and E. Kirda, “Detecting system emulators,” in International

Conference on Information Security. Springer, 2007, pp. 1–18.
[42] E. Cozzi, M. Graziano, Y. Fratantonio, and D. Balzarotti, “Understanding Linux Malware,”

in IEEE Symposium on Security & Privacy, 2018.
[43] N. Miramirkhani, M. P. Appini, N. Nikiforakis, and M. Polychronakis, “Spotless sandboxes:

Evading malware analysis systems using wear-and-tear artifacts,” in IEEE Symposium
on Security and Privacy (SP). IEEE, 2017, pp. 1009–1024.

[44] J. T. Bennett, N. Moran, and N. Villeneuve, “Poison ivy: Assessing damage and extracting
intelligence,” FireEye Threat Research Blog, 2013.

[45] W. Cui, V. Paxson, N. Weaver, and R. H. Katz, “Protocol-independent adaptive replay of
application dialog.” in NDSS, 2006.

[46] J. Caballero and D. Song, “Automatic protocol reverse-engineering: Message format
extraction and field semantics inference,”Computer Networks, vol. 57, no. 2, pp. 451–474,
2013.

[47] M. Sharif, V. Yegneswaran, H. Saidi, P. Porras, and W. Lee, “Eureka: A framework for
enabling static malware analysis,” in European Symposium on Research in Computer
Security. Springer, 2008, pp. 481–500.

[48] C. Linn and S. Debray, “Obfuscation of executable code to improve resistance to static
disassembly,” in Proceedings of the 10th ACM conference on Computer and communi-
cations security. ACM, 2003, pp. 290–299.

[49] M. I. Sharif, A. Lanzi, J. T. Giffin, andW. Lee, “Impedingmalware analysis using conditional
code obfuscation,” in NDSS, 2008.

[50] A. Moser, C. Kruegel, and E. Kirda, “Limits of static analysis for malware detection,” in
Computer Security Applications Conference, 2007. ACSAC 2007. Twenty-Third Annual.
IEEE, 2007, pp. 421–430.

[51] G. Bonfante, J. Fernandez, J.-Y. Marion, B. Rouxel, F. Sabatier, and A. Thierry, “Codis-
asm: medium scale concatic disassembly of self-modifying binaries with overlapping
instructions,” in Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2015, pp. 745–756.

[52] “Vmprotect.” [Online]. Available: https://vmpsoft.com
[53] R. R. Branco, G. N. Barbosa, and P. D. Neto, “Scientific but not academical overview ofmal-

ware anti-debugging, anti-disassembly and AntiVM technologies,” in Anti-Disassembly

KA Malware and Attack Technologies | July 2021 Page 26

https://www.cybok.org
https://www.unicorn-engine.org/
https://www.qemu.org/
http://bochs.sourceforge.net/
https://www.virtualbox.org/
https://www.linux-kvm.org/
https://www.vmware.com/
https://www.vmware.com/products/esxi-and-esx.html/
https://www.vmware.com/products/esxi-and-esx.html/
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/about/
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/about/
https://www.xenproject.org/
https://vmpsoft.com


The Cyber Security Body Of Knowledge
www.cybok.org

and Anti-VM Technologies, Black Hat USA Conference, 2012.
[54] A. Vasudevan and R. Yerraballi, “Cobra: Fine-grained malware analysis using stealth

localized-executions,” in IEEE Symposium on Security and Privacy. IEEE, 2006.
[55] C. Willems, T. Holz, and F. Freiling, “Toward automated dynamic malware analysis using

CWSandbox,” IEEE Security & Privacy, vol. 5, no. 2, 2007.
[56] F. Peng, Z. Deng, X. Zhang, D. Xu, Z. Lin, and Z. Su, “X-Force: Force-executing binary

programs for security applications,” in The 23rd USENIX Security Symposium (USENIX
Security 14, 2014, pp. 829–844.

[57] L.-K. Yan, M. Jayachandra, M. Zhang, and H. Yin, “V2E: Combining hardware virtualization
and softwareemulation for transparent and extensible malware analysis,” ACM Sigplan
Notices, vol. 47, no. 7, pp. 227–238, 2012.

