
Malware and Attack
Technologies
Knowledge Area
Issue 1.0
Wenke Lee Georgia Institute of Technology

EDITOR
Howard Chivers University of York

REVIEWERS
Alex Berry FireEye
Lorenzo Cavallaro King’s College London
Mihai Christodorescu VISA
Igor Muttik Cyber Curio



The Cyber Security Body Of Knowledge
www.cybok.org

COPYRIGHT
© Crown Copyright, The National Cyber Security Centre 2019. This information is licensedunder the Open Government Licence v3.0. To view this licence, visit:
http://www.nationalarchives.gov.uk/doc/open-government-licence/

When you use this information under the Open Government Licence, you should include thefollowing attribution: CyBOK © Crown Copyright, The National Cyber Security Centre 2018, li-censed under the OpenGovernment Licence: http://www.nationalarchives.gov.uk/doc/open-
government-licence/.
The CyBOK project would like to understand how the CyBOK is being used and its uptake.The project would like organisations using, or intending to use, CyBOK for the purposes ofeducation, training, course development, professional development etc. to contact it at con-
tact@cybok.org to let the project know how they are using CyBOK.
Issue 1.0 is a stable public release of the Malware and Attack Technologies Knowledge Area.However, it should be noted that a fully-collated CyBOK document which includes all of theKnowledge Areas is anticipated to be released by the end of July 2019. This will likely includeupdated page layout and formatting of the individual Knowledge Areas

KA Malware and Attack Technologies | October 2019 Page 1

https://www.cybok.org
http://www.nationalarchives.gov.uk/doc/open-government-licence/
http://www.nationalarchives.gov.uk/doc/open-government-licence/
http://www.nationalarchives.gov.uk/doc/open-government-licence/
mailto:contact@cybok.org
mailto:contact@cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

INTRODUCTION
Malware is short for ’malicious software’, that is, any program that performsmalicious activi-ties. We use the terms malware and malicious code interchangeably. Malware comes with awide range of shapes and forms, and with different classifications accordingly, e.g., viruses,Trojans, worms, spyware, botnet malware, ransomware, etc.
Malware carries out many of the cyberattacks on the Internet, including nation-state cyber-war, cybercrime, fraud and scams. For example, Trojans can introduce a backdoor accessto a government network to allow nation-state attackers to steal classified information. Ran-somware can encrypt data on a user’s computer and thus making it unaccessible to the user,and only decrypt the data after the user pays a sum of money. Botnet malware is responsiblefor many of the Distributed Denial-of-Service (DDoS) attacks as well as spam and phishingactivities. We need to study the techniques behind malware development and deployment inorder to better understand cyberattacks and develop the appropriate countermeasures.
As the political and financial stakes become higher, the sophistication and robustness ofboth the cyber defence mechanisms and the malware technologies and operation modelshave also increased. For example, attackers now use various obfuscation techniques suchas packing and polymorphism as well as metamorphism to evade malware detection sys-tems [1], and they set up adaptive network infrastructures on the Internet to support malwareupdates, command-and-control, and other logistics such as transits of stolen data. In short,it is becoming more important but also more challenging to study malware.
The rest of this chapter is organised as follows. We will provide a taxonomy of malwareand discuss their typical malicious activities as well as their eco-system and support infras-tructures. We will then describe the tools and techniques to analyse malware behaviours,and network- and host- based detection methods to identify malware activities, as well asprocesses and techniques including forensic analysis and attribution to respond to malwareattacks.
CONTENT

1 A TAXONOMY OF MALWARE
[2, c6]

There are many types of malware [2]. It is instructive to create a taxonomy to systematicallycategorise the wide spectrum ofmalware types. This taxonomy describes the common char-acteristics of each type ofmalware and thus can guide the development of countermeasuresapplicable to an entire category of malware (rather than a specific malware). Since theremany facets of malware technologies and attack operations, based on which malware canbe categorised and named, our taxonomy can include many dimensions. We discuss a fewimportant ones below. It should be borne in mind that other, more specialised, attributescould also be used such as target processor architecture or operating system.
The first dimension of our taxonomy is whether malware is a standalone (or, independent)program or just a sequence of instructions to be embedded in another program. Standalone

KA Malware and Attack Technologies | October 2019 Page 2

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

malware is a complete program that can run on its own once it is installed on a compromisedmachine and executed. For example, worms and botnet malware belong to this type. Thesecond type requires a host program to run, that is, it must infect a program on a computerby inserting its instructions into the program so that when the program is run, the malwareinstructions are also executed. For example, documentmacro viruses andmalicious browserplug-ins belong to this type. In general, it is easier to detect standalonemalware because it isa program or a running process in its own right and its presence can be detected by operatingsystem or security tools.
The second dimension is whether malware is persistent or transient. Most malware is in-stalled in persistent storage (typically, a file system) as either standalone malware or aninfection of another program that already resides in persistent storage. Other malware ismemory-resident such that if the computer is rebooted or the infected running program ter-minates, it no longer exists anywhere on the system. Memory-resident malware can evadedetection by many anti-virus systems that rely on file scanning. Such transient malware alsohas the advantage of being easy to clean up (or, cover-up) its attack operations. The tradi-tional way for malware to become memory-resident is to remove the malware program (thatwas downloaded and installed previously) from the file system as soon as it gets executed.Newer approaches exploit system administrative and security tools such as PowerShell toinject malware directly into memory [3]. For example, according to one report [4], after aninitial exploit that led to the unauthorised execution of PowerShell, meterpreter code wasdownloaded and injected into memory using PowerShell commands and it harvested pass-words on the infected computer.
The third dimension generally applies to only persistent malware and categorises malwarebased on the layer of the system stack the malware is installed and run on. These layers,in the ascending order, include firmware, boot-sector, operating system kernel, drivers andApplication Programing Interfaces (APIs), and user applications. Typically, malware in thelower layers is harder to detect and remove, and wreaks greater havoc because it has morecontrol of the compromised computer. On the other hand, it is also harder to write malwarethat can be installed at a lower layer because there are greater constraints, e.g., amore limitedprogramming environment in terms of both the types and amount of code allowed.
The fourth dimension is whether malware is run and spread automatically vs. activated by auser action. When an auto-spreadingmalware runs, it looks for other vulnerablemachines onthe Internet, compromises thesemachines and installs itself on them; the copies of malwareon these newly infected machines immediately do the same – run and spread. Obviously,auto-spreading malware can spread on the Internet very quickly, often being able to exponen-tially increase the number of compromised computers. On the other hand, user-activatedmalware is run on a computer only because a user accidentally downloads and executes it,e.g., by clicking on an attachment or URL in a received email. More importantly, when thismalware runs, although it can ‘spread’, e.g., by sending email with itself as the attachmentto contacts in the user’s address book, this spreading is not successful unless a user whoreceives this email activates the malware.
The fifth dimension is whether malware is static or one-time vs. dynamically updated. Mostmodern malware is supported by an infrastructure such that a compromised computer canreceive a software update from a malware server, that is, a new version of the malware is in-stalled on the compromised computer. From an attacker’s point-of-view, there are many ben-efits of updating malware. For example, updated malware can evade detection techniquesthat are based on the characteristics of older malware instances.

KA Malware and Attack Technologies | October 2019 Page 3

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

The sixth dimension is whether malware acts alone or is part of a coordinated network (i.e., abotnet). While botnets are responsible for many cyberattacks such as DDoS, spam, phishing,etc., isolated malware has become increasingly common in the forms of targeted attack.That is, malware can be specifically designed to infect a target organisation and performmalicious activities according to those assets of the organisation valuable to the attacker.
Mostmodernmalware uses some form of obfuscation in order to avoid detection (and hencewe do not explicitly include obfuscation in this taxonomy). There is a range of obfuscationtechniques and there are tools freely available on the Internet for a malware author to use.For example, polymorphism can be used to defeat detection methods that are based on ‘sig-natures’ or patterns of malware code. That is, the identifiable malware features are changedto be unique to each instance of the malware. Therefore, malware instances look differentfrom each other, but they all maintain the same malware functionality. Some common poly-morphic malware techniques include packing, which involves compressing and encryptingpart of the malware, and rewriting identifiable malicious instructions into other equivalentinstructions.

sta
nda

lon
eor

hos
t-pr

ogr
am

per
sist

ent
or

tran
sien

t

laye
rso

f
sys

tem
sta

ck

aut
o-s

pre
adin

g?
dyn

am
ical

ly
upd

ata
ble?

coo
rdin

ate
d?

viruses host-program persistent firmware and up Y Y Nmaliciousbrowser extensions host-program persistent application N Y Y
botnet malware both persistent kernel and up Y Y Y
memory-residentmalware standalone transient kernel and up Y Y Y

Table 1: Use of the Taxonomy to Classify Representative Malware
As an illustration, we can apply this taxonomy to several types (or names) of malware. SeeTable 1. In particular, a virus needs a host-program to run because it infects the host-programby inserting a malicious code sequence into the program. When the host-program runs, themalicious code executes and, in addition to performing the intended malicious activities, itcan look for other programs to infect. A virus is typically persistent and can reside in all layersof the system stack except hardware. It can spread on its own because it can inject itselfinto programs automatically. A virus can also be dynamically updated provided that it canconnect to a malware update server. A polymorphic malware virus can mutate itself so thatnew copies look different, although the algorithm of this mutation is embedded into its owncode. A virus is typically not part of a coordinated network because while the infection canaffect many computers, the virus code typically does not perform coordinated activities.
Other malware that requires a host-program includes malicious browser plug-ins and exten-sions, scripts (e.g., JavaScript on a web page), and document macros (e.g., macro virusesand PDFmalware). These types of malware can be updated dynamically, form a coordinatednetwork, and can be obfuscated.
Botnet malware refers to any malware that is part of a coordinated network with a botnetinfrastructure that provides command-and-control. A botnet infrastructure typically also pro-vides malware update, and other logistic support. Botnet malware is persistent and typically

KA Malware and Attack Technologies | October 2019 Page 4

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

obfuscated, and usually resides in the kernel, driver, or application layers. Some botnet mal-ware requires a host-program, e.g., malicious browser plug-ins and extensions, and needsuser activation to spread (e.g., malicious JavaScript). Other botnet malware is standalone,and can spread automatically by exploiting vulnerable computers or users on the Internet.These include trojans, key-loggers, ransomware, click bots, spam bots, mobile malware, etc.
1.1 Potentially Unwanted Programs (PUPs)
A potentially unwanted program (PUP) is typically a piece of code that is part of a usefulprogram downloaded by a user. For example, when a user downloads the free version ofa mobile game app, it may include adware, a form of PUP that displays ad banners on thegame window. Often, the adware also collects user data (such as geo-location, time spenton the game, friends, etc.) without the user’s knowledge and consent, in order to serve moretargeted ads to the user to improve the effectiveness of the advertising. In this case, theadware is also considered spyware, which is defined as unwanted program that steals infor-mation about a computer and its users. PUPs are in a grey area because, while the downloadagreement often contains information on these questionable behaviours, most users tendnot to read the finer details and thus fail to understand exactly what they are downloading.
From the point of view of cybersecurity, it is prudent to classify PUPs towards malware, andthis is the approach taken by many security products. The simple reason is that a PUP hasall the potential to become full-fledged malware; once it is installed, the user is at the mercyof the PUP operator. For example, a spyware that is part of a spellchecker browser extensioncan gather information on which websites the user tends to visit. But it can also harvest useraccount information including logins and passwords. In this case, the spyware has becomea malware from just a PUP.
2 MALICIOUS ACTIVITIES BY MALWARE

