
Operating Systems &
Virtualisation Security
Knowledge Area
Issue 1.0
Herbert Bos Vrije Universiteit Amsterdam

EDITOR
Andrew Martin Oxford University

REVIEWERS
Chris Dalton Hewlett Packard
David Lie University of Toronto
Gernot Heiser University of New South Wales
Mathias Payer École Polytechnique Fédérale de Lausanne

The Cyber Security Body Of Knowledge
www.cybok.org

COPYRIGHT
© Crown Copyright, The National Cyber Security Centre 2019. This information is licensedunder the Open Government Licence v3.0. To view this licence, visit:
http://www.nationalarchives.gov.uk/doc/open-government-licence/

When you use this information under the Open Government Licence, you should include thefollowing attribution: CyBOK © Crown Copyright, The National Cyber Security Centre 2018, li-censed under the OpenGovernment Licence: http://www.nationalarchives.gov.uk/doc/open-
government-licence/.
The CyBOK project would like to understand how the CyBOK is being used and its uptake.The project would like organisations using, or intending to use, CyBOK for the purposes ofeducation, training, course development, professional development etc. to contact it at con-
tact@cybok.org to let the project know how they are using CyBOK.
Issue 1.0 is a stable public release of the Operating Systems & Virtualisation Security Knowl-edge Area. However, it should be noted that a fully-collated CyBOK document which includesall of the Knowledge Areas is anticipated to be released by the end of July 2019. This willlikely include updated page layout and formatting of the individual Knowledge Areas

KA Operating Systems & Virtualisation Security | October 2019 Page 1

https://www.cybok.org
http://www.nationalarchives.gov.uk/doc/open-government-licence/
http://www.nationalarchives.gov.uk/doc/open-government-licence/
http://www.nationalarchives.gov.uk/doc/open-government-licence/
mailto:contact@cybok.org
mailto:contact@cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

INTRODUCTION
In this Knowledge Area, we introduce the principles, primitives and practices for ensuring se-curity at the operating system and hypervisor levels. We shall see that the challenges relatedto operating system security have evolved over the past few decades, even if the principleshave stayed mostly the same. For instance, when few people had their own computers andmost computing was done on multi-user (often mainframe-based) computer systems withlimited connectivity, security wasmostly focused on isolating users or classes of users fromeach other1. Isolation is still a core principle of security today. Even the entities to isolate haveremained, by and large, the same. We will refer to them as security domains. Traditional se-curity domains for operating systems are processes and kernels, and for hypervisors, VirtualMachines (VMs). Although we may have added trusted execution environments and a fewother security domains in recent years, we still have the kernel, user processes and virtualma-chines as themain security domains today. However, the threats have evolved tremendously,and in response, so have the security mechanisms.
As we shall see, some operating systems (e.g., in embedded devices) do not have any notionof security domains whatsoever, but most distinguish between multiple security domainssuch as the kernel, user processes and trusted execution environments. In this KnowledgeArea, we will assume the presence of multiple, mutually non-trusting security domains. Be-tween these security domains, operating systems manage a computer system’s resourcessuch as CPU time (through scheduling), memory (through allocations and address spacemappings) and disk blocks (via file systems and permissions). However, we shall see thatprotecting such traditional, coarse-grained resources is not always enough and it may be nec-essary to explicitly manage the more low-level resources as well. Examples include caches,Transaction Lookaside Buffers (TLBs), and a host of other shared resources. Recall thatSaltzer and Schroeder’s Principle of Least Common Mechanism [1] states that every mecha-nism shared between security domains may become a channel through which sensitive datamay leak. Indeed, all of the above shared resources have served as side channels to leaksensitive information in attack scenarios.
As the most privileged components, operating systems and hypervisors play a critical rolein making systems (in)secure. For brevity, we mainly use the term operating system andprocesses in the remainder of this knowledge area and refer to hypervisors andVMs explicitlywhere the distinction is important2.
While security goes beyond the operating system, the lowest levels of the software stackform the bedrock on which security is built. For instance, the operating system may be capa-ble of executing privileged instructions not available to ordinary user programs and typicallyoffers the means to authenticate users and to isolate the execution and files of differentusers. While it is up to the application to enforce security beyond this point, the operatingsystemguarantees that non-authorised processes cannot access its files, memory, CPU time,or other resources. These security guarantees are limited by what the hardware can do. Forinstance, if a CPU’s Instruction Set Architecture (ISA) does not have a notion of multiple priv-ilege levels or address space isolation to begin with, shielding the security domains from

1A situation, incidentally, that is not unlike that of shared clouds today.2Targeted publications about developments in threats and solutions for virtualised environments have ap-peared elsewhere [2]

KA Operating Systems & Virtualisation Security | October 2019 Page 2

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

each other is difficult—although it may still be possible using language-based protection (asin the experimental Singularity operating system [3]).
The security offered by the operating system is also threatened by attacks that aim to evadethe system’s security mechanisms. For instance, if the operating system is responsible forthe separation between processes and the operating system itself gets compromised, thesecurity guarantees are void. Thus, we additionally require security of the operating system.
After explaining the threat model for operating system security, we proceed by classifyingthe different design choices for the underlying operating system structure (monolithic ver-sus microkernel-based, multi-server versus libraryOS, etc.), which we then discuss in relationto fundamental security principles and models. Next, we discuss the core primitives that op-erating systems use to ensure different security domains are properly isolated and accessto sensitive resources is mediated. Finally, we describe important techniques that operatingsystems employ to harden the system against attacks.
1 ATTACKER MODEL

[4, c1-c9][5, c9][6][2]
We assume that attackers are interested in violating the security guarantees provided by theoperating system or hypervisor: leak confidential data (e.g., crypto keys), modify data thatshould not be accessible (e.g., to elevate privileges) or limit the availability of the systemand its services (e.g., by crashing the system or hogging its resources). In this knowledgearea, we focus on the technical aspects of security, leaving aside insider threats, humanbehaviour, physical attacks, project management, company policies, etc. Not because theyare not important, but because they are beyond OS control and would require a knowledgearea of their own. Table 1 lists some of the threats and attack methods that we do consider.
The simplest way to compromise the system is to inject a malicious extension into the heartof the operating system. For instance, inmonolithic systems such as Linux andWindows, thiscould be a malicious driver or kernel module, perhaps inadvertently loaded as a Trojan, thathas access to all privileged functionality [7]. Tomaintain their hold on the system in a stealthymanner regardless of what the operating system or hypervisor may do, the attackers mayfurther infect the system’s boot process (e.g., by overwriting the master boot record or theUnified Extensible Firmware Interface (UEFI), firmware)—giving the malicious code controlover the boot process on every reboot, even before the operating system runs, allowing it tobypass any and all operating system level defenses [8].
Besides using Trojans, attackers frequently violate the security properties without any helpfrom the user, by exploiting vulnerabilities. In fact, attackers may use a wide repertoire ofmethods. For instance, they commonly abuse vulnerabilities in the software, such asmemoryerrors [6] to change code pointers or data in the operating system and violate its integrity,confidentiality or availability. By corrupting a code pointer, they control where the programresumes execution after the call, jump or return instruction that uses the corrupted codepointer. Changing data or data pointers opens up other possibilities, such as elevating theprivilege level of an unprivileged process to ‘root’ (giving all-powerful ’system’ privileges) ormodifying the page tables to give a process access to arbitrary memory pages. Likewise,they may use such bugs to leak information from the operating system by changing whichor how much data is returned for a system call, or a network request.