[58] P. Royal, M. Halpin, D. Dagon, R. Edmonds, and W. Lee, “Polyunpack: Automating the
hidden-code extraction of unpack-executing malware,” in Computer Security Applica-
tions Conference, 2006. ACSAC’06. 22nd Annual. IEEE, 2006, pp. 289–300.

[59] P. Fogla, M. I. Sharif, R. Perdisci, O. M. Kolesnikov, and W. Lee, “Polymorphic blending
attacks,” in USENIX Security, 2006.

[60] D. Denning and P. G. Neumann, Requirements and model for IDES-a real-time intrusion-
detection expert system. SRI International, 1985.

[61] H. S. Javitz and A. Valdes, “The NIDES statistical component: Description
and justification,” Contract, vol. 39, no. 92-C, p. 0015, 1993. [Online]. Available:
http://www.csl.sri.com/papers/statreport/

[62] K. Ilgun, R. Kemmerer, and P. Porras, “State transition analysis: A rule-based intrusion
detection approach,” IEEE Transactions on Software Engineering, vol. 21, no. 3, pp. 181–
199, 1995.

[63] V. Paxson, “Bro: a system for detecting network intruders in real-time,” Computer net-
works, vol. 31, no. 23-24, pp. 2435–2463, 1999.

[64] G. Gu, R. Perdisci, J. Zhang, and W. Lee, “BotMiner: Clustering analysis of network traffic
for protocol- and structure-independent botnet detection,” in Proceedings of the 17th
USENIX Security Symposium (Security’08), 2008.

[65] W. Lee, S. J. Stolfo, and K. W. Mok, “A data mining framework for building intrusion
detection models,” in Proceedings of the 1999 IEEE Symposium on Security and Privacy.
IEEE, 1999, pp. 120–132.

[66] D. Wagner and P. Soto, “Mimicry attacks on host-based intrusion detection systems,”
in Proceedings of the 9th ACM Conference on Computer and Communications Security.
ACM, 2002, pp. 255–264.

[67] R. Perdisci, D. Dagon, W. Lee, P. Fogla, and M. Sharif, “Misleading worm signature
generators using deliberate noise injection,” in 2006 IEEE Symposium on Security and
Privacy (S&P’06). IEEE, 2006, pp. 15–pp.

[68] A. Kantchelian, J. D. Tygar, and A. D. Joseph, “Evasion and hardening of tree ensemble
classifiers,” arXiv preprint arXiv:1509.07892, 2015.

[69] G. Cleary, M. Corpin, O. Cox, H. Lau, B. Nahorney, D. O’Brien, B. O’Gorman, J.-P. Power,
S. Wallace, P. Wood, and C. Wueest, “Internet security threat report,” Symantec, Tech.
Rep., 2018.

[70] M. Antonakakis, R. Perdisci, D. Dagon, W. Lee, and N. Feamster, “Building a dynamic
reputation system for DNS,” in USENIX security symposium, 2010, pp. 273–290.

[71] C. Kolbitsch, E. Kirda, and C. Kruegel, “The power of procrastination: detection and miti-
gation of execution-stalling malicious code,” in Proceedings of the 18th ACM conference
on Computer and communications security. ACM, 2011, pp. 285–296.

[72] K. Wang and S. J. Stolfo, “Anomalous payload-based network intrusion detection,” in

KA Malware and Attack Technologies | July 2021 Page 27

https://www.cybok.org
http://www.csl.sri.com/papers/statreport/


The Cyber Security Body Of Knowledge
www.cybok.org

International Workshop on Recent Advances in Intrusion Detection. Springer, 2004, pp.
203–222.

[73] P. Szor, The Art of Computer Virus Research and Defense. Symantec Press, 2005, ch.
Advanced code evolution techniques and computer virus generator kits.