[2, c6][1, c11-12]
Malware essentially codifies the malicious activities intended by an attacker. Cyberattackscan be analysed using the Cyber Kill Chain Model [5], which, as shown in Table 2, represents(iterations of) steps typically involved in a cyberattack. The first step is Reconnaissancewhere an attacker identifies or attracts the potential targets. This can be accomplished, forexample, by scanning the Internet for vulnerable computers (i.e., computers that run networkservices, such as sendmail, that have known vulnerabilities), or sending phishing emails toa group of users. The next phase is to gain access to the targets, for example, by sendingcrafted input to trigger a vulnerability such as a buffer overflow in the vulnerable network ser-vice program or embedding malware in a web page that will compromise a user’s browserand gain control of his computer. This corresponds to the Weaponization and Delivery (ofexploits) steps in the Cyber Kill Chain Model. Once the target is compromised, typically an-other piece of malware is downloaded and installed; this corresponds to the Installation (ofmalware) step in the Cyber Kill Chain Model. This latter malware is the real workhorse for theattacker and can carry out a wide range of activities, which amount to attacks on:

• confidentiality – it can steal valuable data, e.g., user’s authentication information, andfinancial and health data;
• integrity – it can inject falsified information (e.g., send spam and phish emails, createfraudulent clicks, etc.) or modify data;

KA Malware and Attack Technologies | October 2019 Page 5

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

• availability – it can send traffic as part of a distributed denial-of-service (DDoS) attack,use up a large amount of compute-resources (e.g., tomine cryptocurrencies), or encryptvaluable data and demand a ransom payment.
Step Activities

1 Reconnaissance Harvesting email addresses,identifying vulnerable computers and accounts, etc.2 Weaponization Designing exploits into a deliverable payload.3 Delivery Delivering the exploit payload to a victim via email,Web download, etc.4 Exploitation Exploiting a vulnerability andexecuting malicious code on the victim’s system.5 Installation Installing (additional) malware on the victim’s system.6 Command & Control Establishing a command and control channel for attackersto remotely commandeer the victim’s system.7 Actions on Objectives Carrying out malicious activities on the victim’s system and network.
Table 2: The Cyber Kill Chain Model

Most modern malware performs a combination of these attack actions because there aretoolkits (e.g., a key-logger) freely available for carrying out many ‘standard’ activities (e.g.,recording user passwords) [1], and malware can be dynamically updated to include or acti-vate new activities and take part in a longer or larger ‘campaign’ rather than just performingisolated, one-off actions. These are the Actions on Objectives in the Cyber Kill Chain Model.
Botnets exemplify long-running and coordinated malware. A botnet is a network of bots (or,compromised computers) under the control of an attacker. Botnet malware runs on each botand communicates with the botnet command-and-control (C&C) server regularly to receiveinstructions on specific malicious activities or updates to the malware. For example, everyday the C&C server of a spamming botnet sends each bot a spam template and a list of emailaddresses so that collectively the botnet sends a very large number of spammessages. If thebotnet is disrupted because of detection and response actions, e.g., the current C&C server istaken down, the botnet malware is already programmed to contact an alternative server andcan receive updates to change to a botnet that uses peer-to-peer for C&C. In general, botnetsare quite noisy, i.e., relatively easy to detect, because there are many bots in many networks.Botnet C&C is an example of the Command & Control step in the Cyber Kill Chain Model.
In contrast to botnets, malware behind the so-called advanced persistent threats (APTs) typ-ically targets a specific organisation rather than aiming to launch large-scale attacks. Forexample, it may look for a particular type of controller in the organisation to infect and causeit to send the wrong control signals that lead to eventual failures in machineries. APT mal-ware is typically designed to be long-lived (hence the term ‘persistent’). This means it notonly receives regular updates. but also evades detection by limiting its activity volume andintensity (i.e., ‘low and slow’), moving around the organisation (i.e., ‘lateral movements’) andcovering its tracks. For example, rather than sending the stolen data out to a ‘drop site’ all atonce, it can send a small piece at a time and only when the server is already sending legiti-mate traffic; after it has finished stealing from a server it moves to another (e.g., by exploitingthe trust relations between the two) and removes logs and even patches the vulnerabilitiesin the first server.
When we use the Cyber Kill Chain Model to analyze a cyberattack, we need to examine its ac-tivities in each step. This requires knowledge of the attack techniques involved. The ATT&CK

KA Malware and Attack Technologies | October 2019 Page 6

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

Knowledge Base [6] documents the up-to-date attack tactics and techniques based on real-world observations, and is a valuable reference for analysts.
2.1 The Underground Eco-System
The early-day malware activities were largely nuisance attacks (such as defacing or puttinggraffiti on an organisation’s web page). Present-day malware attacks are becoming full-blown cyberwars (e.g., attacks on critical infrastructures) and sophisticated crimes (e.g.,ransomware, fake-AntiVirus tools, etc.). An underground eco-system has also emerged tosupport the full malware lifecycle that includes development, deployment, operations andmonetisation. In this eco-system, there are actors specialising in key parts of the malwarelifecycle, and by providing their services to others they also get a share of the (financial) gainsand rewards. Such specialisation improves the quality of malware. For example, an attackercan hire the best exploit researcher to write the part of the malware responsible for remotelycompromising a vulnerable computer. Specialisation can also provide plausible deniabilityor at the least limit liability. For example, a spammer only ‘rents’ a botnet to send spam andis not guilty of compromising computers and turning them into bots; likewise, the exploit ‘re-searcher’ is just experimenting and not responsible for creating the botnet as long as he didnot release the malware himself. That is, while they are all liable for the damage by malware,they each bear only a portion of the full responsibility.
3 MALWARE ANALYSIS

[1, c1-10] [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]
There are many benefits in analysing malware. First, we can understand the intended mali-cious activities to be carried out by themalware. This will allow us to update our network andendpoint sensors to detect and block such activities, and identify which machines have themalware and take corrective actions such as removing it or even completely wiping the com-puter clean and reinstalling everything. Second, by analysing the malware structure (e.g., thelibraries and toolkits that it includes) and coding styles, we may be able to gain informationthat is potentially useful to attribution, which means being able to identify the likely authorand operator. Third, by comparing it with historical as well as geo-location data, we canbetter understand and predict the scope and trend of malware attacks, e.g., what kinds ofactivities (e.g., mining cryptocurrencies) are on the rise and if a cybercrime is moving fromone region to another. In short, malware analysis is the basis for detecting and respondingto cyberattacks.
Malware analysis typically involves running a malware instance in an analysis environment.There are ways to ‘capture’ malware instances on the infection sites. A network sensor canexamine traffic (e.g., web traffic, email attachment) to identify possible malware (e.g., pay-load that contains binary or program-like data from a website with a low reputation) and runit in a sandbox to confirm. If a network sensor is able to detect outgoing malicious trafficfrom an internal host, a host-based sensor can further identify the program, i.e., the malware,responsible for such traffic. There are also malware collection and sharing efforts wheretrusted organisations can upload malware samples found in their networks and also receivesamples contributed by other organisations. Academic researchers can typically just obtainmalware samples without needing to contribute. When acquiring and sharing malware sam-ples, we must consider our legal and ethical responsibilities carefully [19]. For example, we

KA Malware and Attack Technologies | October 2019 Page 7

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

must protect the identities of the infection sites from which the malware samples were cap-tured, and wemust not share themalware samples with any organisation that is an unknownentity or that does not have the commitment or technical capabilities to analyse malwaresafely.
Themalware analysis pipeline typically includes the following steps: 1) identifying the formatof a malware sample (e.g., binary or source code, Windows or Linux, etc.), 2) static analysisusing disassembly (if the malware is in binary format), program analysis, statistical analysisof the file contents, etc., and 3) dynamic analysis using an analysis environment. Steps 2 and3 can be combined and iterated.
3.1 Analysis Techniques
Malware analysis is the process of learning malware behaviours. Due to the large volumeand increasing complexity of malware, we need to be able to rapidly analyse samples in acomplete, reliable and scalable way. To achieve this, we need to employ techniques such asstatic analysis, dynamic analysis, symbolic execution and concolic execution [1]. These pro-gram analysis techniques have been developed to support the software development cycle,and they often need to be customized or extended for malware analysis because maliciousprograms typically include code constructed specifically to resist analysis. That is, the mainchallenge in malware analysis is to detect and bypass anti-analysis mechanisms.
3.1.1 Static Analysis

Static analysis involves examining the code (source, intermediate, or binary) to assess thebehaviours of a program without actually executing it [1]. A wide range of malware analysistechniques fall into the category of static analysis. One limitation is that the analysis outputmay not be consistent with the actual malware behaviours (at runtime). This is because inmany cases it is not possible to precisely determine a program’s behaviours statically (i.e.,without the actual run-time input data). A more serious problem is that malware authors arewell aware of the limitations of static analysis and they leverage code obfuscation and pack-ing to thwart static-analysis altogether. For example, the packed code cannot be staticallyanalysed because it is encrypted and compressed data until unpacked into executable codeat run-time.
3.1.2 Dynamic analysis

Dynamic analysis monitors the behaviours of malware execution in order to identify mali-cious behaviours [1]. Static analysis can provide more comprehensive coverage of programbehaviours but may include unfeasible ones. Dynamic analysis identifies the precise pro-gram behaviours per the test input cases but misses behaviours that are not triggered by theinput. Additionally, dynamical analysis can defeat code obfuscation techniques designedto evade static analysis. For example, when malware at run-time unpacks and executes itspacked code, dynamic analysis is able to identify the (run-time) malicious behaviours in theoriginally packed code. When performing dynamic analysis, the main questions to considerare: what types of malicious behaviours need to be identified and correspondingly, what run-time features need to be collected and when to collect (or sample), and how to isolate theeffects on the malware from those of benign system components. Typically, the run-timefeatures to be collected need to be from a layer lower than the malware itself in the systemstack so that themalware cannot change the collected information. For example, instruction

KA Malware and Attack Technologies | October 2019 Page 8

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

traces certainly cover all the details of malicious behaviours but the data volume is too largefor efficient analysis [20]. On the other hand, system call (or API call) traces are coarser butsummarise how malware interacts with the run-time system, including file I/O and network-ing activities [21]. Another advantage of dynamic analysis is that it is independent of themalware format, e.g., binary, script, macro, or exploit, because all malware is executed andanalysed in a similar fashion.
3.1.3 Fuzzing

Fuzzing is a method for discovering vulnerabilities, bugs and crashes in software by feed-ing randomised inputs to programs. Fuzzing tools [22] can also be used to trigger malwarebehaviours. Fuzzing can explore the input space, but it is limited due to code-coverage is-sues [7], especially for inputs that drive the program down complex branch conditions. Incontrast, concolic execution (see 3.1.5 Concolic Execution) is good at finding complex in-puts by formulating constraints, but is also expensive and slow. To take advantage of bothapproaches, a hybrid approach [23] called hybrid fuzzing can be used.
3.1.4 Symbolic Execution