KA Operating Systems & Virtualisation Security | October 2019 Page 3

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

Attack Description
Malicious extensions Attacker manages to convince the system to load a malicious driveror kernel module (e.g., as a Trojan).
Bootkit Attacker compromises the boot process to gain control even beforethe operating system gets to run.
Memory errors (software) Spatial and temporalmemory errors allow attackers (local or remote)to divert control flow or leak sensitive information.
Memory corruption (hardware) Vulnerabilities such as Rowhammer in DRAM allow attackers (localor remote) to modify data that they should not be able to access.
Uninitalised data leakage The operating system returns data to user programs that is not prop-erly initialised and may contain sensitive data.
Concurrency bugs and double fetch Example: the operating system uses a value from userspace twice(e.g., a size value is used once to allocate a buffer and later to copyinto that buffer) and the value changes between the two uses.
Side channels (hardware) Attackers use access times of shared resources such as caches andTLBss to detect that another security domain has used the resource,allowing them to leak sensitive data.
Side channels (speculative) Security checks are bypassed in speculative or out-of-order execu-tion and while results are squashed they leave a measurable trace inthe micro-architectural state of the machine.
Side channels (software) Example: when operating systems / hypervisors use features suchas memory deduplication, attackers can measure that another secu-rity domain has the same content.
Resource depletion (DoS) By hogging resources (memory, CPU, buses, etc.), attackers preventother programs frommaking progress, leading to a denial of service.
Deadlocks/hangs (DoS) The attacker brings the system to a state where no progress can bemade for some part of the software, e.g., due to a deadlock (DoS).

Table 1: Known attack methods / threats to security for modern operating systems

KA Operating Systems & Virtualisation Security | October 2019 Page 4

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

Attackers may also abuse vulnerabilities in hardware, such as the Rowhammer bug presentin many DRAM chips [9]. Since bits in memory chips are organised in rows and packed veryclosely together, accessing a bit in one row may cause the neighbouring bit in the adjacentrow to leak a small amount of charge onto its capacitor—even though that bit is in a com-pletely different page in memory. By repeatedly accessing the row at high frequency (‘ham-mering’), the interference accumulates so that, in some cases, the neighbouring bit may flip.We do not know in advance which, if any, of the bits in a row will flip, but once a bit flips, itwill flip again if we repeat the experiment. If attackers succeed in flipping bits in kernel mem-ory, they enable attacks similar to those based on software-based memory corruption. Forinstance, corrupting page tables to gain access to the memory of other domains.
Another class of attacks is that of concurrency bugs and double fetch [10, 11]. The doublefetch is an important problem for an operating system and occurs when it uses a value fromuserspace twice (e.g., a size value is used once to allocate a buffer and later to copy intothat buffer). Security issues such as memory corruption arise if there is a race between theoperating system and the attacker, and the attacker changes the userspace value in betweenthe two accesses andmakes it smaller. It is similar to a TimeOfCheck TimeOf Use (TOCTOU)attack, except that the value modified is used twice.
In addition to direct attacks, adversariesmay use side channels to leak information indirectly,for instance by means of cache sidechannels [12]. There are many variants, but a commonone consists of attackers filling a cache set with their own data or code and then periodicallyaccessing these addresses. If any of the accesses is significantly slower, they will knowthat someone else, presumably the victim, also accessed data/code that falls in the samecache set. Now assume that the victim code calls functions in a secret dependent way. Forinstance, an encryption routine processes a secret key bit by bit and calls function foo if thebit is 0, and bar if it is 1, where foo and bar are in different cache sets. By monitoring whichcache sets are used by the side channel, the attackers quickly learn the key.
Another famous family of hardware side channels abuses speculative and out-of-order execu-tion [13, 14]. For performance, modern CPUsmay execute instructions ahead of time—beforethe preceding instructions have been completed. For instance, while waiting for the conditionof a conditional branch to be resolved, the branch predictor may speculate that the outcomewill be ‘branch taken’ (because that was the outcome for the last n times), and speculativelyexecute the instructions corresponding to the taken branch. If it turns out that it was wrong,the CPU will squash all the results of the speculatively executed instructions, so that none ofthe stores survive in registers or memory. However, there may still be traces of the executionin the micro-architectural state (such as the content of caches, TLBs and branch predictorsthat are not directly visible in the instruction set architecture). For instance, if a speculativeinstruction in a user program reads a sensitive and normally inaccessible byte from memoryin a register and subsequently uses it as an offset in a userspace array, the array element atthat offset will be in the cache, even though the value in the register is squashed as soon asthe CPU discovers that it should not have allowed the access. The attacker can time the ac-cesses to every element in the array and see if one is significantly faster (in the cache). Theoffset of that element will be the secret byte. In other words, the attacker can use a cacheside channel to extract the data that was accessed speculatively.
More recent attacks show that the hardware vulnerabilities related to speculation and out-of-order execution may be more disastrous than we thought. The Foreshadow attack [15]abuses the fact that Intel CPUs read from the Level 1 cache under speculative executionwhenever amemory page ismarked as not present—without properly checking the ownership

KA Operating Systems & Virtualisation Security | October 2019 Page 5

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

of the data at that physical address. Worse, the vulnerability known as Rogue In-Flight Data(RIDL) [16] (that attackers can exploit without privileges, even from JavaScript in browsers)and without caring about addresses, shows that Intel CPUs constantly feed speculativelyexecuting instructions with data from arbitrary security domains all the time, via a variety oftemporary micro-architectural buffers.
Mitigating these attacks require not just changes in the hardware but also deep and oftencomplex involvement of the operating system. For instance, the operating system may needto flush caches and buffers that could leak data, provide guarantees that no speculation takesplace across certain branches, or schedule different security domains on separate cores, etc.
Besides caches, hardware side channels can use all kinds of shared resources, includingTLBs, MMUs, and many other components [17]. Indeed, side channels need not be hardwarerelated at all. For instance, memory deduplication and page caches, both implemented inthe operating system, are well-known sources for side channels. Focusing on the formerfor illustration purposes, consider a system that aggressively deduplicates memory pages:whenever it sees two pages with the same content, it adjusts the virtual memory layout sothat both virtual pages point to the same physical page. This way, it needs to keep only oneof the physical pages to store the content, which it can share in a copy-on-write fashion. Inthat case, a write to that page takes longer (because the operating system must copy thepage again and adjust its page table mappings), which can be measured by an attacker. So,if a write to page takes significantly longer, the attacker knows that some other program alsohas a copy of that content—a side channel that tells the attacker something about a victim’sdata. Researchers have shown that attackers may use such coarse-grained side channels toleak even very fine-grained secrets [18]. In many of the side channels, the issue is a lack ofisolation between security domains in software and in hardware (e.g., there may be no or toolittle isolation during hardware-implemented speculative execution). It is important to realisethat domain isolation issues extend to the hardware/software interface.
For confidentiality in particular, information leaks may be subtle and seemingly innocuous,and still lead to serious security problems. For instance, the physical or even virtual ad-dresses of objects may not look like very sensitive information, until we take into accountcode reuse [19] or Rowhammer [9] attacks that abuse knowledge of the addresses to divertcontrol flow to specific addresses or flip specific bits.
As for the origin of the attacks, they may be launched from local code running natively onthe victim’s machine in user space, (malicious) operating system extensions, scripting codefetched across the network and executed locally (such as JavaScript in a browser), mali-cious peripherals, or even remote systems (where attackers launch their exploit across thenetwork). Clearly, a remote attack is harder to carry out than a local one.
In some cases, we explicitly extend the attacker model to include malicious operating sys-tems or malicious hypervisors as well. These attackers may be relevant in cloud-based sys-tems, where the cloud provider is not trusted, or in cases where the operating system itselfhas been compromised. In these cases, the goal is to protect the sensitive application (or afragment thereof), possibly running in special hardware-protected trusted execution environ-ments or enclaves, from the kernel or hypervisor.
A useful metric for estimating the security of a system is the attack surface [20]—all the differ-ent points that an attacker can reach and get data to or from in order to try and compromisethe system. For instance, for native code running locally, the attack surface includes all thesystem calls the attacker can execute as well as the system call’s arguments and return val-

KA Operating Systems & Virtualisation Security | October 2019 Page 6

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

ues, together with all the code implementing the system calls, which the attacker can reach.For remote attackers, the attack surface includes the network device drivers, part of the net-work stack, and all the application code handling the request. For malicious devices, theattack surface may include all the memory the device may access using DMA or the codeand hardware functions with which the device may interact. Note, however, that the expo-sure of more code to attackers is only a proxy metric, as the quality of the code differs. In anextreme case, the system is formally verified so that a wide range of common vulnerabilitiesare no longer possible.
2 THE ROLE OF OPERATING SYSTEMS AND THEIR DESIGN
IN SECURITY