[74] K. Stevens and D. Jackson, “Zeus banking trojan report,” Atlanta: SecureWorks, 2010.
[75] N. Falliere and E. Chien, “Zeus: King of the bots,” Symantec, Tech. Rep. Security Response,

2009. [Online]. Available: https://www.symantec.com/content/dam/symantec/docs/
security-center/white-papers/security-response-zeus-king-of-bots-09-en.pdf

[76] B. Krebs, “Feds to charge alleged SpyEye trojan author.” [Online]. Available:
https://krebsonsecurity.com/2014/01/feds-to-charge-alleged-spyeye-trojan-author/
#more-24554

[77] D. Gilbert, “Inside SpyEye: How the russian hacker behind
the billion-dollar malware was taken down,” Oct 2017, interna-
tional Business Times. [Online]. Available: https://www.ibtimes.com/
inside-spyeye-how-russian-hacker-behind-billion-dollar-malware-was-taken-down-2357477

[78] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein, J. Cochran, Z. Durumeric,
J. A. Halderman, L. Invernizzi, M. Kallitsis et al., “Understanding the Mirai botnet,” in
USENIX Security Symposium, 2017, pp. 1093–1110.

[79] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff, “A sense of self for UNIX
processes,” in Security and Privacy, 1996. Proceedings., 1996 IEEE Symposium on. IEEE,
1996, pp. 120–128.

[80] S. Hao, A. Kantchelian, B. Miller, V. Paxson, and N. Feamster, “Predator: proactive
recognition and elimination of domain abuse at time-of-registration,” in Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security. ACM,
2016, pp. 1568–1579.

[81] C. Rossow, “Amplification hell: Revisiting network protocols for DDoS abuse.” in NDSS,
2014.

[82] D. Y. Huang, D. McCoy, M. M. Aliapoulios, V. G. Li, L. Invernizzi, E. Bursztein, K. McRoberts,
J. Levin, K. Levchenko, and A. C. Snoeren, “Tracking ransomware end-to-end,” in Tracking
Ransomware End-to-end. IEEE Symposium on Security & Privacy, 2018.

[83] Y. Ji, S. Lee, M. Fazzini, J. Allen, E. Downing, T. Kim, A. Orso, and W. Lee, “Enabling
refinable cross-host attack investigation with efficient data flow tagging and tracking,”
in 27th USENIX Security Symposium. USENIX Association, 2018, pp. 1705–1722.

[84] G. Gu, P. Porras, V. Yegneswaran, M. Fong, and W. Lee, “BotHunter: Detecting mal-
ware infection through IDS-driven dialog correlation,” in Proceedings of the 16th USENIX
Security Symposium (Security’07), August 2007.

[85] C. Kolbitsch, P. M. Comparetti, C. Kruegel, E. Kirda, X.-y. Zhou, and X. Wang, “Effective
and Efficient Malware Detection at the End Host,” in USENIX security symposium, 2009,
pp. 351–366.

[86] M. Antonakakis, R. Perdisci, Y. Nadji, N. Vasiloglou, S. Abu-Nimeh, W. Lee, and D. Dagon,
“From throw-away traffic to bots: Detecting the rise of DGA-based malware,” in USENIX
security symposium, vol. 12, 2012.

[87] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convo-
lutional neural networks,” in Advances in neural information processing systems, 2012,
pp. 1097–1105.

[88] W. Xu, D. Evans, and Y. Qi, “Feature squeezing: Detecting adversarial examples in deep
neural networks,” arXiv preprint arXiv:1704.01155, 2017.

[89] M. McCoyd and D. Wagner, “Background class defense against adversarial examples,”
in 2018 IEEE Security and Privacy Workshops (SPW). IEEE, 2018, pp. 96–102.

KA Malware and Attack Technologies | July 2021 Page 28

https://www.cybok.org
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/security-response-zeus-king-of-bots-09-en.pdf
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/security-response-zeus-king-of-bots-09-en.pdf
https://krebsonsecurity.com/2014/01/feds-to-charge-alleged-spyeye-trojan-author/#more-24554
https://krebsonsecurity.com/2014/01/feds-to-charge-alleged-spyeye-trojan-author/#more-24554
https://www.ibtimes.com/inside-spyeye-how-russian-hacker-behind-billion-dollar-malware-was-taken-down-2357477
https://www.ibtimes.com/inside-spyeye-how-russian-hacker-behind-billion-dollar-malware-was-taken-down-2357477


The Cyber Security Body Of Knowledge
www.cybok.org

[90] Y. Cao and J. Yang, “Towards making systems forget with machine unlearning,” in 2015
IEEE Symposium on Security and Privacy. IEEE, 2015, pp. 463–480.