Symbolic execution [24, 25, 26, 7, 10] has been used for vulnerability analysis of legitimateprograms as well as malware analysis [8]. It treats variables and equations as symbols andformulas that can potentially express all possible program paths. A limitation of concreteexecution (i.e., testing on particular inputs), including fuzzing, for malware analysis is thatthe program has to be executed end-to-end, one run at a time. Unlike concrete execution,symbolic execution can explore multiple branches simultaneously. To explore unseen codesections and unfold behaviours, symbolic execution generalises the input space to representall possible inputs that could lead to points of interest.
3.1.5 Concolic Execution

While symbolic execution can traverse all paths in theory, it has major limitations [24], e.g., itmay not converge quickly (if at all) when dealingwith large symbol space and complex formu-las and predicates. Concolic execution, which combines CONCrete and symbOLIC execution,can reduce the symbolic space but keep the general input space.
Offline Concolic Execution is a technique that uses concrete traces to drive symbolic execu-tion; it is also known as a Trace Based Executor [9]. The execution trace obtained by concreteexecution is used to generate the path formulas and constraints. The path formulas for thecorresponding branch is negated and Satisfiability Modulo Theories (SMT) solvers are usedto find a valid input that can satisfy the not-taken branches. Generated inputs are fed intothe program and re-run from the beginning. This technique iteratively explores the feasiblenot-taken branches encountered during executions. It requires the repetitive execution of allthe instructions from the beginning and knowledge of the input format.
Online Concolic Execution is a technique that generates constraints along with the concreteexecution [10]. Whenever the concrete execution hits a branch, if both directions are feasible,execution is forked to work on both branches. Unlike the offline executor, this approach canexplore multiple paths.
Hybrid Execution: This approach switches automatically between online and offline modesto avoid the drawbacks of non-hybrid approaches [11].

KA Malware and Attack Technologies | October 2019 Page 9

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

Concolic Execution can use whole-system emulators [10, 27] or dynamic binary instrumenta-tion tools [11, 25]. Another approach is to interpret Intermediate Representation (IR) to imitatethe effects of execution [8, 12]. This technique allows context-free concolic execution, whichanalyses any part of the binary at function and basic block levels.
Path Exploration is a systematical approach to examine program paths. Path explosion isalso inevitable in concolic execution due to the nature of symbolic space. There are a varietyof algorithms used to prioritise the directions of concolic execution, e.g., Depth-First Search(DFS) or distance computation [28]. Another approach is to prioritise the directions favouringnewly explored code blocks or symbolic memory dependence [11]. Other popular techniquesinclude path pruning, state merging [10, 29, 30], under-constrained symbolic execution [12]and fuzzing support [7, 9].
3.2 Analysis Environments
Malware analysis typically requires a dedicated environment to run the dynamic analysistools [1]. The design choice of the environment determines the analysis methods that canbe utilised and, therefore, the results and limitations of analysis. Creating an environmentrequires balancing the cost it takes to analyse a malware sample against the richness ofthe resulting report. In this context, cost is commonly measured in terms of time and man-ual human effort. For example, having an expert human analyst study a sample manuallycan produce a very in-depth and thorough report, but at great cost. Safety is a critical de-sign consideration because of the concern that malware being executed and analysed inthe environment can break out of its containment and cause damage to the analysis sys-tem and its connected network including the Internet (see 3.2.1 Safety and Live-EnvironmentRequirements). An example is running a sample of a botnet malware that performs a DDoSattack, and thus if the analysis environment is not safe, it will contribute to that attack.

Machine Emulator Type 2 Hypervisor Type 1 Hypervisor Bare-metal machine

Ar
ch

ite
ct
ur

e

Code-basedarchitecture emulation
Runs in host OS,provides virtualisationservice for hardware

Runs directly onsystem hardware No virtualisation

Ad
va

nt
ag

es Easy to use,Fine-grainedintrospection,Powerful control overthe system state

Easy to use,Fine-grainedintrospection,Powerful control overthe system state

Medium transparency,Fine-grainedintrospection, Lowoverhead for hardwareinteraction

High transparency, Novirtual environmentartifacts

Di
sa

dv
an

ta
ge

s

Low transparency,Unreliability support ofarchitecture semantics
Low transparency,Artifacts frompara-virtualisation

Less control over thesystem state
Lack of fine-grainedintrospection,Scalability and costissues, Slower torestore to clean state

Ex
am

pl
es Unicorn [31],QEMU [32], Bochs [33] VirtualBox [34],KVM [35], VMware [36] VMwareESX [37],Hyper-V [38], Xen [39] NVMTrace [40],BareCloud [16]

Table 3: Comparison of Malware Analysis Environments
Table 3 highlights the advantages and disadvantages of common environments used for

KA Malware and Attack Technologies | October 2019 Page 10

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

run-time (i.e., dynamic) analysis of malware. We can see that some architectures are eas-ier to set up and give finer control over the malware’s execution, but come at the cost oftransparency (that is, they are easier for the malware to detect) compared to the others. Forexample, bare-metal systems are very hard for malware to detect, but because they have noinstrumentation, the data that can be extracted are typically limited to network and disk I/O.By contrast, emulators like QEMU can record every executed instruction and freely inspectmemory. However, QEMU also has errors that do not exist in real hardware, which can beexploited to detect its presence [41]. A very large percentage of modern malware detect em-ulated and virtualised environments and if they do, then they do not perform their maliciousactions in order to avoid analysis.
3.2.1 Safety and Live-Environment Requirements

Clearly, safety is very important when designing a malware analysis environment becausewe cannot allow malware to cause unintended damage to the Internet (e.g., via mounting adenial-of-service attack from inside the analysis environment) and the analysis system andits connected network. Unfortunately, although pure static techniques, i.e., code analysiswithout program execution, are the safest, they also have severe limitations. In particular,malware authors know their code may be captured and analysed, and they employ code ob-fuscation techniques so that code analysis alone (i.e., without actually running the malware)will yield as little information as possible.
Malware typically requires communication with one or more C&C servers on the Internet,e.g., to receive commands and decrypt and execute its ‘payload’ (or the code that performsthe intended malicious activities). This is just one example that highlights how the designof a live-environment is important for the malware to be alive and thus exhibit its intendedfunctionality. Other examples of live-environment requirements include specific run-time li-braries [42], real user activities on the infected machine [43], and network connectivity tomalware update servers [44].
3.2.2 Virtualised Network Environments

Given the safety and live-environment requirements, most malware analysis environmentsare constructed using virtualisation technologies. Virtualisation enables operating systemsto automatically and efficientlymanage entire networks of nodes (e.g., hosts, switches), evenwithin a single physical machine. In addition, containment policies can be applied on top ofthe virtual environments to balance the live-environment and safety requirements to 1) allowmalware to interact with the Internet to provide the necessary realism, and 2) contain anymalicious activities that would cause undesired harm or side-effects.
Example architectures [13] include: 1) the GQ system, which is designed based on multiplecontainment servers and a central gateway that connects themwith the Internet allowing forfiltering or redirection of the network traffic on a per-flow basis, and 2) the Potemkin system,which is a prototype honeyfarm that uses aggressive memory sharing and dynamically bindsphysical resources to external requests. Such architectures are used to not only monitor, butalso replay network-level behaviours. Towards this end, we first need to reverse-engineer theC&C protocol used by malware. There are several approaches based on network level data(e.g., Roleplay [45], which uses bytestream alignment algorithms), or dynamic analysis ofmalware execution (e.g., Polyglot and Dispatcher [46]), or a combination of the two.

KA Malware and Attack Technologies | October 2019 Page 11

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

3.3 Anti-Analysis and Evasion Techniques
Malware authors are well aware that security analysts use program analysis to identify mal-ware behaviours. As a result, malware authors employ several techniques to make malwarehard to analyse [1].
3.3.1 Evading the Analysis Methods

The source code of malware is often not available and, therefore, the first step of static anal-ysis is to disassemble malware binary into assembly code. Malware authors can apply arange of anti-disassembly techniques (e.g., reusing a byte) to cause disassembly analysistools to produce an incorrect code listing [1].
The most general and commonly used code obfuscation technique is packing, that is, com-pressing and encrypting part of themalware. Some trivially packed binaries can be unpackedwith simple tools and analysed statically [47], but for most modernmalware the packed codeis unpacked only when it is needed during malware execution. Therefore, an unpacking toolneeds to analysemalware execution and consider the trade-offs of robustness, performance,and transparency. For example, unpackers based on virtual machine introspection (VMI) [14]are more transparent and robust but also slower. By contrast, unpackers built on dynamicbinary instrumentation (DBI) [18] are faster, but also easier to detect because the DBI coderuns at the same privilege level as the malware.
Many techniques aim at obfuscating the intended control-flows of a malware, e.g., by addingmore basic blocks and edges to its control-flow graph [1, 48, 49]. A countermeasure is toanalyze malware samples by their dynamic features (i.e., what a malware does). The reasonis that static analysis can be made impossible via advanced obfuscation using opaque con-stants [50], which allows the attacker to hide what values will be loaded into registers duringruntime. This in turnmakes it very hard for static malware analysis to extract the control-flowgraph and variables from the binary. A more effective approach is to combine static and dy-namic analysis. For example, such an approach has been shown to be able to disassemblethe highly obfuscated binary code [51].
A less common but much more potent obfuscation technique is code emulation. Borrow-ing techniques originally designed to provide software copyright protection [52], malware au-thors convert native malware binaries into bytecode programs using a randomly generatedinstruction set, paired with a native binary emulator that interprets the instruction set. Thatis, with this approach, the malware ‘binary’ is the emulator, and the original malware codebecomes ‘data’ used by the emulator program. Note that, for the same original malware,the malware author can turn it into many instances of emulated malware instances, eachwith its own random bytecode instruction set and a corresponding emulator binary. It is ex-tremely hard to analyse emulatedmalware. Firstly, static analysis of the emulator code yieldsno information about the specific malware behaviours because the emulator processes allpossible programs in the bytecode instruction set. Static analysis of the malware bytecodeentails first understanding the instruction set format (e.g., by static analysing the emulatorfirst), and developing tools for the instruction set; but this process needs to be repeated forevery instance of emulated malware. Secondly, standard dynamic analysis is not directlyuseful because it observes the run-time instructions and behaviours of an emulator and notof the malware.
A specialised dynamic analysis approach is needed to analyse emulated malware [17]. Themain idea is to execute the malware emulator and record the entire instruction traces. Ap-