[5, c1,c7c9][21, c1]
At a high level, operating systems and hypervisors are tasked with managing the resourcesof a computer system to guarantee a foundation on which it is possible to build secure appli-cations with respect to confidentiality, integrity and availability.
The main role of these lowest layers of the software stack with respect to security is to pro-vide isolation of security domains and mediation of all operations that may violate the iso-lation. In the ideal case, the operating system shields any individual process from all otherprocesses. For instance, peripheral processes should not be able to access the memoryallocated to the primary process, learn anything about the activities related to that primaryprocess except those which the process chooses to reveal, or prevent the process from us-ing its allocated resources, such as CPU time indefinitely. Some operating systemsmay evenregulate the information flows such that top secret data can never leak to processes withoutthe appropriate clearance, or classified data cannot be modified by processes without theappropriate privilege levels.
Digging a little deeper, we can distinguish between control and data plane operations andwe see that isolation in operating systems involves both. In memory isolation, the operatingsystems operate at the control plane when it configures the MMU (memory managementunit), which is then responsible for the isolation without much involvement by the operatingsystem. In most other interactions, for instance when operating on arguments of systemcalls provided by unprivileged security domains, an operating systemoperates at both planes.The lack of separation between the planes may easily lead to vulnerabilities—for instance,when the operating system decides to reuse memory pages that previously belonged to onesecurity domain (with access isolation enforced by the MMU) in another domain withoutproperly overwriting the (possibly sensitive) data on that page.
There are many ways to design an operating system. Fig. 1 illustrates four extreme designchoices. In Fig. 1(a), the operating system and the application(s) run in a single securitydomain and there is no isolation whatsoever. Early operating systems worked this way, butso do many embedded systems today. In this case, there is little to no isolation between thedifferent components in the system and an application can corrupt the activities of the FileSystem (FS), the network stack, drivers, or any other component of the system.
Fig. 1(b) shows the configuration of most modern general-purpose operating systems, wheremost of the operating system resides in a single security domain, strictly isolated from theapplications, while each application is also isolated from all other applications. For instance,

KA Operating Systems & Virtualisation Security | October 2019 Page 7

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

this is the structure of Windows Linux, OS X and many of the descendants of the originalUNIX [22]. Since almost every component of the operating system runs in a single securitydomain, themodel is very efficient because the components interact simply by function callsand shared memory. The model is also safe as long as every component is benign. However,if attackers manage to compromise even a single component, such as a driver, all securityis void. In general, device drivers and other operating system extensions (e.g., Linux KernelModules) are important considerations for the security of a system. Often written by thirdparties and more buggy than the core operating system code, extensions running in the sin-gle security domain of the operating system may compromise the security of the systemcompletely.
Interestingly, the boundary between the kernel and other security domains in such systems isoften a bit fuzzier now that operating systems can bypass the kernel for, say, high-speed net-working, or implement non performance critical operating system components as user pro-cesses. Examples include the File System in User Space (FUSE) in UNIX operating systemsand the User Mode Driver Framework (UMDF) in Windows. Even so, most of the operatingsystem functionality still forms a single monolithic security domain.
Fig. 1(c) shows the extreme breakup in separate processes of all the components that makeup the operating system in a multi-server operating system [23, 24]. The configuration is po-tentially less efficient than the previousmodel, because all the interactions between differentcomponents of the operating system involve Inter-Process Communication (IPC). In addition,the operating system functions as a distributed system and anyone who has ever built a dis-tributed system knows how complicated the problems may get. However, the advantage ofa multi-server system is that a compromised driver, say, cannot so easily compromise therest of the system. Also, while from a conceptual perspective, the multi-server looks like adistributed system, a lot of the complexity of a real distributed system is due to unreliablecommunication and this does not exist in multi-server systems. The common view is thatmicrokernel-based multi-server designs have security and reliability advantages over mono-lithic and single-domain designs, but incur somewhat higher overheads—the price of safety.
Finally, Fig. 1(d) shows a situation that, at first glance, resembles that of Fig. 1(a): on top ofa minimal kernel that multiplexes the underlying resources, applications run together with aminimal ‘library operating system’ (libOS [25, 26]). The libOS contains code that is typicallypart of the operating system, but is directly included with the application. This configurationallows applications to tailor the operating system exactly according to their needs and leaveout all the functionality they were not going to use anyway. Library operating systems werefirst proposed in the 1990s (e.g., inMIT’s Exokernel and Cambridge’s Nemesis projects). Afterspending a few years in relative obscurity, they are becoming popular again—especially invirtualised environments where they are commonly referred to as Unikernels [27]. In termsof security, Unikernels are difficult to compare against, say, microkernel-based multi-serversystems. On the one hand, they do not have the extreme separation of operating systemcomponents. On the other, they allow the (library) operating system code to bemuch smallerand less complex—it only has to satisfy the needs of this one application. Moreover, thelibrary cannot compromise isolation: it is part of this application’s trusted computing baseand no other.
The debate about which design is better goes back to the famous flame war between An-drew S. Tanenbaum and Linus Torvalds in 1992. By that time, MINIX [28], a small UNIX-likeoperating system developed by Tanenbaum, had been around for half a decade or so, andwas gaining traction as an education operating system around the world—especially since

KA Operating Systems & Virtualisation Security | October 2019 Page 8

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

Application(s) + OS

(single domain)

FS Network ...

ProcessMgr MemMgr

Hardware

Monolithic OS (Linux, Windows, ...)

(multiple domains)

FS Network ...

ProcessMgr MemMgr

Hardware

Application

 1

Microkernel-based multi-server OS

(many domains)

FS Network ...

Hardware

disk

driver

...

driver

net

driver

disk

driver

...

driver

net

driver

Scheduler

ProcessMgr MemMgr

SchedulerScheduler Application

disk

driver

...

driver

net

driver

Application

 2

Application

 1

Application

 2

(a) (b) (c)

Exokernel/microkernel/hypervisor

(many domains)

Hardware

libOS

App 1

(d)

(just bare

minimum)

libOS

App 2

(just bare

minimum)

libOS

App 3

(just bare

minimum)

Scheduler

Figure 1: Extreme design choices for operating systems: (a) single domain (sometimes usedin embedded systems), (b)monolithicOS (Linux,Windows, andmany others), (c)microkernel-based multi-server OS (e.g., Minix-3) and (d) Unikernel / Library OS
Bell Labs’ original UNIX was sold as a commercial product with a restrictive license prohibit-ing users from modifying it. One of MINIX’s users was Torvalds, then a Finnish student whoannounced a new operating system kernel in a post in the comp.os.minix newsgroup onUsenet. In January 1992, Tanenbaum criticised the design for its lack of portability, and alsotook aim at Linux’s monolithic design, claiming Linux was obsolete from the outset. Torvaldsresponded with his own criticism of MINIX. This heated exchange contained increasingly so-phisticated arguments, many of which still stand today, so much so that the question of whowon the debate remains unanswered.
That said, Linux has become wildly popular and few people would consider it obsolete. It isalso clear that ideas from multi-server systems such as MINIX have been incorporated intoexisting operating systems and hypervisor-based systems. Interestingly, at the time of writ-ing even MINIX itself is running in hundreds of millions of Intel processors as a miniatureoperating system on a separate microprocessor known as the Management Engine. In ad-dition, now that the CPUs in modern systems are increasingly elaborate System on a Chips(SoCs), the hardware itself is starting to look like a distributed system and some researchersexplicitly advocate designing the operating system accordingly, with a focus on messagepassing rather than memory sharing for communication [29].
The situation for virtualised environments, in general, is comparable to that of operating sys-tems. We have already seen that in one extreme case, the entire virtual machine with the ap-plication and a stripped-down operating system can form a single domain. A more commoncase is to have a hypervisor at the lowest level supporting one or more operating systemssuch as Linux orWindows in a virtualmachine. In otherwords, these hypervisors provide eachof the operating systems with the illusion that they run on dedicated hardware. At the otherend of the spectrum, we find the entire system decomposed into separate, relatively small,virtual machines. Indeed, some operating systems, such as QubesOS completely integratethe concepts of virtualisation and operating systems by allowing individual user processesto be isolated in their own virtual machines. Finally, as we have already seen, Unikernels arepopular in virtualised environments, on top of hypervisors.
Incidentally, one of the drawbacks of virtual machines is that each operating system imageuses storage and adds redundancy, as every system will think that it is the king of the hard-ware mountain, while in reality it is sharing resources. Moreover, each operating system in avirtual machine needs separate maintenance: updates, configuration, testing, etc. A popular