[91] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural networks,” in
IEEE Symposium on Security and Privacy. IEEE, 2017, pp. 39–57.

[92] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning to
align and translate,” arXiv preprint arXiv:1409.0473, 2014.

[93] W. Guo, D. Mu, J. Xu, P. Su, G. Wang, and X. Xing, “LEMNA: Explaining deep learning
based security applications,” in Proceedings of the 25th ACM Conference on Computer
and Communications Security (CCS ’18), 2018.

[94] N. Dalvi, P. Domingos, S. Sanghai, D. Verma, and others, “Adversarial classification,” in
Proceedings of the tenth ACMSIGKDD international conference on Knowledge discovery
and data mining. ACM, 2004, pp. 99–108.

[95] R. Jordaney, K. Sharad, S. K. Dash, Z. Wang, D. Papini, I. Nouretdinov, and L. Cavallaro,
“Transcend: Detecting concept drift in malware classification models,” in Proceedings
of the 26th USENIX Security Symposium, 2017.

[96] Y. Nadji, M. Antonakakis, R. Perdisci, D. Dagon, and W. Lee, “Beheading hydras: Perform-
ing effective botnet takedowns,” in Proceedings of the 2013 ACM SIGSAC Conference
on Computer & Communications Security. ACM, 2013, pp. 121–132.

[97] C. Rossow, D. Andriesse, T. Werner, B. Stone-Gross, D. Plohmann, C. J. Dietrich, and
H. Bos, “SoK: P2PWNED-modeling and evaluating the resilience of peer-to-peer botnets,”
in IEEE Symposium on Security and Privacy. IEEE, 2013, pp. 97–111.

[98] S. Alrwais, X. Liao, X. Mi, P. Wang, X. Wang, F. Qian, R. Beyah, and D. McCoy, “Under the
shadow of sunshine: Understanding and detecting bulletproof hosting on legitimate
service provider networks,” in IEEE Symposium on Security and Privacy. IEEE, 2017, pp.
805–823.

[99] S. Alrabaee, P. Shirani, M. Debbabi, and L. Wang, “On the feasibility of malware author-
ship attribution,” in International Symposium on Foundations and Practice of Security.
Springer, 2016, pp. 256–272.

[100] Y. Chen, P. Kintis, M. Antonakakis, Y. Nadji, D. Dagon, W. Lee, and M. Farrell, “Financial
lower bounds of online advertising abuse,” in International conference on Detection of
Intrusions and Malware, and Vulnerability Assessment. Springer, 2016, pp. 231–254.

[101] Y. Nadji, M. Antonakakis, R. Perdisci, and W. Lee, “Understanding the prevalence and use
of alternative plans in malware with network games,” in Proceedings of the 27th Annual
Computer Security Applications Conference. ACM, 2011, pp. 1–10.

[102] M. Konte, N. Feamster, and J. Jung, “Fast flux service networks: Dynamics and roles in
hosting online scams,” Georgia Institute of Technology, Tech. Rep., 2008.

[103] T. Holz, C. Gorecki, K. Rieck, and F. C. Freiling, “Measuring and detecting fast-flux service
networks.” in NDSS, 2008.

[104] FBI New York Field Office, “Operation ghost click: Interna-
tional cyber ring that infected millions of computers disman-
tled,” April 2012. [Online]. Available: https://www.fbi.gov/news/stories/
international-cyber-ring-that-infected-millions-of-computers-dismantled

[105] W. Meng, R. Duan, and W. Lee, “DNS changer remediation study,” in M3AAWG 27th
General Meeting, 2013.

[106] Civil Action No: 1:11cv1O17 (JCC/IDD), Microsoft Corporation v. Dominique Alexander
Piatti, Dotfree Group SROJohnDoes 1–22, Controlling a computer botnet thereby injuring
Microsoft and its customers. UNITED STATES DISTRICT COURT FOR THE EASTERN
DISTRICT OF VIRGINIA, Feb 2013.