KA Malware and Attack Technologies | October 2019 Page 12

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

plying dynamic dataflow and taint analysis techniques to these traces, we then identify dataregions containing the bytecode, syntactic information showing how bytecodes are parsedinto opcodes and operands, and semantic information about control transfer instructions.The output of this approach is data structures, such as a control-flow graph (CFG) of themalware, which provides the foundation for subsequent malware analysis.
Malware often uses fingerprinting techniques to detect the presence of an analysis environ-ment and evade dynamic analysis (e.g., it stops executing the intendedmalware code). Moregenerally, malware behaviours can be ‘trigger-based’ where a trigger is a run-time conditionthat must be true. Examples of conditions include the correct date and time, the presence ofcertain files or directories, an established connection to the Internet, the absence of a spe-cific mutex object etc. If a condition is not true, the malware does not execute the intendedmalicious logic. When using standard dynamic analysis, the test inputs are not guaranteedto trigger some of these conditions and, as a result, the corresponding malware behavioursmay be missed. To uncover trigger-based behaviours a multi-path analysis approach [15]explores multiple execution paths of a malware. The analyser monitors how the malwarecode uses condition-like inputs to make control-flow decisions. For each decision point, theanalyser makes a snapshot of the current malware execution state and allows the malwareto execute the correct malware path for the given input value; for example, the input valuesuggests that the triggering condition is not met and the malware path does not include theintended malicious logic. The analyser then comes back to the snapshot and rewrites theinput value so that the other branch is taken; for example, now the triggering condition isrewritten to be true, and the malware branch is the intended malicious logic.
3.3.2 Identifying the Analysis Environments

Malware often uses system and network artifacts that suggest that it is running in an anal-ysis environment rather than a real, infected system [1]. These artifacts are primarily cat-egorised into four classes: virtualisation, environment, process introspection, and user. Invirtualisation fingerprinting, evasive malware tries to detect that it is running in a virtualisedenvironment. For example, it can use red pill testing [53], which entails executing specificCPU instruction sequences that cause overhead, unique timing skews, and discrepancieswhen compared with executions on a bare-metal (i.e., non-virtualised) system. Regardingenvironment artifacts, virtual machines and emulators have unique hardware and softwareparameters including device models, registry values, and processes. In process introspec-tion, malware can check for the presence of specific programs on operating systems, includ-ing monitoring tools provided by anti-virus companies and virtual machine vendors. Lastly,user artifacts include specific applications such a web browser (or lack thereof), web brows-ing history, recently used files, interactive user prompts, mouse and keyboard activities etc.These are signals for whether a real human uses the environment for meaningful tasks.
An analysis environment is not transparent if it can be detected bymalware. There aremitiga-tion techniques, some address specific types of evasion while others more broadly increasetransparency. Binarymodifications can be performed by dynamically removing or rewriting in-structions to prevent detection [54], and environmental artifacts can be hidden frommalwareby hooking operating system functions [55]. Path-exploration approaches [15, 56] force mal-ware execution downmultiple conditional branches to bypass evasion. Hypervisor-based ap-proaches [14, 57] use introspection tools with greater privilege thanmalware so that they canbe hidden from malware and provide the expected answers to the malware when it checksthe system and network artifacts. In order to provide the greatest level of transparency, sev-eral approaches [40, 16] perform malware analysis on real machines to avoid introducing

KA Malware and Attack Technologies | October 2019 Page 13

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

artifacts.
4 MALWARE DETECTION

[1, c11, c14-16, c18] [58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68]
4.1 Identifying the Presence of Malware
The process of locating a malicious program residing within a host involves identifying cluesthat are indicative of the malware’s presence on a computer system. We call these clues‘indicator of compromise’, and they are the ‘features’ or ‘artifacts’ of malware.
4.1.1 Finding Malware in a Haystack

In order to identify malware, we must first have an understanding of how malware is dis-tributed to their victims’ hosts. Malware is commonly distributed via an Internet down-load [69]. A vulnerable Internet-facing program running on a computer can be exploited todownload malware onto the computer. A user on the computer can be socially engineeredto open an email attachment or visit a web page, both may lead to an exploit and malwaredownload.
Whilst being downloaded onto a host, the malware’s contents can be seen in the payloadsection of the network traffic (i.e., network packet) [1]. As a defense, an Antivirus (AV) solu-tion, or Intrusion Detection System (IDS), can analyse each network packet transported to anend-host for known malicious content, and block (prevent) the download. On the other hand,traffic content encrypted as HTTPS is widely and increasingly adopted by websites. Using do-main reputation systems [70], network traffic coming from domains and IP addresses knownto be associatedwithmalicious activities can be automatically blockedwithout analysing thetraffic’s payload.
After being installed on a computer, malware can reside within the host’s filesystem or mem-ory (or both). At this point, the malware can sleep (where the executable does nothing to thesystem) until a later point in time [71] as specified by the malware author. An AV or IDS canperiodically scan the host’s filesystem and memory for known malicious programs [1]. As afirst layer of defence, malware detectors can analyse static features that suggest maliciousexecutable contents. These include characteristics of instructions, control-flow graphs, callgraphs, byte-value patterns [72] etc.
If malware is not detected during its distribution state, i.e., a detection system misses itspresence in the payloads of network traffic or the filesystem and memory of the end-host,it can still be detected when it executes and, for example, begins contacting its command-and-control (C&C) server and performing malicious actions over the Internet or on the victimcomputer system. An AV or IDS on the network perimeter continuously monitors networkpackets travelling out of an end-host. If the AV or IDS sees that the host is contacting knownmalicious domain names or IP addresses it can surmise that the host has been infected bymalware. In addition, an AV or IDS on the end-host can look for behaviour patterns that areassociatedwith knownmalware activities, such as systemor API calls that reveal the specificfiles read or written.

KA Malware and Attack Technologies | October 2019 Page 14

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

Evasion and Countermeasures Since Antivirus and IDS solutions can generate signaturesfor malware executables, malware authors often morph the contents of their malware. Theycan change the contents of the executables while generating identically functional copies oftheir malware (i.e., the malware will perform the same dynamic behaviours when executed).Since its static contents have been changed, the malware can evade an AV or IDS that usesthese static features. On the other hand, the malware can still be detected by an AV or IDSthat uses the dynamic features (i.e., what the malware does).
Heuristics, e.g., signatures of a packing tool, or high entropy due to encryption, can be usedto detect and block contents that suggest the presence of packedmalware, but thismay leadto false alarms because packing can also be used by benign software and services, such asvideo games, to protect proprietary information. Themost reliable way to detect packedmal-ware is to simply monitor its run-time behaviours because the packed code will be unpackedand executed, and the corresponding malicious behaviours can then be identified [58].
In addition to changing the malware executable, an attacker can also change the contents ofits malicious network traffic by using polymorphism to modify payloads so that the same at-tacks look different across multiple traffic captures. However, classic polymorphic malwaretechniques [73] make the payloads look so different that even a naive IDS can easily differ-entiate them from benign payloads. On the other hand, with polymorphic malware blendingattacks [59] malicious payloads can be made to look statistically similar to benign payloads.
Malware authors often implement updating routines, similar to updates for operating sys-tems and applications such as web browsers and office tools. This allows malware authorsthe flexibility to make changes to the malware to not only include new malicious activitiesbut also evade detection by AVs and IDS that have started using patterns of the old malwareand its old behaviours.
4.2 Detection of Malware Attacks
Wehave discussedways to identify static and behaviour patterns ofmalware, which can thenbe used to detect instances of the same, or similar malware. Althoughmany popular variantsof malware families have existed at one time or another (e.g., Zeus [74, 75], Spyeye [76, 77],Mirai [78]), there will always be newmalware families that cannot be detected bymalware de-tectionmodels (such as AV signatures). Therefore, we need to go beyond identifying specificmalware instances: we need to detect malicious activities in general.
4.2.1 Host-based and Network-Based Monitoring

Themost general approach to detectmalicious activities is anomaly detection [60, 79, 61]. Ananomaly in system or network behaviour is an activity that deviates from normal (or seen) be-haviour. Anomaly detection can identify both old and new attacks. It is important to note thatan anomalous behaviour is not the same as a malicious behaviour. Anomalous behavioursdescribe behaviours that deviate from the norm, and of course it is possible to have abnormalbenign activities occurring on a system or network.
On the other hand, a more efficient and arguably more accurate approach to detect an oldattack is to find the patterns or signatures of the known attack activities [1]. This is oftencalled the misuse detection approach. Examples of signatures include: unauthorised writeto system files (e.g., Windows Registry), connection to known botnet C&C servers, etc.
Two different, but complementary approaches to deploy attack detection systems are: 1)

KA Malware and Attack Technologies | October 2019 Page 15

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

host-basedmonitoring of system activities, and 2) network-basedmonitoring of traffic. Host-based monitoring systems monitor activities that take place in a host, to determine if thehost is compromised. These systems typically collect and monitor activities related to thefile system, processes, and system calls [1, 62]. Network-based monitoring systems analyseactivities that are network-wide, e.g., temporal characteristics of access patterns of networktraffic flows, the domain names the network hosts reach out to, the characteristics of thenetwork packet payloads that cross the network perimeter, etc. [1, 63].
Let us look at several examples of malicious activities and the corresponding detection ap-proaches. The first-generation spam detection systems focused on analysing the email con-tents to distinguish legitimate messages from spam. Latter systems included network-levelbehaviours indicative of spam traffic [80], e.g., spikes in email traffic volumes due to largeamount of spam messages being sent.
For DDoS detection, the main idea is to analyse the statistical properties of traffic, e.g., thenumber of requests within a short time window sent to a network server. Once a host isidentified to be sending such traffic, it is considered to be participating in a DDoS attack andits traffic is blocked. Attackers have evolved their techniques to DDoS attacks, in particular,by employing multiple compromised hosts, or bots, to send traffic in a synchronised manner,e.g., by using DDoS-as-a-service malware kits [81]. That is, each bot no longer needs to senda large amount of traffic. Correspondingly, DDoS detection involves correlating hosts thatsend very similar traffic to the victim at the same time.
For ransomware detection, the main approaches include monitoring host activities involvedin encryption. If there is a process making a large number of significant modifications to alarge number of files, this is indicative of a ransomware attack [82]. The ‘significant’ modi-fications reflect the fact that encrypting a file will result in its contents changing drasticallyfrom its original contents.
Host-based and network-based monitoring approaches can be beneficially combined. Forexample, if we see contents from various sensitive files on our system (e.g., financial records,password-related files, etc.) being transmitted in network traffic, it is indicative that data arebeing exfiltrated (without the knowledge and consent of the user) to an attacker’s server. Wecan then apply host-based analysis tools to further determine the attack provenance andeffects on a victim host [83].
Since many malicious activities are carried out by botnets, it is important to include botnetdetection methods. By definition, bots of the same botnet are controlled by the same at-tacker and perform coordinated malicious activities [84, 64]. Therefore, a general approachto botnet detection is to look for synchronised activities both in C&C like traffic andmalicioustraffic (e.g., scan, spam, DDoS, etc.) across the hosts of a network.