KA Operating Systems & Virtualisation Security | October 2019 Page 9

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

alternative is, therefore, to virtualise at the operating system level. In this approach, multipleenvironments, known as containers, run on top of a single shared operating system. The con-tainers are isolated from each other as much as possible and have their own kernel namespaces, resource limits, etc., but ultimately share the underlying operating system kernel, andoften binaries and libraries. Compared to virtual machines, containers are more lightweight.However, if we ignore themanagement aspects for amoment, virtual machines are often per-ceived as more secure than containers, as they partition resources quite strictly and shareonly the hypervisor as a thin layer between the hardware and the software. On the otherhand, some people believe that containers are more secure than virtual machines, becausethey are so lightweight that we can break applications into ‘microservices’ with well-definedinterfaces in containers. Moreover, having fewer things to keep secure reduces the attacksurface overall. Early work on containers (or ‘operating system level virtualisation” is foundin the chroot call that was first added to Version 7 Unix in 1979 [30]. In 2000, FreeBSD re-leased Jails [31], which went much further in operating system virtualisation. Today, we havemany container implementations. A popular one is Docker [32].
A final class of operating systems explicitly targets small and resource constrained devicessuch as those found in the Internet of Things (IoT). While everybody has a different opinionon what IoTmeans and the devices to consider range from smartphones to smart dust, thereis a common understanding that the most resource constrained devices should be part of it.For such devices, even stripped down general-purpose operating systems may be too bulkyand operating systems are expected to operate in just a few kilobytes. As an extreme ex-ample, popular IoT operating systems such as RIOT can be less than 10 KB in size and runon systems ranging from 8-bit microcontrollers to general-purpose 32-bit CPUs, with or with-out advanced features such as Memory Management Units (MMUs), etc. The abundanceof features and application isolation that we demand from operating systems such as Win-dows and Linuxmay be absent in these operating systems, but instead there may be supportfor functionality such as real-time schedule or low-power networking which are important inmany embedded systems.
Since we are interested in the security guarantees offered by the operating system, wewill as-sume that there aremultiple security domains. In the next section, wewill elaborate on the ad-vantages and disadvantages of the different designs from the viewpoint of well-establishedsecurity principles. Our focus will be on the security of the design and the way in which wecan stop attacks, but not before observing that there is more to security at this level. In par-ticular, management and maintainability of the system—with respect to updates, extensions,configuration, etc.—play an important role.
3 OPERATING SYSTEM SECURITY PRINCIPLES AND
MODELS

[5, c9][33, c4,c7][1][34]
Since operating systems (and/or hypervisors) are the foundation upon which rests the secu-rity of all higher-level components in the system, it is common to hear their designs debatedin terms of security principles such as those of Saltzer and Schroeder (see Table 2), and se-curity models such as the Bell-LaPadula [35] and Biba [36] access models—the topic of thenext fewsubsections. While Saltzer andSchroeder’s security principles are arguably themostwell-known, we should mention that others have since added to the list. For instance, impor-

KA Operating Systems & Virtualisation Security | October 2019 Page 10

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

Principle of. . .
Economy of mechanismFail-safe defaultsComplete mediationOpen designSeparation of privilegeLeast privilege / least authorityLeast common mechanismPsychological acceptability

Table 2: Saltzer & Schroeder’s security principles [1].
tant additions that we discuss in this text include the Principle of Minimising the Amount ofTrusted Code (the Trusted Computing Base) and the Principle of Intentional Use [37].
3.1 Security principles in operating systems
From a security perspective, the walls between different security domains should be as highand as thick as possible—perfect isolation. Any interaction between domains should be sub-ject to rigorous mediation, following the Principle of Complete Mediation, and security do-mains should have as few mechanisms (especially those involving a shared state such asglobal variables) in common as possible, adhering to the Principle of Least CommonMecha-nism. For instance, given a choice between adding a shared procedure with global variablesto the operating system kernel and making it available in a user-space library that behaves inan isolated manner for each process, we should choose the latter option, assuming it doesnot increase the code size too much or violate any other principles or constraints. Moreover,mediation should follow the Principle of Fail-Safe Defaults: the policy for deciding whetherdomains can access the resources of other domains should be: ‘No, unless’. In other words,only explicitly authorised domains should have access to a resource. The principles of LeastCommon Mechanism and Economy of Mechanism also suggest that we should minimisethe amount of code that should be trusted, the Trusted Computing Base (TCB). Since studieshave shown that even good programmers introduce between 1 and 6 bugs per 1000 lines ofcode, assuming the complexity of the code is similar, a small TCB translates to fewer bugs,a smaller attack surface and a better chance of automatically or manually verifying the cor-rectness of the TCB with respect to a formal specification.
With respect to the designs in Fig. 1, we note that if there is a single domain, the TCB com-prises all the software in the system, including the applications. All mechanisms are ‘com-mon’ and there is virtually no concept of fail-safe defaults or rigorously enforced mediation.For themonolithic OS design, the situation is a little better, as at least the operating system isshielded from the applications and the applications from each other. However, the operatingsystem itself is still a single security domain, inheriting the disadvantages of Fig. 1(a). Theextreme decomposition of the multi-server operating system is more amenable to enforcingsecurity: we may enforce mediation between individual operating components in a minimal-size microkernel with fail-safe defaults. Much of the code that is in the operating system’ssecurity domain in the other designs, such as driver code, is no longer part of the TCB. Uniker-nels are an interesting alternative approach: in principle, the operating system code and theapplication run in a single domain, but the libOS code is as small as possible (Economy ofMechanism) and the mechanism common to different applications is minimised. Resourcepartitioning can also be mediated completely at the Unikernel level. For a Unikernel applica-

KA Operating Systems & Virtualisation Security | October 2019 Page 11

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

tion, the TCB consists only of the underlying hypervisor/Exokernel and the OS componentsit decides to use. Moreover, the library implementing the OS component is only in this appli-cation’s TCB, as it is not shared by others.
Another principle, that of OpenDesign, is perhapsmore controversial. In particular, there havebeen endless discussions about open source (which is one way to adhere to the principle)versus closed source and their merits and demerits with respect to security. The advantageof an open design is that anybody can study it, increasing the probability of finding bugs ingeneral and vulnerabilities in particular3. A similar observation was made by Auguste Kerck-hoffs about crypto systems and is often translated as that one should not rely on security by
obscurity. After all, the obscurity is unlikely to last forever and when the bad people find avulnerability before the good people do, you may have a real problem. The counter argumentis that with an open design, the probability of them finding the bug is higher.
In contrast, there is little doubt that a design with a strict decomposition is more in line withthe Principle of Least Privilege and the Principle of Privilege Separation than one where mostof the code runs in a single security domain. Specifically, a monolithic system has no trueseparation of privileges of the different operating system components and the operating sys-tem always runs with all privileges. In other words, the operating system code responsiblefor obtaining the process identifier of the current process runs with the power tomodify pagetables, create root accounts, modify any file on disk, read andwrite arbitrary network packets,and crash the entire system at any time it sees fit. Multi-server systems are very different andmay restrict what calls individual operating system components canmake, limiting their pow-ers to just those privileges they need to complete their job, adhering to the Principle Of LeastAuthority (POLA) with different components having different privileges (Principle of PrivilegeSeparation). Unikernels offer a different and interesting possibility for dealing with this prob-lem. While most of the components run in a single domain (no privilege separation or POLA),the operating system is stripped down to just the parts needed to run the application, andthe Unikernel itself could run with just the privileges required for this purpose.
Of course, however important security may be, the Principle of Psychological Acceptabilitysays that in the end the system should still be usable. Given the complexity of operating sys-tem security, this is not trivial. While security hardened operating systems such as SELinuxand QubesOS offer clear security advantages over many other operating systems, few ordi-nary users use them and even fewer feel confident to configure the security settings them-selves.
3.2 Security models in operating systems
An important question in operating systems concerns the flow of information: who can readand write what data? Traditionally, we describe system-wide policies in so-called accesscontrol models.
For instance, the Bell-LaPadula model [35] is a security access model to preserve the con-fidentiality of information, initially created for the US government. In the 1970s, the US mil-itary faced a situation where many users with different clearance levels would all be usingthe same mainframe computers—requiring a solution known as Multi-Level Security. How

3On the other hand, researchers have encountered security bugs that are years or sometimes decades old,even in security critical open source software such asOpenSSL or the Linux kernel, suggesting that the commonbelief that "given enough eyeballs, all bugs are shallow” (also known as Linus’ Law) does not always workflawlessly.