[107] B. Bartholomew and J. A. Guerrero-Saade, “Wave your false flags!” [Online]. Available:

KA Malware and Attack Technologies | July 2021 Page 29

https://www.cybok.org
https://www.fbi.gov/news/stories/international-cyber-ring-that-infected-millions-of-computers-dismantled
https://www.fbi.gov/news/stories/international-cyber-ring-that-infected-millions-of-computers-dismantled


The Cyber Security Body Of Knowledge
www.cybok.org

https://securelist.com/wave-your-false-flags/76273/

ACRONYMS

API Application Programing Interface.

APT Advanced Persistent Threat.

AST Abstract Syntax Tree.

AV AntiVirus.

BPH Bullet Proof Hosting.

C&C Command and Control.

CAPTCHA Completely Automated Public Turing test to tell Computers and Humans Apart.

CFG Control Flow Graph.

CPU Central Processing Unit.

DBI Dynamic Binary Instrumentation.

DDoS Distributed Denial of Service.

DFS Depth-First Search.

DGA Domain-name Generation Algorithm.

DNS Domain Name System.

IDS Intrusion Detection System.

IR Intermediate Representation.

ISP Internet Service Provider.

ML Machine Learning.

OS Operating System.

P2P Peer to Peer.

PDG Program Dependence Graph.

PUP Potentially Unwanted Program.

SMT Satisfiability Modulo Theories.

SWIFT Society for Worldwide Interbank Financial Telecommunication.

TCP Transmission Control Protocol.

TLD Top Level Domain.

KA Malware and Attack Technologies | July 2021 Page 30

https://www.cybok.org
https://securelist.com/wave-your-false-flags/76273/


The Cyber Security Body Of Knowledge
www.cybok.org

URL Uniform Resource Locator.

VMI Virtual Machine Inspection.

GLOSSARY

advanced persistent threat An attack to an organization that continues its activities and yet
remains undetected for an extended period of time.

botnet A network of compromised computers (or, bots) that is controlled by an attacker to
launch coordinated malicious activities.

CyBOK Refers to the Cyber Security Body of Knowledge.

exploit Software or data that takes advantage of a vulnerability in a system to cause unin-
tended consequences. (Source = NCSC Glossary).

indicator of compromise Recognised action, specific, generalized, or theoretical, that an
adversary might be expected to take in preparation for an attack. (Source = NIST IR
7298).

key-logger A virus or physical device that logs keystrokes to secretly capture private infor-
mation such as passwords or credit card details.(Source = BSI Glossary).

macro virus A virus that attaches itself to documents and uses the macro programming
capabilities of the document’s application to execute and propagate.(Source = NIST IR
7298).

malware A program inserted into a system, usually covertly, with the intent of compromising
the confidentiality, integrity, or availability of the victim’s data, applications or operating
system, or of otherwise annoying or disrupting the victim. Synonym = malicious code.
(Source = NIST IR 7298r2).

malware analysis The process of analyzing malware code and understanding its intended
functionalities.

malware detection The process of detecting the presence of malware in a system.

metamorphic malware Malware of which each iteration or instance has different code from
the preceding one. The code changesmake it difficult to recognize the different iterations
are the same malware (contrast with polymorphic malware).

meterpreter A tool that allows an attacker to control a victim’s computer by running an
invisible shell and establishing a communication channel back to the attacking machine.

packed malware Packed malware is obfuscated malware in which the malicious program is
compressed and cannot be analysed statically.

packing A technique to obfuscate malware (see packed malware).

KA Malware and Attack Technologies | July 2021 Page 31

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

passive dns A mechanism to collect large amounts of DNS data by storing DNS responses
from servers. (Source = RFC7719.

polymorphic malware Malware that changes each instance to avoid detection. It typically
has two parts: the decryptor and the encrypted program body. Each instance can encrypt
the malware program differently and hence has a different decryptor; however, once
decrypted, the same malware code is executed. (contrast with metamorphic malware).

polymorphism See polymorphic malware.

potentially unwanted program A program that may not be wanted by a user and is often
downloaded along with a program that the user wants. Examples include adware,
spyware, etc.

ransomware Malicious software that makes data or systems unusable until the victim makes
a payment. (Source = NIST IR 7298).