KA Malware and Attack Technologies | October 2019 Page 16

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

4.2.2 Machine Learning-Based Security Analytics

Since the late 1990s, machine learning (ML) has been applied to automate the process ofbuilding models for detecting malware and attacks. The benefit of machine learning is itsability to generalise over a population of samples, given various features (descriptions) ofthose samples. For example, after providing an ML algorithm samples of different malwarefamilies for ‘training’, the resultant model is able to classify new, unseen malware as belong-ing to one of those families [65].
Both static and dynamic features of malware and attacks can be employed by ML-baseddetection models. Examples of static features include: instructions, control-flow graphs,call graphs, etc. Examples of dynamic features include: system call sequences and otherstatistics (e.g., frequency and existence of system calls), system call parameters, data-flowgraphs [85], network payload features, etc.
An example of success stories in applying machine learning to detect malware and attacksis botnet detection [86]. ML techniques were developed to efficiently classify domain namesas ones produced by Domain Generation Algorithm (DGA), C&C domains, or legitimate do-mains using features extracted from DNS traffic. ML techniques have also been developedto identify C&C servers as well as bots in an enterprise network based on features derivedfrom network traffic data [64].
A major obstacle in applying (classical) machine learning to security is that we must selector even engineer features that are useful in classifying benign and malicious activities. Fea-ture engineering is very knowledge- and labour- intensive and is the bottleneck in applyingML to any problem domain. Deep learning has shown some promise in learning from a largeamount of data without much feature engineering, and already has great success in applica-tions such as image classification [87]. However, unlike many classical ML models (such asdecision trees and inductive rules) that are human-readable, and hence reviewable by secu-rity analysts before making deployment decisions, deep learning outputs blackbox modelsthat are not readable and not easily explainable. It is often not possible to understand whatfeatures are being used (and how) to arrive at a classification decision. That is, with deeplearning, security analysts can no longer check if the output even makes sense from thepoint-of-view of domain or expert knowledge.
4.2.3 Evasion, Countermeasures, and Limitations

Attackers are well aware of the detection methods that have been developed, and they areemploying evasion techniques to make their attacks hard to detect. For example, they canlimit the volume and intensity of attack activities to stay below the detection threshold, andthey can mimic legitimate user behaviours such as sending stolen data (a small amount at atime) to a ‘drop site’ only when a user is also browsing the Internet. Every misuse or anomalydetection model is potentially evadable.
It should also come as no surprise that no sooner had researchers begun using ML thanattackers started to find ways to defeat the ML-based detection models.
One of the most famous attacks is the Mimicry attack on detection models based on systemcall data [66]. The idea is simple: the goal is to morph malicious features to look exactlythe same as the benign features, so that the detection models will mistakenly classify theattack as benign. The Mimicry attack inserts system calls that are inconsequential to the in-tended malicious actions so that the resultant sequences, while containing system calls formalicious activities, are still legitimate because such sequences exist in benign programs. A

KA Malware and Attack Technologies | October 2019 Page 17

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

related attack is polymorphic blending [59] that can be used to evade ML models based onnetwork payload statistics (e.g., the frequency distribution of n-grams in payload data to anetwork service). An attack payload can be encoded and padded with additional n-grams sothat it matches the statistics of benign payloads. Targeted noise injection [67] is an attackdesigned to trick a machine-learning algorithm, while training a detection model, to focus onfeatures not belonging to malicious activities at all. This attack exploits a fundamental weak-ness of machine learning: garbage in, garbage out. That is, if you give a machine-learningalgorithm bad data, then it will learn to classify data ‘badly’. For example, an attacker caninsert various no-op features into the attack payload data, which will statistically produce astrong signal for the ML algorithm to select them as ‘the important, distinguishing features’.As long as such features exist, and as they are under the attacker’s control, any ML algorithmcan be misled to learn an incorrect detection model. Noise injection is also known as ‘datapoisoning’ in the machine learning community.
We can make attacks on ML harder to succeed. For example, one approach is to squeezefeatures [88] so that the feature set is not as obvious to an attacker, and the attacker has asmaller target to hit when creating adversarial samples. Another approach is to train separat-ing classes, which distance the decision boundary between classes [89]. This makes it moredifficult for an attacker to simply make small changes to features to ‘jump’ across decisionboundaries and cause the model to misclassify the sample. Another interesting approachis to have an ML model forget samples it has learned over time, so that an attacker has tocontinuously poison every dataset [90].
A more general approach is to employ a combination of different ML-based detection mod-els so that defeating all of them simultaneously is very challenging. For example, we canmodel multiple feature sets simultaneously through ensemble learning, i.e., using multipleclassifiers trained on different feature sets to classify a sample rather than relying on singu-lar classifier and feature set. This would force an attacker to have to create attacks that canevade each and every classifier and feature set [68].
As discussed earlier, deep learning algorithms produce models that cannot be easily exam-ined. But if we do not understand how a detection model really works, we cannot foreseehow attackers can attempt to defeat it and how we can improve its robustness. That is, amodel that seemingly performs very well on data seen thus far can, in fact, be very easilydefeated in the future - we just have no way of knowing. For example, in image recognition itturned out that some deep learning models focused on high-frequency image signals (thatare not visible to the human eye) rather than the structural and contextual information of animage (which is more relevant for identifying an object) and, as a result, a small change inthe high-frequency data is sufficient to cause a mis-classification by these models, while tothe human eye the image has not changed at all [91].
There are promising approaches to improve the ‘explainability’ of deep learning models. Forexample, an attention model [92] can highlight locations within an image to show which por-tions it is focusing on when classifying the image. Another example is LEMNA [93], whichgenerates a small set of interpretable features from an input sample to explain how the sam-ple is classified, essentially approximating a local area of the complex deep learning decisionboundary using a simpler interpretable model.
In both the machine learning and security communities, adversarial machine learning [94]is and will continue to be a very important and active research area. In general, attacks onmachine learning can be categorised as data poisoning (i.e., injecting malicious noise intotraining data) and evasion (i.e., morphing the input to cause mis-classification). What we

KA Malware and Attack Technologies | October 2019 Page 18

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

have discussed above are just examples of evasion and poisoning attacks on MLmodels forsecurity analytics. These attacks have motivated the development of new machine-learningparadigms that are more robust against adversarial manipulations, and we have discussedhere examples of promising approaches.
In general, attack detection is a very challenging problem. A misuse detection method whichis based on patterns of known attacks is usually not effective against new attacks or evennew variants of old attacks. An anomaly detection method which is based on a normal pro-file can produce many false alarms because it is often impossible to include all legitimatebehaviours in a normal profile. While machine learning can be used to automatically producedetection models, potential ‘concept drift’ can render the detection models less effectiveover time [95]. That is, most machine-learning algorithms assume that the training data andthe testing data have the same statistical properties, whereas in reality, user behaviours andnetwork and system configurations can change after a detection model is deployed.
5 MALWARE RESPONSE

[96, 97, 98, 99, 100, 101]
If we have an infected host in front of us, we can remove the malware, and recover the dataand services from secure backups. At the local network access point, we can update corre-sponding Firewall and Network Intrusion Detection System rules, to prevent and detect futureattacks. It is unfeasible to execute these remediation strategies if the infectedmachines can-not be accessed directly (e.g., they are in private residences), and if the scale of infection islarge. In these cases, we can attempt to take down malware command-and-control (C&C)infrastructure instead [96, 97], typically at the Internet Service Provider (ISP) or the top-leveldomain (TLD) level. Takedowns aim to disrupt the malware communication channel, even ifthe hosts remain infected. Last but not least, we can performattack attribution usingmultiplesources of data to identify the actors behind the attack.
5.1 Disruption of Malware Operations
There are several types of takedowns to disrupt malware operations. If the malware usesdomain names to look up and to communicate with centralised C&C servers, we performtakedown of C&C domains by ‘sinkholing’ the domains, i.e., making the C&C domains re-solve to the defender’s servers so that botnet traffic is ‘trapped’ (that is, redirected) to theseservers [96]. If the malware uses peer-to-peer (P2P) protocol as a decentralised C&C mech-anism, we can partition the P2P botnet into isolated sub-networks, create a sinkholing node,or poison the communication channel by issuing commands to stop the malicious activi-ties [97]. However, it should be borne in mind that, in most territories active defence or intelli-gence gathering, such as hack-backs, access to or modification of servers, DNS, or networks,is unlawful without appropriate legal authority.

KA Malware and Attack Technologies | October 2019 Page 19

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

5.1.1 Evasion and Countermeasures

Malware often utilises agility provided by DNS fast-flux network and Domain-name Gen-eration Algorithms (DGAs) to evade the takedown. A DNS fast-flux network points theC&C domain names to a large pool of compromised machines, and the resolution changesrapidly [102]. DGAs make use of an algorithm to automatically generate candidate C&C do-mains, usually based on some random seed. Among the algorithm-generated domains, thebotmaster can pick a few to register (e.g., on a daily basis) andmake them resolve to the C&Cservers. What makes thematter worse are the so-called Bullet-Proof Hosting (BPH) services,which are resilient against takedowns because they ignore abuse complaints and takedownrequests [98].
We can detect the agile usage of C&Cmechanisms. As the botmaster has little control of theIP address diversity and down-time for compromisedmachines in a fast-flux network, we canuse these features to detect fast-flux [103]. We can also identify DGA domains by mining NX-Domains traffic using infected hosts features and domain name characteristic features [86],or reverse-engineering the malware to recover the algorithm. To counter bullet-proof hosting,we need to put legal, political and economic pressures on hosting providers. For example, theFBI’s Operation Ghost Click issued a court order for the takedown of DNSChanger [104, 105].
Malware has also become increasingly resilient by including contingency plans. A centralisedbotnet can have P2P as a fallback mechanism in case the DNS C&C fails. Likewise, a P2Pbotnet can use DNS C&C as a contingency plan. A takedown is effective only if all the C&Cchannels are removed from the malware. Otherwise, the malware can bootstrap the C&Ccommunication again using the remaining channels. If we hastily conduct botnet takedownswithout thoroughly enumerating and verifying all the possible C&C channels, we can fail toactually disrupt the malware operations and risk collateral damage to benign machines. Forexample, the Kelihos takedown [106] did not account for the backup P2P channel, and the
3322.org takedown disabled the dynamic DNS service for many benign users.
We need to have a complete view of the C&C domains and other channels that are likely tobe used by a botnet, by using multiple sources of intelligence including domain reputation,malware query association and malware interrogation [96]. We start from a seed set of C&Cdomains used by a botnet. Then, we use passive DNS data to retrieve related historical IPaddresses associated with the seed set. We remove sinkholing, parking, and cloud hostingprovider IP addresses from them to mitigate the collateral damage from the takedowns. Theresulting IPs can also give us related historical domains that have resolved to them. After fol-lowing these steps, we have an extended set of domains that are likely to be used by the bot-net. This set captures agile and evasive C&C behaviours such as fast-flux networks. Withinthe extended set, we combine 1) low reputation domains, 2) domains related tomalware, and3) other domains obtained by interrogating the related malware. Malware interrogation sim-ulates situations where the default C&C communication mechanism fails through blockingDNS resolution and TCP connection [101]. By doing so, we can force the malware to revealthe backup C&C plans, e.g., DGA or P2P. After enumerating the C&C infrastructure, we candisable the complete list of domains to take the botnet down.