KA Operating Systems & Virtualisation Security | October 2019 Page 12

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

could they ensure that sensitive information would never leak to non-authorised personnel?If it adheres to the model designed by David Bell and Leonard LaPadula, a system can han-dle multiple levels of sensitive information (e.g., unclassified, secret, top secret) and multipleclearance levels (e.g., the clearance to access unclassified and secret, but not top secret data)and keep control over the flow of sensitive information. Bell-LaPadula is often characterisedas ‘read down, write up’. In other words, a subject with clearance level secret may create
secret or top secret documents, but not unclassified ones, as that would risk leaking secretinformation. Likewise, a user can only read documents at their own security level, or belowit. Declassification, or lowering of security levels (e.g., copying data from a top secret to a se-
cret document) can only be done explicitly by special, ‘trusted’ subjects. Strict enforcementof this model prevents the leakage of sensitive information to non-authorised users.
Bell-LaPadula only worries about confidentiality. In contrast, the Bibamodel [36] arranges theaccess mode to ensure data integrity. Just like in Bell-LaPadula, objects and subjects havea number of levels of integrity and the model ensures that subjects at lower levels cannotmodify data at higher levels. This is often characterised as ‘read up, write down’, the exactopposite of Bell-LaPadula.
Bell-LaPadula and Biba are access control models that the operating system applies whenmediating access to resources such as data in memory or files on disk. Specifically, they areMandatory Access Control (MAC) models, where a system-wide policy determines whichusers have the clearance level to read or write which specific documents, and users are notable to make information available to other users without the appropriate clearance level,no matter how convenient it would be. A less strict access control model is known as Dis-cretionary Access Control (DAC), where users with access to an object have some say overwho else has access to it. For instance, DAC may restrict access to objects based on a useror process identity or group membership. More importantly, DAC allows a user or processwith access rights to an object to transfer those rights to other users or processes. Havingonly this group-based DAC makes it hard to control the flow of information in the systemin a structured way. However, it is possible to combine DAC and MAC, by giving users andprograms the freedom to transfer access rights to others, within the constraints imposed byMAC policies.
For completeness, we also mention Role-Based Access Control (RBAC) [38], which restrictsaccess to objects on the basis of roles whichmay be based on job functions. While intuitivelysimple, RBAC allows one to implement both DAC and MAC access control policies.
4 PRIMITIVES FOR ISOLATION AND MEDIATION

[5, c9][39, c1-c9],[34][33, c4,c7][40]
In the 1960s, Multics [41] became the first major operating system designed from the groundup with security in mind. While it never became very popular, many of its security innova-tions can still be found in the most popular operating systems today. Even if some fea-tures were not invented directly by the Multics team, their integration in a single, working,security-oriented OS design was still novel. Multics offered rings of protection, virtual mem-ory, segment-based protection, a hierarchical file system with support for Discretionary Ac-cess Control (DAC) and mandatory access control (MAC). Indeed, in many ways, the manda-tory access control in Multics, added at the request of the military, is a direct software im-plementation of the Bell-LaPadula security model. Finally, Multics made sure that its many

KA Operating Systems & Virtualisation Security | October 2019 Page 13

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

small software components were strongly encapsulated, accessible only via their publishedinterfaces where mediation took place.
If any of this sounds familiar, this is not surprising, as Jerome Saltzer was one of the Multicsteam leaders. The Trusted Computer System Evaluation Criteria (TCSEC), better known asthe famous Orange Book [34], describes requirements for evaluating the security of a com-puter system, and is strongly based on Multics. There is no doubt that Multics was veryadvanced and perhaps ahead even of some modern operating systems, but this was also itsdownfall—the system became so big and so complex that it arguably violated the Principleof Psychological Acceptability for at least some of its developers. Frustrated, Ken Thomsonand Dennis Ritchie decided to write a new andmuch simpler operating system. As a pun andto contrast it with Multics, they called it ‘Unics’, later spelt UNIX. Like all major general pur-pose operating systems in use today, it relied on a small number of core primitives to isolateits different security domains.
So what are these major isolation primitives? First, the operating system has to have someway of authenticating users and security domains so it can decide whether or not they mayaccess certain resources. To isolate the different security domains, the operating systemalso needs support for access control to objects, such as files. In addition, it needs memoryprotection to ensure that a security domain cannot simply read data from another domain’smemory. Finally, it needs a way to distinguish between privileged code and non-privilegedcode, so that only the privileged code can configure the desired isolation at the lowest leveland guarantee mediation for all operations.
4.1 Authentication and identification
Since authentication is the topic of the Authentication, Authorisation & Accountability (AAA)CyBOK Knowledge Area [42], we will just observe that to determine access rights, an oper-ating system needs to authenticate its users and that there are many ways to do so. Tra-ditionally, only usernames and passwords were used for this purpose, but more and moresystems nowadays use other methods (such as smartcards, fingerprints, iris scans, or facerecognition)—either instead of passwords or as an additional factor. Multi-factor authentica-tionmakes it harder for attackers tomasquerade as a legitimate user, especially if the factorsare of a different nature, e.g., something you know (like a password), something you own (likea smartcard), and something you ‘are’ (biometric data such as fingerprints).
For every user thus authenticated, the operating system maintains a unique user id. More-over, it may also keep other information about users such as in which groups they reside(e.g., student, faculty, and/or administrator). Similarly, most operating systems attach someidentity to each of the processes running on behalf of the user and track the ownership andaccess rights of the files they use. For instance, it gives every running process a unique pro-cess id and also registers the id of the users on whose behalf it runs (and thus the groups inwhich the user resides). Finally, it tracks which user owns the executing binary. Note that theuser owning the binary and the user running the binary need not be the same. For instance,the administrator can create and own a collection of system programs that other users mayexecute but not modify.
Incidentally, storing credentials in a secure manner is crucial. Several modern operating sys-tems resort to hardware to protect such sensitive data. For instance, they may use a TrustedPlatform Module (TPM) to ensure credentials such as disk encryption keys are cryptograph-ically sealed, or employ a separate VM for the credential store, so that even a compromised

KA Operating Systems & Virtualisation Security | October 2019 Page 14

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

VM will not get direct access to the credentials.
4.2 Access control lists
Given these identities, the operating system is equipped to reason about which user andwhich process is allowed to perform which operations on a specific object: access control.
When Robert Daley and Peter Neumann first developed the Multics file system, they intro-duced an Access Control List (ACL) for every block of data in the system [41, 43]. Concep-tually, an ACL is a table containing users and data blocks that specifies for each data blockwhich users havewhich kind of access rights. Mostmodern operating systems have adoptedsome variant of ACLs, typically for the file system4. Let us look at an example. OnUNIX-basedsystems [22], the default access control is very simple. Every file is owned by a user and agroup. Moreover, every user can be in one or more groups. For instance, on a Linux system,user herbertb is in nine different groups:
herbertb@nordkapp:~$ groups herbertb
herbertb : herbertb adm cdrom sudo dip plugdev lpadmin sambashare cybok
herbertb@nordkapp:~$