safety In the context of malware analysis, a requirement that malware should be prevented
from causing damage to the connected systems and networks while it runs in the
analysis environment.

sinkholing A technique used by a DNS server to give out false information to prevent the use
of a domain name.

spam The abuse of electronic messaging systems to indiscriminately send unsolicited bulk
messages. (Source = NIST IR 7298).

spyware Software that is secretly or surreptitiously installed into an information system to
gather information on individuals or organizations without their knowledge; a type of
malicious code. (Source = NIST IR 7298).

trojan A computer program that appears to have a useful function, but also has a hidden
and potentially malicious function that evades security mechanisms, sometimes by
exploiting legitimate authorizations of a system entity that invokes the program. (Source
= NIST IR 7298).

virus A hidden, self-replicating section of computer software, usually malicious logic, that
propagates by infecting - i.e., inserting a copy of itself into and becoming part of - another
program. A virus cannot run by itself; it requires that its host program be run to make
the virus active. (Source = SANS security glossary).

worm A computer program that can run independently, can propagate a complete working
version of itself onto other hosts on a network, and may consume computer resources
destructively. (Source = SANS security glossary).

KA Malware and Attack Technologies | July 2021 Page 32

https://www.cybok.org


INDEX

abstract syntax tree, 22
access pattern, 17
address book, 4
administrator, 4
advanced persistent threat, 7
adversarial machine learning, 20
adware, 6
analyser monitor, 14
analysis environment, 8, 11–15, 23
anomaly detection, 17, 19, 20
anti-analysis mechanism, 9, 13
anti-disassembly, 13
antivirus, 4, 8, 15, 16
application layer, 6
application programming interface, 4, 10, 16
assembly code, 13
ATT&CK knowledge base, 8
attack provenance, 18
attention model, 20
attribution, 3, 8, 21–23
authentication, 4, 7
authorship, 22
auto-spreading malware, 4, 6
availability, 5, 7, 13

backdoor, 3
backup system, 21, 22
bare-metal system, 12, 15
BareCloud, 12
binary emulator, 14
binary format, 8–10, 22
black box, 19
Bochs, 12
boot-sector, 4
botmaster, 21
botnet, 3–5, 7, 8, 11, 17, 18, 21, 22
botnet detection, 18
browser plugin, 4–6
buffer, 6
buffer overflow, 6
bullet-proof hosting, 21
byte-value pattern, 16
bytecode, 14
bytestream alignment algorithm, 13

call graph, 16, 18

call trace, 10, 11, 14
centralisation, 21
click bot, 6
cloud service provider, 22
code emulation, 14
code obfuscation, 10, 12, 13
code quality, 22
code-coverage, 10
coding style, 8, 22
command-and-control, 3, 5, 7, 12, 13, 16–18,

21–23
communication channel, 21
compression, 5, 9, 13
concept drift, 20
concolic execution, 11
concrete execution, 10, 11
confidentiality, 7
containment, 11, 13
containment policy, 13
control signal, 7
control-flow, 13, 14, 16, 18, 22
control-flow decision, 14
control-flow graph, 14, 16, 18, 22
convenience, 23
coordinated network, 5
copyright protection, 14
critical national infrastructure, 8
cryptocurrency, 7, 8
cyber kill chain, 6–8
cyber warfare, 3, 8
cybercrime, 3, 8

data flow, 14
data flow analysis, 14
data poisoning, 19, 20
data recovery, 21
data structure, 14
data-flow graph, 18
dataset, 19
DDoS-as-a-service, 18
decentralised, 21
decision boundary, 19, 20
decision trees, 19
deep learning, 19, 20
denial of service, 3, 5, 7, 11, 12, 17, 18
depth-first search, 11