KA Malware and Attack Technologies | October 2019 Page 20

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

5.2 Attribution
Ideally, law enforcement wants to identify the actual criminal behind the attacks. Identifyingthe virtual attacker is an important first step toward this goal. An attacker may have consis-tent coding styles, reuse the same resources or infrastructures, or use similar C&C practices.
From the malware data, we can compare its ‘characteristics’ with those of known historicaladversaries, e.g., coding styles, server configurations, etc. [99]. At the source code level, wecan use features that reflect programming styles and code quality. For instance, linguisticfeatures, formatting style, bugs and vulnerabilities, structured features such as executionpath, Abstract Syntax Tree (AST), Control FlowGraph (CFG), and ProgramDependence Graph(PDG) can be used. Other features extracted from the binary file can also indicate authorship,e.g., the sequence of instructions and register flow graph.
From the enumerated attack infrastructure, we can associate the expanded domain nameset with previously known adversaries. For instance, unknown TDSS/TDL4 botnet ad-fraudC&C domains share the same IP infrastructure with known domains, and they are registeredby the same set of email addresses and name servers. This allows us to attribute unknowndomains to known TDSS/TDL4 actors [100].
5.2.1 Evasion and Countermeasures

Manymalware authors reuse different kits for the convenience offered by the businessmodelof the underground economy. Common for-sale kits allow malware authors to easily cus-tomise their own malware. They can also evade attribution by intentionally planting ‘falseflags’ in malware.
Domain registration information, WHOIS, is a strong signal for attack attribution. The sameattacker often uses a fake name, address and company information following a pattern. How-ever, WHOIS privacy protection has become ubiquitous and is even offered for free for thefirst year when a user purchases a domain name. This removes the registration informationthat could be used for attack attribution.
We need to combine multiple, different streams of data for the analysis. For instance, mal-ware interrogation helps recover more C&C domains used by the fallback mechanism, whichoffers more opportunity for attribution [101, 107].
CONCLUSION
Attackers use malware to carry out malicious activities on their behalf. Malware can residein any layer of the system stack, and can be a program by itself or embedded in another appli-cation or document. Modern malware comes with a support infrastructure for coordinatedattacks and automated updates, and can operate low-and-slow and cover its tracks to avoiddetection and attribution. While malware can cause wide-spread infection and harm on theInternet, it can also be customised for attacks targeting a specific organisation. Malwareanalysis is an important step in understanding malicious behaviours and properly updatingour attack prevention and detection systems. Malware employs awide range of evasion tech-niques, which include detecting the analysis environment, obfuscatingmalicious code, usingtrigger-conditions to execute, and applying polymorphism to attack payloads, etc. Accord-ingly, we need to make analysis environments transparent to malware, continue to developspecialised program analysis algorithms and machine-learning based detection techniques,

KA Malware and Attack Technologies | October 2019 Page 21

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

and apply a combination of these approaches. Response to malware attacks goes beyonddetection and mitigation, and can include take-down and attribution, but the challenge isenumerating the entire malware infrastructure, and correlating multiple pieces of evidenceto avoid false flags planted by the attackers.
CROSS-REFERENCE OF TOPICS VS REFERENCE MATERIAL

Sections Cites
1 A taxonomy of Malware [2]:c62 Malicious Activities by Malware [2]:c6, [1]:c11-123 Malware Analysis3.1 Analysis Techniques [1]:c1-103.1.1 Static Analysis [1]:c4-73.1.2 Dynamic analysis [1]:c8-103.1.3 Fuzzing [7, 8]3.1.5 Concolic Execution [9, 10, 11, 12]3.2 Analysis Environments [1]:c23.2.1 Safety and Live-Environment Requirements3.2.2 Virtualised Network Environments [1]:c2, [13]3.3.2 Identifying the Analysis Environments [1]:c15-18, [14, 15, 16]3.3 Anti-Analysis and Evasion Techniques [1]:c15-16, [17, 18, 15]4 Malware Detection4.1 Identifying the Presence of Malware4.1.1 Finding Malware in a Haystack [1]:c11,c144.1.1 Evasion and Countermeasures [1]:c15-16,c18, [58, 59]4.2 Detection of Malware Attacks4.2.1 Host-based and Network-Based Monitoring [1]:c11,c14, [60, 61, 62, 63, 64]4.2.2 Machine Learning-Based Security Analytics [65, 64]4.2.3 Evasion, Countermeasures, and Limitations [66, 67, 68]5 Malware Response5.1 Disruption of Malware Operations [96, 97]5.1.1 Evasion and Countermeasures [98]5.2 Attribution [99, 100]5.2.1 Evasion and Countermeasures [101]

KA Malware and Attack Technologies | October 2019 Page 22

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

REFERENCES
[1] M. Sikorski and A. Honig, Practical Malware Analysis: A Hands-On Guide to Dissecting

Malicious Software. No Starch Press, 2012.[2] W. Stallings and L. Brown, Computer Security: Principles and Practice, 4th Edition. Pear-son, 2018.[3] McAfee, “Fileless malware execution with powershell is easier than you mayrealize,” 2017. [Online]. Available: https://www.mcafee.com/enterprise/en-us/assets/solution-briefs/sb-fileless-malware-execution.pdf[4] ars TECHNICA, “A rash of invisible, fileless malware is infecting banks around theglobe,” 2017. [Online]. Available: https://arstechnica.com/information-technology/2017/02/a-rash-of-invisible-fileless-malware-is-infecting-banks-around-the-globe/?comments=1&post=32786675[5] Lockheed Martin, “The cyber kill chain.” [Online]. Available: https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html[6] MITRE, “ATT&CK knowledge base.” [Online]. Available: https://attack.mitre.org[7] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta, Y. Shoshitaishvili,C. Kruegel, and G. Vigna, “Driller: Augmenting fuzzing through selective symbolic exe-cution.” in The Network and Distributed System Security Symposium (NDSS), 2016.[8] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher, J. Grosen,S. Feng, C. Hauser, C. Kruegel et al., “Sok: state of the art of war: Offensive techniquesin binary analysis,” in 2016 IEEE Symposium on Security and Privacy (SP). IEEE, 2016,pp. 138–157.[9] P. Godefroid, M. Y. Levin, and D. A. Molnar, “Automated whitebox fuzz testing,” in The
Network and Distributed System Security Symposium (NDSS), 2008.[10] V. Chipounov, V. Kuznetsov, and G. Candea, “S2E: A platform for in-vivo multi-path anal-ysis of software systems,” ACM Sigplan Notices, vol. 46, no. 3, pp. 265–278, 2011.[11] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley, “Unleashingmayhem on binary code,”in IEEE Symposium on Security and Privacy (SP). IEEE, 2012, pp. 380–394.[12] D. A. Ramos and D. R. Engler, “Under-constrained symbolic execution: Correctnesschecking for real code.” in USENIX Security Symposium, 2015, pp. 49–64.[13] C. Kreibich, N. Weaver, C. Kanich, W. Cui, and V. Paxson, “GQ: Practical containmentfor measuring modern malware systems,” in Proceedings of the 2011 ACM SIGCOMM
conference on Internet measurement conference. ACM, 2011, pp. 397–412.[14] A. Dinaburg, P. Royal, M. Sharif, and W. Lee, “Ether: malware analysis via hardwarevirtualization extensions,” in Proceedings of the 15th ACM conference on Computer and
communications security. ACM, 2008, pp. 51–62.[15] A. Moser, C. Kruegel, and E. Kirda, “Exploring multiple execution paths for malwareanalysis,” in IEEE Symposium on Security and Privacy. IEEE, 2007.[16] D. Kirat, G. Vigna, and C. Kruegel, “Barecloud: Bare-metal analysis-based evasive mal-ware detection.” in USENIX Security Symposium, 2014, pp. 287–301.[17] M. Sharif, A. Lanzi, J. Giffin, and W. Lee, “Automatic reverse engineering of malwareemulators,” in 30th IEEE Symposium on Security and Privacy. IEEE, 2009, pp. 94–109.[18] S. Mariani, L. Fontana, F. Gritti, and S. D’Alessio, “PinDemonium: a DBI-based genericunpacker for Windows executables,” in Black Hat USA 2016, 2016.[19] E. Kenneally, M. Bailey, and D. Maughan, “A framework for understanding and applyingethical principles in network and security research,” inWorkshop on Ethics in Computer
Security Research (WECSR ’10), 2010.[20] M. K. Shankarapani, S. Ramamoorthy, R. S. Movva, and S. Mukkamala, “Malware detec-

KA Malware and Attack Technologies | October 2019 Page 23

https://www.cybok.org
https://www.mcafee.com/enterprise/en-us/assets/solution-briefs/sb-fileless-malware-execution.pdf
https://www.mcafee.com/enterprise/en-us/assets/solution-briefs/sb-fileless-malware-execution.pdf
https://arstechnica.com/information-technology/2017/02/a-rash-of-invisible-fileless-malware-is-infecting-banks-around-the-globe/?comments=1&post=32786675
https://arstechnica.com/information-technology/2017/02/a-rash-of-invisible-fileless-malware-is-infecting-banks-around-the-globe/?comments=1&post=32786675
https://arstechnica.com/information-technology/2017/02/a-rash-of-invisible-fileless-malware-is-infecting-banks-around-the-globe/?comments=1&post=32786675
https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html
https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html
https://attack.mitre.org


The Cyber Security Body Of Knowledge
www.cybok.org

tion using assembly and API call sequences,” Journal in computer virology, vol. 7, no. 2,pp. 107–119, 2011.[21] M. Bailey, J. Oberheide, J. Andersen, Z.M.Mao, F. Jahanian, and J. Nazario, “Automatedclassification and analysis of internet malware,” in International Workshop on Recent
Advances in Intrusion Detection. Springer, 2007, pp. 178–197.[22] M. Zalewski, “American fuzzy lop.” [Online]. Available: http://lcamtuf.coredump.cx/afl/[23] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, “QSYM: A practical concolic execution en-gine tailored for hybrid fuzzing,” in Proceedings of the 27th USENIX Security Symposium,2018.[24] C. Cadar and K. Sen, “Symbolic execution for software testing: Three decades later,” in
Communications of the ACM, 2013.[25] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz, “BAP: A binary analysis platform,”in International Conference on Computer Aided Verification. Springer, 2011.[26] C. Cadar, D. Dunbar, and D. R. Engler, “KLEE: Unassisted and automatic generation ofhigh-coverage tests for complex systems programs,” in 8th USENIX Symposium on Op-
erating Systems Design and Implementation, vol. 8, 2008, pp. 209–224.[27] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang, Z. Liang, J. Newsome,P. Poosankam, and P. Saxena, “BitBlaze: A new approach to computer security via bi-nary analysis,” in International Conference on Information Systems Security. Springer,2008, pp. 1–25.[28] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury, “Directed greybox fuzzing,”in Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2017, pp. 2329–2344.[29] V. Kuznetsov, J. Kinder, S. Bucur, and G. Candea, “Efficient state merging in symbolicexecution,” ACM Sigplan Notices, vol. 47, no. 6, pp. 193–204, 2012.[30] T. Avgerinos, A. Rebert, S. K. Cha, and D. Brumley, “Enhancing symbolic execution withveritesting,” in Proceedings of the 36th International Conference on Software Engineer-
ing. ACM, 2014, pp. 1083–1094.[31] “The unicorn emulator.” [Online]. Available: https://www.unicorn-engine.org/[32] “The QEMU emulator.” [Online]. Available: https://www.qemu.org/[33] “The bochs emulator.” [Online]. Available: http://bochs.sourceforge.net/[34] “The VirtualBox.” [Online]. Available: https://www.virtualbox.org/[35] “The KVM.” [Online]. Available: https://www.linux-kvm.org/[36] “The VMware.” [Online]. Available: https://www.vmware.com/[37] “The VMware ESXi.” [Online]. Available: https://www.vmware.com/products/esxi-and-esx.html/[38] “The Hyper-V.” [Online]. Available: https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/about/[39] “The Xen.” [Online]. Available: https://www.xenproject.org/[40] P. Royal, “Entrapment: Tricking malware with transparent, scalable malware analysis,”2012, talk at Black Hat.[41] T. Raffetseder, C. Kruegel, and E. Kirda, “Detecting system emulators,” in International
Conference on Information Security. Springer, 2007, pp. 1–18.[42] E. Cozzi, M. Graziano, Y. Fratantonio, and D. Balzarotti, “Understanding Linux Malware,”in IEEE Symposium on Security & Privacy, 2018.[43] N. Miramirkhani, M. P. Appini, N. Nikiforakis, and M. Polychronakis, “Spotless sand-boxes: Evading malware analysis systems using wear-and-tear artifacts,” in IEEE Sym-
posium on Security and Privacy (SP). IEEE, 2017, pp. 1009–1024.[44] J. T. Bennett, N. Moran, and N. Villeneuve, “Poison ivy: Assessing damage and extract-