Per file, a small number of permission bits indicates the access rights for the owning user,the owning group, and everyone else. For instance, let us look at the ACL for a file called
myscript on Linux:
herbertb@nordkapp:~/tmp$ getfacl myscript
file: home/herbertb/tmp/myscript
owner: herbertb
group: cybok
user::rwx
group::rwx
other::r-x

We see that myscript is owned by user herbertb and group cybok. The owning user andall users in group cybok have permissions to read, write, and execute the file, while all otherusers can read and execute (but not write) it.
These basic UNIX file permissions are quite simple, but modern systems (such as Linux andWindows) also allow for more extensive ACLs (e.g., with explicit access rights for multipleusers or groups). Whenever someone attempts to read, write or access a file, the operatingsystem verifies whether the appropriate access rights are in the ACL. Moreover, the accesscontrol policy in UNIX is typically discretionary, because the owning user is allowed to setthese rights for others. For instance, on the above Linux system, user herbertb can himselfdecide to make the file myscript writable by all the users (‘chmod o+w myscript’).
Besides DAC, Multics also implemented MAC and, while it took a long time to reach thisstage, this is now also true for many of the operating systems that took their inspiration fromMultics (namely most popular operating systems today). Linux even offers a framework toallow all sorts of access control solutions to be plugged in, by means of so-called ‘referencemonitors’ that vet each attempt to execute a security sensitive operation and, indeed, severalMAC solutions exist. The best known one is probably Security-Enhanced Linux (SELinux [44]),a set of Linux patches for security originally developed by the National Security Agency (NSA)in the US and derived from the Flux Advanced Security Kernel (FLASK) [45].
SELinux gives users andprocesses a context of three strings: (username, role, domain).While the tuple already (correctly) suggests that SELinux also supports RBAC, there is signif-icant flexibility in what to use and what to avoid. For instance, many deployed systems use

4which in most cases also follows the hierarchical design pioneered in Multics.

KA Operating Systems & Virtualisation Security | October 2019 Page 15

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

only the domain string for MAC and set username and role to the same value for all users.Besides processes, resources such as files, network ports, and hardware resources also havesuch SELinux contexts associated with them. Given this configuration, system administra-tors may define system-wide policies for access control on their systems. For instance, theymay define simply which domains a process have to perform specific operations (read, write,execute, connect) on a resource, but policies may also be much more complicated, with mul-tiple levels of security and strict enforcement of information flow a la Bell-LaPadula, Biba, orsome custom access-control model.
Mandatory access control in systems such as SELinux revolves around a single system-widepolicy that is set by a central administrator and does not change. They do not allow untrustedprocesses to define and update their own information control policy. In contrast, researchoperating systems such as Asbestos [46], HiStar [47] and Flume [48] provide exactly that:distributed information flow control. In other words, any process can create security labelsand classify and declassify data.
4.3 Capabilities
So far, we have assumed that access control is implemented by means of an ACL or accessmatrix, where all information is kept to decide whether a process P may access a resourceR.After authenticating the users and/or looking up their roles or clearance levels, the referencemonitor decides whether or not to grant access. However, this is not the only way. A popularalternative is known as capability and, stemming from 1966, is almost as old.
In 1966, Jack Dennis and Earl Van Horn, researchers at MIT, proposed the use of capabili-ties for access control in an operating system [49]. Unlike ACLs, capabilities do not requirea per-object administration with the exact details of who is allowed to perform what opera-tion. Instead, the users present a capability that in itself proves that the requested accessis permitted. According to Dennis and Van Horn, a capability should have a unique identifierof the object to which it pertains, as well as the set of access rights provided by the capa-bility. Most textbooks use the intuitive definition by Henry Levy that a capability is a ‘token,ticket, or key that gives the possessor permission to access an entity or object in a computersystem’ [39]. Possession of the capability grants all the rights specified in it and whenever aprocess wants to perform an operation on an object, it should present the appropriate capa-bility. Conversely, users do not have access to any resources other than the ones for whichthey have capabilities.
Moreover, Peter Neumann argues that the access control should be explicit and adhere to thePrinciple of Intentional Use [37], by explicitly authorising only what is really intended, ratherthan something that is overly broad or merely expedient. Adherence to the principle helps toavoid the accidental or unintended use of rights that may lead to security violations in theform of a ’confused deputy’ (in which a security domain unintentionally exercises a privilegethat it holds legitimately, on behalf of another domain that does not and should not).
Of course, it should be impossible to forge capabilities, lest users give themselves arbitraryaccess to any object they want. Thus, an operating system should either store the capabilityin a safe place (for instance, the kernel), or protect it from forgery using dedicated hardwareor software-based encryption. For instance, in the former case, the operating system maystore a process’ capabilities in a table in protectedmemory, and whenever the process wantsto perform an operation on a file, say, it will provide a reference to the capability (e.g., a filedescriptor) and never touch the capability directly. In the latter case, the capability may be

KA Operating Systems & Virtualisation Security | October 2019 Page 16

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

handled by the process itself, but any attempt to modify it in an inappropriate manner will bedetected [50].
Capabilities are very flexible and allow for convenient delegation policies. For instance, givenfull ownership of a capability, a process may pass it on to another process, to give that pro-cess either the same access rights, or, alternatively, a subset of those rights. Thus, discre-tionary access control is easy. On the other hand, in some situations, it may not be desirableto have capabilities copied and spread arbitrarily. For this reason, most capability-basedsystems add a few bits to the capabilities to indicate such restrictions: whether copying ispermitted, whether the capability’s lifetime should be limited to a procedure invocation, etc.
Comparing ACLs and capabilities, we further observe that ACLs are typically based on users(‘the user with id x is allowed to read and write’), while capabilities can be extremely fine-grained. For instance, we may use different capabilities for sending and receiving data. Fol-lowing the Principle of Least Authority, running every process with the full power of the user,compared to running a process with just the power of the capabilities it acquires, is less se-cure. Running with the authority of the user who started the program, as is often the casein modern operating systems, is known as a form of ambient authority and much more likelyto violate the Principle of Least Authority than fine-grained capabilities that equip a processonly with the privileges it needs. Moreover, capabilities do not even allow a process to namean object unless it has the appropriate capability, while ACLs should permit the naming ofany object by everyone, as the access check only occurs when the process attempts the op-eration. Finally, ACLs may become very large with growing numbers of users, access rights,and objects.
On the other hand, revoking a particular access right for a particular user in an ACL is easy:just remove a permission in the appropriate table entry. With capabilities, the process ismoreinvolved. After all, wemay not even knowwhich users/processes have the capability. Addinga level of indirection may help somewhat. For instance, we could make the capabilities pointto an indirect object, which in turn points to the real object. To invalidate the capability (for allusers/processes) the operating system could then invalidate that indirect object. But what todo if we only want to revoke the capability in a subset of processes? While there are solutions,revocation of capabilities remains the most difficult part.
Since the 1960s, many capability-based systems have appeared—initially all supported inhardware [39] and typically more rigid than the more general capabilities discussed so far.The first was the MIT PDP-1 Timesharing System [51], followed shortly after by the ChicagoMagicNumberMachine at theUniversity of Chicago [52], a very ambitious projectwith hardware-supported capabilities, which, as is not uncommon for ambitious projects, was never com-pleted. However, it did have a great impact on subsequent work, as Maurice Wilkes of theUniversity of Cambridge learned about capabilities during several visits to Chicago andwroteabout it in his book on time-sharing systems. Back in the UK, this book was picked up by anengineer at Plessey which built the fully functional Plessey System 250 (with explicit hard-ware support for capability-based addressing). Maurice Wilkes himself went on to build theCambridge CAP computer together with Roger Needham and David Wheeler [53]. CAP wasthe first computer to demonstrate the use of secure capabilities. This machine ensured thata process could only access a memory segment or other hardware if it possessed the re-quired capabilities. Another noteworthy capability-based system of that time was CMU’sHydra [54]—which added explicit support for restricting the use of capabilities or operationson objects (allowing one to specify, for instance, that capabilities must not survive a proce-dure invocation). Finally, in the 1980s, the Amoeba distributed operating systems explored