33



The Cyber Security Body Of Knowledge
www.cybok.org

development, 3, 8, 9, 20
directory, 14
disassembly, 9, 13
dispatcher, 13
distance computation, 11
distributed denial of service, 3, 5, 7, 11, 17, 18
diversity, 21
DNS, 18, 21, 22
DNS resolution, 22
DNSChanger, 21
document macros, 5
domain generation algorithm, 18, 21, 22
domain name, 16–18, 21–23
download agreement, 6
driver, 4, 6
dynamic analysis, 9–11, 13, 14
dynamic binary instrumentation, 11, 13
dynamic DNS, 22

economics, 21, 23
email address, 7, 22
email attachment, 4, 8, 16
emulator, 11, 12, 14, 15
encryption, 3, 5, 7, 9, 13, 16, 18
endpoint sensor, 8
enterprise systems, 18
entropy, 16
ethics, 9
evasion, 3, 4, 7, 10, 13–17, 19–21, 23
execution path, 14, 22
exfiltration, 18
exploit, 4, 6–8, 10, 12, 16, 19

fake-AntiVirus, 8
false alarm, 16, 20
fast-flux network, 21
file system, 4, 16, 17
financial data, 7, 18
financial loss, 3
fingerprinting, 14, 15
firewall, 21
firmware, 4, 5
flexibility, 17
forensic analysis, 3
formatting style, 22
fraud, 3, 22
fraudulent clicks, 7
fuzz testing, 10, 11

garbage in garbage out, 19

gateway, 13
geo-location, 6, 8
geo-location data, 8
government, 3
GQ system, 13

hack-back, 21
healthcare, 7
heuristics, 16
honeyfarm, 13
host-based monitoring, 17, 18
host-program, 5, 6
hosting provider, 21
HTTPS, 16
human error, 4
human-readable, 19
hybrid execution, 11
hybrid fuzzing, 10
Hyper-V, 12
hypervisor, 12, 15

image classification, 19
image recognition, 20
incorrect code listing, 13
indicator of compromise, 15
inductive rules, 19
infected sites, 8
infrastructure, 3–5, 8, 21–23
input space, 10, 11
instruction set, 14
instruction trace, 10, 14
integrity, 7
intermediate representation, 11
internal host, 8
internet, 3–6, 11–14, 16, 19, 21, 23
internet service provider, 21
intrusion detection system, 16, 17
IP address, 16, 21, 22
isolated malware, 5
isolation, 21

JavaScript, 5, 6

Kelihos, 22
kernel, 4–6
key-logging, 6, 7
keyboard, 15
KVM, 12

lateral movement, 7
law enforcement, 22

KA Malware and Attack Technologies | July 2021 Page 34

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

LEMNA, 20
liability, 8
linguistic features, 22
Linux, 9
live-environment, 12, 13
log-in, 6

machine learning, 18–20
machine learning classifier, 18, 19
macro virus, 4, 5, 10
malicious activities, 3, 5–8, 12, 13, 17–19, 23
malware, 3–18, 21–23
malware analysis, 8–11, 14, 15, 23
malware author, 5, 9, 12–14, 16, 17, 23
malware binary, 9, 13
malware code, 5, 14
malware download, 4, 6, 16
malware families, 17, 18
malware interrogation, 22
malware kit, 18
malware lifecycle, 8
malware sample, 9, 13
malware server, 4, 5, 7, 12, 16–18, 21
manipulation, 20
memory sharing, 13
memory-resident, 4
metamorphism, 3
meterpreter code, 4
Mimicry, 19
Mirai botnet, 17
misuse detection, 17
mobile malware, 6
monetisation, 8
multi-path analysis, 14
mutex object, 14

n-grams, 19
nation-state, 3
network connectivity, 13
network packet, 16, 17
network perimeter, 16, 17
network service, 6
network switch, 13
network traffic, 16–18
network-based monitoring, 17, 18
network-layer information, 13
noise injection, 19
NVMTrace, 12
NXDomains, 21

obfuscation, 3, 5, 6, 9, 10, 12–14, 23

offline concolic execution, 11
online concolic execution, 11
opaque constants, 13
opcodes, 14
operands, 14
Operating System, 3, 4, 13, 15, 17
operation ghost click, 21

packing obfuscation, 3, 5, 9, 13, 16
password, 4, 6, 7, 18
path exploration, 11, 15
path explosion, 11
path pruning, 11
payload, 7, 8, 12, 16–19, 23
PDF malware, 5
peer-to-peer system, 21, 22
persistent malware, 4, 5
persistent storage, 4
phishing, 3, 5–7
plausible deniability, 8
politics, 3, 21
Polyglot, 13
polymorphic blending, 17, 19
polymorphism, 3, 5, 17, 23
Potemkin system, 13
potentially unwanted program, 6
PowerShell, 4
privilege level, 13
process introspection, 12, 13, 15
processes, 3, 14, 15, 17, 18
processor architecture, 3
processors, 3
program analysis, 9, 23
program dependence graph, 22