KA Malware and Attack Technologies | October 2019 Page 24

https://www.cybok.org
http://lcamtuf.coredump.cx/afl/
https://www.unicorn-engine.org/
https://www.qemu.org/
http://bochs.sourceforge.net/
https://www.virtualbox.org/
https://www.linux-kvm.org/
https://www.vmware.com/
https://www.vmware.com/products/esxi-and-esx.html/
https://www.vmware.com/products/esxi-and-esx.html/
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/about/
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/about/
https://www.xenproject.org/


The Cyber Security Body Of Knowledge
www.cybok.org

ing intelligence,” FireEye Threat Research Blog, 2013.[45] W. Cui, V. Paxson, N. Weaver, and R. H. Katz, “Protocol-independent adaptive replay ofapplication dialog.” in NDSS, 2006.[46] J. Caballero and D. Song, “Automatic protocol reverse-engineering: Message formatextraction and field semantics inference,” Computer Networks, vol. 57, no. 2, pp. 451–474, 2013.[47] M. Sharif, V. Yegneswaran, H. Saidi, P. Porras, and W. Lee, “Eureka: A framework forenabling static malware analysis,” in European Symposium on Research in Computer
Security. Springer, 2008, pp. 481–500.[48] C. Linn and S. Debray, “Obfuscation of executable code to improve resistance to staticdisassembly,” in Proceedings of the 10th ACM conference on Computer and communi-
cations security. ACM, 2003, pp. 290–299.[49] M. I. Sharif, A. Lanzi, J. T. Giffin, and W. Lee, “Impeding malware analysis using condi-tional code obfuscation,” in NDSS, 2008.[50] A. Moser, C. Kruegel, and E. Kirda, “Limits of static analysis for malware detection,” in
Computer Security Applications Conference, 2007. ACSAC 2007. Twenty-Third Annual.IEEE, 2007, pp. 421–430.[51] G. Bonfante, J. Fernandez, J.-Y. Marion, B. Rouxel, F. Sabatier, and A. Thierry, “Codis-asm: medium scale concatic disassembly of self-modifying binaries with overlappinginstructions,” in Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2015, pp. 745–756.[52] “Vmprotect.” [Online]. Available: https://vmpsoft.com[53] R. R. Branco, G. N. Barbosa, and P. D. Neto, “Scientific but not academical overviewof malware anti-debugging, anti-disassembly and AntiVM technologies,” in Anti-
Disassembly and Anti-VM Technologies, Black Hat USA Conference, 2012.[54] A. Vasudevan and R. Yerraballi, “Cobra: Fine-grained malware analysis using stealthlocalized-executions,” in IEEE Symposium on Security and Privacy. IEEE, 2006.[55] C.Willems, T. Holz, and F. Freiling, “Toward automated dynamicmalware analysis usingCWSandbox,” IEEE Security & Privacy, vol. 5, no. 2, 2007.[56] F. Peng, Z. Deng, X. Zhang, D. Xu, Z. Lin, and Z. Su, “X-Force: Force-executing binaryprograms for security applications,” in The 23rd USENIX Security Symposium (USENIX
Security 14, 2014, pp. 829–844.[57] L.-K. Yan, M. Jayachandra, M. Zhang, and H. Yin, “V2E: Combining hardware virtual-ization and softwareemulation for transparent and extensible malware analysis,” ACM
Sigplan Notices, vol. 47, no. 7, pp. 227–238, 2012.[58] P. Royal, M. Halpin, D. Dagon, R. Edmonds, and W. Lee, “Polyunpack: Automating thehidden-code extraction of unpack-executing malware,” in Computer Security Applica-
tions Conference, 2006. ACSAC’06. 22nd Annual. IEEE, 2006, pp. 289–300.[59] P. Fogla, M. I. Sharif, R. Perdisci, O. M. Kolesnikov, and W. Lee, “Polymorphic blendingattacks,” in USENIX Security, 2006.[60] D. Denning and P. G. Neumann, Requirements and model for IDES-a real-time intrusion-
detection expert system. SRI International, 1985.[61] H. S. Javitz and A. Valdes, “The NIDES statistical component: Descriptionand justification,” Contract, vol. 39, no. 92-C, p. 0015, 1993. [Online]. Available:http://www.csl.sri.com/papers/statreport/[62] K. Ilgun, R. Kemmerer, and P. Porras, “State transition analysis: A rule-based intrusiondetection approach,” IEEE Transactions on Software Engineering, vol. 21, no. 3, pp. 181–199, 1995.[63] V. Paxson, “Bro: a system for detecting network intruders in real-time,” Computer net-

KA Malware and Attack Technologies | October 2019 Page 25

https://www.cybok.org
https://vmpsoft.com
http://www.csl.sri.com/papers/statreport/


The Cyber Security Body Of Knowledge
www.cybok.org

works, vol. 31, no. 23-24, pp. 2435–2463, 1999.[64] G. Gu, R. Perdisci, J. Zhang, and W. Lee, “BotMiner: Clustering analysis of networktraffic for protocol- and structure-independent botnet detection,” in Proceedings of the
17th USENIX Security Symposium (Security’08), 2008.[65] W. Lee, S. J. Stolfo, and K. W. Mok, “A data mining framework for building intrusiondetection models,” in Proceedings of the 1999 IEEE Symposium on Security and Privacy.IEEE, 1999, pp. 120–132.[66] D. Wagner and P. Soto, “Mimicry attacks on host-based intrusion detection systems,”in Proceedings of the 9th ACM Conference on Computer and Communications Security.ACM, 2002, pp. 255–264.[67] R. Perdisci, D. Dagon, W. Lee, P. Fogla, andM. Sharif, “Misleadingworm signature gener-ators using deliberate noise injection,” in 2006 IEEE Symposium on Security and Privacy
(S&P’06). IEEE, 2006, pp. 15–pp.[68] A. Kantchelian, J. D. Tygar, and A. D. Joseph, “Evasion and hardening of tree ensembleclassifiers,” arXiv preprint arXiv:1509.07892, 2015.[69] G. Cleary, M. Corpin, O. Cox, H. Lau, B. Nahorney, D. O’Brien, B. O’Gorman, J.-P. Power,S. Wallace, P. Wood, and C. Wueest, “Internet security threat report,” Symantec, Tech.Rep., 2018.[70] M. Antonakakis, R. Perdisci, D. Dagon, W. Lee, and N. Feamster, “Building a dynamicreputation system for DNS,” in USENIX security symposium, 2010, pp. 273–290.[71] C. Kolbitsch, E. Kirda, and C. Kruegel, “The power of procrastination: detection andmiti-gation of execution-stallingmalicious code,” inProceedings of the 18th ACMconference
on Computer and communications security. ACM, 2011, pp. 285–296.[72] K. Wang and S. J. Stolfo, “Anomalous payload-based network intrusion detection,” in
International Workshop on Recent Advances in Intrusion Detection. Springer, 2004, pp.203–222.[73] P. Szor, The Art of Computer Virus Research and Defense. Symantec Press, 2005, ch.Advanced code evolution techniques and computer virus generator kits.[74] K. Stevens and D. Jackson, “Zeus banking trojan report,” Atlanta: SecureWorks, 2010.[75] N. Falliere and E. Chien, “Zeus: King of the bots,”Symantec, Tech. Rep. Security Response, 2009. [Online]. Avail-able: https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/security-response-zeus-king-of-bots-09-en.pdf[76] B. Krebs, “Feds to charge alleged SpyEye trojan author.” [Online]. Available:https://krebsonsecurity.com/2014/01/feds-to-charge-alleged-spyeye-trojan-author/#more-24554[77] D. Gilbert, “Inside SpyEye: How the russian hacker behindthe billion-dollar malware was taken down,” Oct 2017, interna-tional Business Times. [Online]. Available: https://www.ibtimes.com/inside-spyeye-how-russian-hacker-behind-billion-dollar-malware-was-taken-down-2357477[78] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein, J. Cochran, Z. Durumeric,J. A. Halderman, L. Invernizzi, M. Kallitsis et al., “Understanding the Mirai botnet,” in
USENIX Security Symposium, 2017, pp. 1093–1110.[79] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff, “A sense of self for UNIXprocesses,” in Security and Privacy, 1996. Proceedings., 1996 IEEE Symposium on. IEEE,1996, pp. 120–128.[80] S. Hao, A. Kantchelian, B. Miller, V. Paxson, and N. Feamster, “Predator: proactive recog-nition and elimination of domain abuse at time-of-registration,” in Proceedings of the
2016 ACMSIGSACConference on Computer and Communications Security. ACM, 2016,

KA Malware and Attack Technologies | October 2019 Page 26

https://www.cybok.org
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/security-response-zeus-king-of-bots-09-en.pdf
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/security-response-zeus-king-of-bots-09-en.pdf
https://krebsonsecurity.com/2014/01/feds-to-charge-alleged-spyeye-trojan-author/#more-24554
https://krebsonsecurity.com/2014/01/feds-to-charge-alleged-spyeye-trojan-author/#more-24554
https://www.ibtimes.com/inside-spyeye-how-russian-hacker-behind-billion-dollar-malware-was-taken-down-2357477
https://www.ibtimes.com/inside-spyeye-how-russian-hacker-behind-billion-dollar-malware-was-taken-down-2357477