KA Operating Systems & Virtualisation Security | October 2019 Page 17

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

the use of cryptographically protected capabilities that could be stored and handled by userprocesses [50].
Nowadays, many major operating systems also have at least some support for capabilities.For instance, the L4 microkernel, which is present in many mobile devices today, embracedcapability-based security in the version by Gernot Heiser’s group at NICTA in 20085. A for-mally verified kernel called seL4 [55] from the same group similarly relies on capabilities foraccess control to resources. In 1997, Linux adopted very limited capability support (some-times referred to as ‘POSIX capabilities’), but this was different from the capabilities definedby Dennis and Van Horn (with less support for copying and transferring capabilities). For in-stance, Linux capabilities refer only to operations, not objects. Recognising that UNIX file de-scriptors andWindows handles are almost capabilities already,an interesting effort to mergecapabilities and UNIX APIs is the Capsicum project [56] by the University of Cambridge andGoogle, where the capabilities are extensions of UNIX file descriptors. FreeBSD adopted Cap-sicum in version 9.0 in 2012. An outgrowth of Capsicum is Capability Hardware EnhancedRISC Instructions (CHERI), a hardware-software project that transposes the Capsicum capa-bility model into the CPU architecture.
4.4 Physical access and secure deletion
It is important to observe that access restrictions at the level of the operating system do notnecessarily translate to the same restrictions at the physical level. For instance, the operat-ing system may ‘delete’ a file simply by removing the corresponding metadata that makes itappear as a file (e.g., when listing the directory), without really removing the content of thefile on disk. Thus, an attacker that reads raw disk blocks with no regard for the file systemmay still be able to access the data.
It turns out that securely deleting data on disk is not trivial. Naive deletion, for instance, byoverwriting the original content with zeros, is not always sufficient. For instance, on somemagnetic disks, data on the disk’s tracks leaves (magnetic) traces in areas close to the tracksand a clever attack with sufficient time and resources may use these to recover the content.Moreover, the operating system may have made copies of the file that are not immediatelyvisible to the user, for instance, as a backup or in a cache. All these copies need to be se-curely deleted. The situation for Solid State Drives (SSDs) is no better, as SSDs have theirown firmware that decides what to (over)write and when, beyond the control of the OS. Formost operating systems, truly secure deletion, in general, is beyond the operating system’scapabilities and we will not discuss it further in this knowledge area, except to say that fulldisk encryption, a common feature of modern operating systems, helps a lot to prevent filerecovery after deletion.

5Other L4 variants, such as the L4 Fiasco kernel from Dresden, also supported capabilities.

KA Operating Systems & Virtualisation Security | October 2019 Page 18

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

9 bits 9 bits 9 bits 9 bits 12 bits

000000011 000000010 000000111 000000110 101101111000

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

66
7

6

Sphysical address

12 bits (�ags)remaining bits

Level 4

Page Table

Level 3

Page Table

Level 2

Page Table

Level 1

Page Table

Page Table Entry:

Virtual address:

register with addr

of top level PT

Figure 2: Address translation in modern processors. TheMMU ‘walks’ the page tables to findthe physical address of the page. Only if a page is ‘mapped’ on a process’ page tables canthe process address it, assuming it is present and the process has the appropriate accessrights. Specifically, a user process cannot access the page for which the supervisor (S) bit isset in the page table entry.
4.5 Memory protection and address spaces
Access control is only meaningful if security domains are otherwise isolated from each other.For this, we need separation of the security domains’ data according to access rights and aprivileged entity that is able to grant or revoke such access rights. Wewill look at the isolationfirst and talk about the privileges later, when we introduce protection rings.
A process should not normally be able to read another process’ data without going throughthe appropriate access control check. Multics and nearly all of the operating systems thatfollowed (such as UNIX and Windows) isolate information in processes by giving each pro-cess (a) its own processor state (registers, program counter etc.) and (b) its own subset ofmemory. Whenever the operating system decides to execute process P2 at the expense ofthe currently running process P1 (a so-called context switch), it first stops P1 and saves allof its processor state in memory in an area inaccessible to other processes. Next, it loads
P2’s processor states from memory into the CPU, adjusts the bookkeeping that determineswhich parts of the physical memory are accessible, and starts executing P2 at the addressindicated by the program counter that it just loaded as part of the processor state. Since userprocesses cannot directly manipulate the bookkeeping themselves, P2 cannot access anyof P1’s data in a non-mediated form.
Most modern operating systems keep track of the memory bookkeeping by means of page
tables, as illustrated in Fig. 2. For each process, they maintain a set of page tables (oftencontaining multiple levels organised as a directed acyclic graph6), and store a pointer to thetop level page table in a register that is part of the processor state and that must be savedand restored on a context switch.

6While it is often helpful to think of page table structures as trees, different branches may point to the sameleave nodes.

KA Operating Systems & Virtualisation Security | October 2019 Page 19

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

The main use for the page table structure is to give every process its own virtual addressspace, ranging fromaddress 0 to somemaximumaddress (e.g., 248), even though the amountof physical memory may be much less [57, 58, 59]. Since two processes may both store dataat address 0x10000, say, but should not be allowed to access each others’ data, there has tobe a mapping from the virtual addresses each process uses to the physical addresses usedby the hardware. It is like a game of basketball, where each side may have a player with thenumber 23, but that number is mapped onto a different physical player for each team.
This is where the page tables comes in. We divide each of the virtual address spaces intofixed size pages and use the page table structure to map the address of the first byte of avirtual page onto a physical address. The processor often uses multiple levels of translation.In the example in Fig. 2, it uses the first nine bits of the virtual address as an index in the toplevel page table (indicated by a control register that is part of the processor state) to find anentry containing the physical address of the next level page table, which is indexed by thenext nine bits, and so on, until we reach the last level page table, which contains the physicaladdress of the physical page that contains the virtual address. The last 12 bits of the virtualaddress are simply the offset in this page and point to the data.
Paging allows the (total) size of the virtual address spaces of the processes to be muchlarger than the physical memory available in the system. First, a process typically does notuse all of its possibly gigantic address space and only virtual pages that are in actual useneed backing by physical pages. Second, if a process needs more memory to store somedata and no physical pages are free at that moment (for instance, because they are alreadyin use by other processes, or they are backing some other virtual pages of this process), theoperating system may swap the content of these pages to disk and then re-use the physicalpage to store the new data.
A key consequence of this organisation is that a process can only access data in memoryif there is a mapping for it in its page tables. Whether this is the case, is controlled by theoperating system, which is, therefore, able to decide exactly what memory should be privateand what memory should be shared and with whom. The protection itself is enforced byspecialised hardware known as the memory management unit (MMU7). If the mapping ofvirtual to physical for a specific address is not in the small but very fast cache known as theTransaction Lookaside Buffer (TLB), the MMU will look for it by walking the page tables andthen triggering an interrupt if the page containing the address is not mapped.
The MMUwill also trigger interrupts if the page is currently not in memory (swapped to disk),or, more relevant to security, if the user does not have the required privilege to access thismemory. Specifically, the last 12 bits of the Page Table Entry (PTE) contain a set of flags andone of these flags, the S bit in Fig. 2, indicates whether this is a page for supervisor code (say,the operating system running at the highest privilege) or for ordinary user processes. We willhave more to say about privileges later.
Page tables are the main way modern operating systems control access to memory. How-ever, some (mostly older) operating systems additionally use another trick: segmentation.Not surprisingly, one of the earliest operating systems using both segmentation and pagingwasMultics [41, 59]. Unlike pages, segments have an arbitrary length and start at an arbitraryaddress. However, both depend on hardware support: an MMU. For instance, processorssuch as Intel’s 32 bits x86 have a set of dedicated registers known as segment selectors:

7As we shall see later, not all processors have a full-fledged MMU but rather a simpler memory protectionunit.