QEMU, 12

random seed, 21
randomly generated instruction set, 14
ransom payment, 7
ransomware, 3, 6, 8, 18
recent files, 15
reconnaissance, 6
red pill testing, 15
registry values, 15
reputation, 8, 16, 22
resilience, 21
responsibility, 8, 9
reverse engineering, 13, 21
robustness, 3, 20

KA Malware and Attack Technologies | July 2021 Page 35

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

Roleplay, 13
runtime, 9, 10, 12, 14, 16

safety, 11–13
sandboxing, 8
satisfiability modulo theories, 11
scalability, 9, 12
scam, 3
sendmail, 6
sensitive information, 3, 18
separating classes, 19
server configuration, 22
sinkholing domains, 21, 22
social engineering, 16
software development cycle, 9
software library, 8, 12
software update, 3–8, 13, 17, 23
source code, 13
spam, 3, 5–7, 17, 18
spam bot, 6
spam detection, 17
spam template, 7
spellchecker, 6
Spyeye, 17
spyware, 3, 6
standalone malware, 4, 6
state merging, 11
static analysis, 9, 10, 13, 14
statistical analysis, 9
symbol space, 11
symbolic execution, 9–11
system call, 10, 16–19
system stack, 4, 5, 10, 23

taint analysis, 14
target organisation, 5
targeted attack, 5
taxonomy, 3–5
TCP, 22
TDSS/TDL4 botnet, 22
temporal characteristics, 17
test case, 10, 14
timing skews, 15
toolkit, 7, 8
top-level domain, 21
trace based executor, 11
traffic capture, 17
transient malware, 4, 5
trojan, 3, 6

Unicorn, 12

user prompt, 15
user-activated malware, 4

video games, 16
virtual machine, 12, 13, 15
virtual machine introspection, 13
VirtualBox, 12
virtualisation, 12, 13, 15
virtualisation fingerprinting, 15
virus, 3–5, 10
VMware, 12
VMwareESX, 12
vulnerabilities, 6–8, 10, 22
vulnerability analysis, 10

weaponisation, 6, 7
web browser, 4–6, 15, 17
web browsing history, 15
web page, 5, 6, 8, 16
web traffic, 8
website, 6, 8, 16
WHOIS, 23
WHOIS privacy protection, 23
whole-system emulator, 11
Windows, 9, 17
Windows Registry, 17
worm, 3, 4

Xen, 12

Zeus, 17

KA Malware and Attack Technologies | July 2021 Page 36

https://www.cybok.org

	1 A taxonomy of Malware
	1.1 Potentially unwanted programs (PUPs)

	2 Malicious Activities by Malware
	2.1 The Underground Eco-System

	3 Malware Analysis
	3.1 Analysis Techniques
	3.1.1 Static Analysis
	3.1.2 Dynamic analysis
	3.1.3 Fuzzing
	3.1.4 Symbolic Execution
	3.1.5 Concolic Execution

	3.2 Analysis Environments
	3.2.1 Safety and Live-Environment Requirements
	3.2.2 Virtualised Network Environments

	3.3 Anti-Analysis and Evasion Techniques
	3.3.1 Evading the Analysis Methods
	3.3.2 Identifying the Analysis Environments


	4 Malware Detection
	4.1 Identifying the Presence of Malware
	4.1.1 Finding Malware in a Haystack

	4.2 Detection of Malware Attacks
	4.2.1 Host-based and Network-Based Monitoring
	4.2.2 Machine Learning-Based Security Analytics
	4.2.3 Evasion, Countermeasures, and Limitations


	5 Malware Response
	5.1 Disruption of Malware Operations
	5.1.1 Evasion and Countermeasures

	5.2 Attribution
	5.2.1 Evasion and Countermeasures