The Cyber Security Body Of Knowledge
www.cybok.org

pp. 1568–1579.[81] C. Rossow, “Amplification hell: Revisiting network protocols for DDoS abuse.” in NDSS,2014.[82] D. Y. Huang, D. McCoy, M. M. Aliapoulios, V. G. Li, L. Invernizzi, E. Bursztein,K. McRoberts, J. Levin, K. Levchenko, and A. C. Snoeren, “Tracking ransomware end-to-end,” in Tracking Ransomware End-to-end. IEEE Symposium on Security & Privacy,2018.[83] Y. Ji, S. Lee, M. Fazzini, J. Allen, E. Downing, T. Kim, A. Orso, and W. Lee, “Enablingrefinable cross-host attack investigation with efficient data flow tagging and tracking,”in 27th USENIX Security Symposium. USENIX Association, 2018, pp. 1705–1722.[84] G. Gu, P. Porras, V. Yegneswaran, M. Fong, and W. Lee, “BotHunter: Detecting malwareinfection through IDS-driven dialog correlation,” in Proceedings of the 16th USENIX Se-
curity Symposium (Security’07), August 2007.[85] C. Kolbitsch, P. M. Comparetti, C. Kruegel, E. Kirda, X.-y. Zhou, and X. Wang, “Effectiveand Efficient Malware Detection at the End Host,” in USENIX security symposium, 2009,pp. 351–366.[86] M. Antonakakis, R. Perdisci, Y. Nadji, N. Vasiloglou, S. Abu-Nimeh, W. Lee, and D. Dagon,“From throw-away traffic to bots: Detecting the rise of DGA-based malware,” in USENIX
security symposium, vol. 12, 2012.[87] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convo-lutional neural networks,” in Advances in neural information processing systems, 2012,pp. 1097–1105.[88] W. Xu, D. Evans, and Y. Qi, “Feature squeezing: Detecting adversarial examples in deepneural networks,” arXiv preprint arXiv:1704.01155, 2017.[89] M. McCoyd and D. Wagner, “Background class defense against adversarial examples,”in 2018 IEEE Security and Privacy Workshops (SPW). IEEE, 2018, pp. 96–102.[90] Y. Cao and J. Yang, “Towards making systems forget with machine unlearning,” in 2015
IEEE Symposium on Security and Privacy. IEEE, 2015, pp. 463–480.[91] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural networks,” in
IEEE Symposium on Security and Privacy. IEEE, 2017, pp. 39–57.[92] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning toalign and translate,” arXiv preprint arXiv:1409.0473, 2014.[93] W. Guo, D. Mu, J. Xu, P. Su, G. Wang, and X. Xing, “LEMNA: Explaining deep learningbased security applications,” in Proceedings of the 25th ACM Conference on Computer
and Communications Security (CCS ’18), 2018.[94] N. Dalvi, P. Domingos, S. Sanghai, D. Verma, and others, “Adversarial classification,” in
Proceedings of the tenth ACMSIGKDD international conference on Knowledge discovery
and data mining. ACM, 2004, pp. 99–108.[95] R. Jordaney, K. Sharad, S. K. Dash, Z. Wang, D. Papini, I. Nouretdinov, and L. Cavallaro,“Transcend: Detecting concept drift in malware classification models,” in Proceedings
of the 26th USENIX Security Symposium, 2017.[96] Y. Nadji, M. Antonakakis, R. Perdisci, D. Dagon, andW. Lee, “Beheading hydras: Perform-ing effective botnet takedowns,” in Proceedings of the 2013 ACM SIGSAC Conference
on Computer & Communications Security. ACM, 2013, pp. 121–132.[97] C. Rossow, D. Andriesse, T. Werner, B. Stone-Gross, D. Plohmann, C. J. Dietrich, andH. Bos, “SoK: P2PWNED-modeling and evaluating the resilience of peer-to-peer bot-nets,” in IEEE Symposium on Security and Privacy. IEEE, 2013, pp. 97–111.[98] S. Alrwais, X. Liao, X. Mi, P. Wang, X. Wang, F. Qian, R. Beyah, and D. McCoy, “Under theshadow of sunshine: Understanding and detecting bulletproof hosting on legitimate

KA Malware and Attack Technologies | October 2019 Page 27

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

service provider networks,” in IEEE Symposium on Security and Privacy. IEEE, 2017, pp.805–823.[99] S. Alrabaee, P. Shirani, M. Debbabi, and L. Wang, “On the feasibility of malware author-ship attribution,” in International Symposium on Foundations and Practice of Security.Springer, 2016, pp. 256–272.[100] Y. Chen, P. Kintis, M. Antonakakis, Y. Nadji, D. Dagon, W. Lee, and M. Farrell, “Financiallower bounds of online advertising abuse,” in International conference on Detection of
Intrusions and Malware, and Vulnerability Assessment. Springer, 2016, pp. 231–254.[101] Y. Nadji, M. Antonakakis, R. Perdisci, and W. Lee, “Understanding the prevalence anduse of alternative plans in malware with network games,” in Proceedings of the 27th
Annual Computer Security Applications Conference. ACM, 2011, pp. 1–10.[102] M. Konte, N. Feamster, and J. Jung, “Fast flux service networks: Dynamics and roles inhosting online scams,” Georgia Institute of Technology, Tech. Rep., 2008.[103] T. Holz, C. Gorecki, K. Rieck, and F. C. Freiling, “Measuring anddetecting fast-flux servicenetworks.” in NDSS, 2008.[104] FBI New York Field Office, “Operation ghost click: Interna-tional cyber ring that infected millions of computers disman-tled,” April 2012. [Online]. Available: https://www.fbi.gov/news/stories/international-cyber-ring-that-infected-millions-of-computers-dismantled[105] W. Meng, R. Duan, and W. Lee, “DNS changer remediation study,” in M3AAWG 27th Gen-
eral Meeting, 2013.[106] Civil Action No: 1:11cv1O17 (JCC/IDD), Microsoft Corporation v. Dominique Alexander
Piatti, DotfreeGroup SROJohnDoes 1–22, Controlling a computer botnet thereby injuring
Microsoft and its customers. UNITED STATES DISTRICT COURT FOR THE EASTERNDISTRICT OF VIRGINIA, Feb 2013.[107] B. Bartholomew and J. A. Guerrero-Saade, “Wave your false flags!” [Online]. Available:https://securelist.com/wave-your-false-flags/76273/

ACRONYMS
API Application Programing Interface.
APT Advanced Persistent Threat.
AST Abstract Syntax Tree.
AV AntiVirus.
BPH Bullet Proof Hosting.
C&C Command and Control.
CFG Control Flow Graph.
CPU Central Processing Unit.
DBI Dynamic Binary Instrumentation.
DDoS Distributed Denial of Service.
DFS Depth-First Search.

KA Malware and Attack Technologies | October 2019 Page 28

https://www.cybok.org
https://www.fbi.gov/news/stories/international-cyber-ring-that-infected-millions-of-computers-dismantled
https://www.fbi.gov/news/stories/international-cyber-ring-that-infected-millions-of-computers-dismantled
https://securelist.com/wave-your-false-flags/76273/


The Cyber Security Body Of Knowledge
www.cybok.org

DGA Domain-name Generation Algorithm.
DNS Domain Name System.
IDS Intrusion Detection System.
IR Intermediate Representation.
ISP Internet Service Provider.
ML Machine Learning.
OS Operating System.
P2P Peer to Peer.
PDG Program Dependence Graph.
PUP Potentially Unwanted Program.
SMT Satisfiability Modulo Theories.
TCP Transmission Control Protocol.
TLD Top Level Domain.
URL Uniform Resource Locator.
VMI Virtual Machine Inspection.
GLOSSARY
advanced persistent threat An attack to an organization that continues its activities and yetremains undetected for an extended period of time.
.

exploit Software or data that takes advantage of a vulnerability in a system to cause unin-tended consequences. (Source = NCSC Glossary).
indicator of compromise Recognised action, specific, generalized, or theoretical, that an ad-versary might be expected to take in preparation for an attack. (Source = NIST IR 7298).
key-logger A virus or physical device that logs keystrokes to secretly capture private infor-mation such as passwords or credit card details.(Source = BSI Glossary).
macro virus A virus that attaches itself to documents and uses the macro programmingcapabilities of the document’s application to execute and propagate.(Source = NIST IR7298).

KA Malware and Attack Technologies | October 2019 Page 29

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

malware analysis The process of analyzing malware code and understanding its intendedfunctionalities.
malware detection The process of detecting the presence of malware in a system.
metamorphic malware Malware of which each iteration or instance has different code fromthe preceding one. The code changes make it difficult to recognize the different itera-tions are the same malware (contrast with polymorphic malware).
meterpreter A tool that allows an attacker to control a victim’s computer by running an invis-ible shell and establishing a communication channel back to the attacking machine.
packed malware Packed malware is obfuscated malware in which the malicious program iscompressed and cannot be analysed statically.
packing A technique to obfuscate malware (see packed malware).
polymorphic malware Malware that changes each instance to avoid detection. It typicallyhas two parts: the decryptor and the encrypted program body. Each instance can en-crypt the malware program differently and hence has a different decryptor; however,once decrypted, the same malware code is executed. (contrast with metamorphic mal-ware).
polymorphism See polymorphic malware.
potentially unwanted program A program that may not be wanted by a user and is oftendownloaded along with a program that the user wants. Examples include adware, spy-ware, etc.
.

safety In the context of malware analysis, a requirement that malware should be preventedfrom causing damage to the connected systems and networks while it runs in the anal-ysis environment.
sinkholing A technique used by a DNS server to give out false information to prevent the useof a domain name.
spam The abuse of electronic messaging systems to indiscriminately send unsolicited bulkmessages. (Source = NIST IR 7298).
spyware Software that is secretly or surreptitiously installed into an information system togather information on individuals or organizations without their knowledge; a type ofmalicious code. (Source = NIST IR 7298).
trojan A computer program that appears to have a useful function, but also has a hiddenand potentially malicious function that evades security mechanisms, sometimes by ex-ploiting legitimate authorizations of a system entity that invokes the program. (Source= NIST IR 7298).
virus A hidden, self-replicating section of computer software, usually malicious logic, thatpropagates by infecting - i.e., inserting a copy of itself into and becoming part of - an-other program. A virus cannot run by itself; it requires that its host program be run tomake the virus active. (Source = SANS security glossary).

KA Malware and Attack Technologies | October 2019 Page 30

https://www.cybok.org

	1 A taxonomy of Malware
	1.1 Potentially Unwanted Programs (PUPs)

	2 Malicious Activities by Malware
	2.1 The Underground Eco-System

	3 Malware Analysis
	3.1 Analysis Techniques
	3.1.1 Static Analysis
	3.1.2 Dynamic analysis
	3.1.3 Fuzzing
	3.1.4 Symbolic Execution
	3.1.5 Concolic Execution

	3.2 Analysis Environments
	3.2.1 Safety and Live-Environment Requirements
	3.2.2 Virtualised Network Environments

	3.3 Anti-Analysis and Evasion Techniques
	3.3.1 Evading the Analysis Methods
	3.3.2 Identifying the Analysis Environments


	4 Malware Detection
	4.1 Identifying the Presence of Malware
	4.1.1 Finding Malware in a Haystack

	4.2 Detection of Malware Attacks
	4.2.1 Host-based and Network-Based Monitoring
	4.2.2 Machine Learning-Based Security Analytics
	4.2.3 Evasion, Countermeasures, and Limitations


	5 Malware Response
	5.1 Disruption of Malware Operations
	5.1.1 Evasion and Countermeasures

	5.2 Attribution
	5.2.1 Evasion and Countermeasures