KA Operating Systems & Virtualisation Security | October 2019 Page 20

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

one for code, one for data, etc. Each segment has specific permissions, such as read, write,or execute. Given a virtual address, the MMU uses the current value in the correspondingsegment selector as an index in a so-called descriptor table. The entry in the descriptor tablecontains the start address and length of the segment, as well as protection bits to preventcode without the required privilege level to access it. In case there is only segmentationand no paging, the resulting address is the original virtual address added to the start of thesegment and that will be the physical address, and we are done. However, both the GE-645mainframe computer used for Multics and the more modern x86-32 allow one to combinesegmentation and paging. In that case, the virtual address is first translated into a so-called
linear address using the segment descriptor table and that linear address is then translatedinto a physical address using the page table structure.
This is as complicated as it sounds; none of the popular modern operating systems still usesegmentation. The best known examples of operating systems using segmentation wereOS/2 (an ill-fated collaboration between Microsoft and IBM that started in the mid-1980sand that never caught on) and IBM’s AS/400 (also launched in the 1980s8 and still runninghappily today on a mainframe near you). The Xen hypervisor also used segmentation on 32bit x86, but on 64 bit systems thiswas no longer possible. In fact, the 64-bit version of the Intelx86 no longer even supports full segmentation, although some vestiges of its functionalityremain. On the other hand, complicated multi-level address translation is still quite commonin virtualised environments. Here, the hypervisor tries to give virtual machines the illusionthat they are running all by themselves on real hardware, so the MMU translates a virtualaddress first to what is known as a guest physical address (using page tables). However, thisis not a real physical address yet, as many virtual machinesmay have the same idea of using,say, physical address 0x10000. So, instead, the MMU uses a second translation stage (usingwhat Intel refers to as extended page tables, maintained by the hypervisor) to translate theguest physical address to a host physical address (‘machine address’).
4.6 Modern hardware extensions for memory protection
Also, while segmentation is mostly dead, there are many other forms of hardware supportfor memory protection beyond paging. For instance, many machines have had support forbuffer bounds checking and some date back a quarter of a century or more. To illustratethe corresponding primitives, however, we will look at what is available in modern generalpurpose processors, focusing mostly on the Intel x86 family. The point here is not whetherwe think this processor is more important or even that feature X or Y will be very importantin the future (which is debatable and hard to predict), but rather to illustrate that this is still avery active area for hardware development today.
As a first example, consider the somewhat ill-fated IntelMemoryProtection Extensions (MPX)that enhance Intel’s workhorse processors with functionality to ensure that array pointerscannot stray beyond the array boundaries (stopping vulnerabilities such as buffer overflowsfrom being exploited). For this purpose, a small set of new registers can store the lower andupper bounds of a small number of arrays, while prior to de-referencing the pointer, newMPXinstructions check the value of the array pointer for boundary violations. Even in systems thatuse MPX only in userspace, the operating system plays a role, for instance, to handle the ex-ception that the hardware throws when it encounters a buffer boundary violation. MPX washeavily criticised for having too few of these bounds registers, leading to much performanceoverhead. In addition, MPX does not support multi-threading, which may result in data races

8Or even the 1970s, if you want to count the System/38.

KA Operating Systems & Virtualisation Security | October 2019 Page 21

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

in legacy code. One might say that MPX is a good example of an attempt by a hardwarevendor to add new features for memory safety to their CPUs that is unfortunately not alwayssuccessful.
More recently, Intel added Memory Protection Keys (MPKs) to its processors9. Intel MPKallows one to set four previously unused bits in the PTE (Fig. 2) to one of 16 ‘key’ values.In addition, it adds a new 32-bit register containing 2 bits for each key to indicate whetherreading and writing is allowed for pages tagged with that key. MPK allows developers topartition the memory in a small number (in this case 16) protection domain and, for instance,allow only a specific crypto library to access cryptographic keys. While unprivileged userprocesses may update the value of the register, only privileged operating system code cantag the memory pages with keys.
Some processor designs support even more advanced memory protection in the form ofwhat, using ARM terminology, wewill refer to asmemory tagging extensions (MTE10)[61]. Theidea is simple yet powerful. The processor assigns every aligned chunk of memory (wherea chunk is, say, 16 bytes) a so-called "tag" in hardware. Similarly, every pointer also obtainsa tag. Tags are generally not very large, say 4 bits, so they can be stored in the top-mostbyte of the 64-bit pointer value which we do not really use anyway (in fact, ARM supports a
top-byte-ignore feature that makes the hardware explicitly mask out the top most byte).Whenever the program allocates N bytes of memory, the allocator rounds up the allocationto multiples of 16 bytes and assigns a random tag to it. It also assigns the same tag to thepointer to the memory. From now on, dereferencing the pointer is only permitted if the tag inthe pointer matches that of the memory to which it refers—effectively stopping most spatialand temporal memory errors.
Meanwhile, someprocessors, especially in low-power devices, do not even have a full-fledgedMMU at all. Instead, they have a much simpler Memory Protection Unit (MPU) which servesonly to protect memory, in a way that resembles the MPK functionality discussed above. InMPU designs, the operating systems define a number of memory regions with specific mem-ory access permissions and memory attributes. For instance, the MPU on ARMv8-M proces-sors supports up to 16 regions. Meanwhile, the MPU monitors all the processor’s memoryaccesses (including instruction fetches and data accesses) and triggers an exception ondetecting an access violation.
Note that in the above, we have assumed that the operating system needs protection fromuntrusted user applications. A special situation ariseswhen the operating itself is not trusted.Perhaps you are running a security-sensitive application on a compromisedoperating system,or in the cloud, where you are not sure youwant to trust the cloud provider. In the general case,you may want to protect your data and applications without trusting any other software. Forthis purpose, processors may offer hardware support for running extremely sensitive codein a secure, isolated environment, known as a trusted execution environment in ARM’s ‘Trust-Zone’ or an enclave in Intel’s Software Guard Extension (SGX). They offer slightly differentprimitives. For instance, the code running in an SGX enclave is intended to be a part of anormal user process. The memory it uses is always encrypted as soon as it leaves the pro-cessor. Moreover, SGX offers hardware support to perform attestation, so that a (possiblyremote) party can verify that the code is running in an enclave and that it is the right code.ARM TrustZone, on the other hand, isolates the ‘normal world’ that runs the normal operat-

9Again, Intel was actually late to the party, as similar features existed in a variety of processors since the1960s.10A similar feature on SPARC processors is known as Application Data Integrity (ADI)[60]

KA Operating Systems & Virtualisation Security | October 2019 Page 22

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

ing system and user applications, from a ‘secure world’ that typically runs its own, smalleroperating system as a well as a small number of security sensitive applications. Code in thenormal world can call code in the secure world in a way that resembles the way applicationscall into an operating system. One interesting application of special environments such asARM TrustZone (or Intel’s SMM mode, discussed later) is to use it for runtime monitoringof the integrity of a regular operating system—hopefully detecting whatever stealthy mal-ware or rootkit compromised it before it can do some serious damage. Although aspectsof these trusted environments clearly overlap with operating system security, we considerthem mostly beyond the scope of this knowledge area. We should also note that in recentyears, the security offered by hardware trusted execution environments has been repeatedlypierced by a variety of side channels [15, 16, 62] that leak information from supposedly secureworld.
Switching gears again, it may be the case that the operating system is fine, but the hardwareis not. Malicious or faulty hardware may use the system’s Direct Memory Access (DMA) toread or overwrite sensitive data in memory that should be inaccessible to them. Moreover,with some standards (such as Thunderbolt over USB-C), a computer’s PCIe links may be di-rectly exposed to devices that a user plugs into a computer. Unfortunately for the user, itis hard to be sure that what looks like, say, a display cable or power adapter, does not alsocontain some malicious circuitry designed to compromise the computer [63]. As a partialremedy, most architectures nowadays come with a special MMU for data transferred to andfrom devices. This hardware, called an IOMMU, serves to map device virtual addresses tophysical addresses, mimicking exactly the page-based protection illustrated in Fig. 2, butnow for DMA devices. In other words, devices may access a virtual memory address, whichthe IOMMU translates to an actual physical address, checks for permissions and stops ifthe page is not mapped in for the device, or the protection bits do not match the requestedaccess. While doing so provides some measure of protection against malicious devices (orindeed drivers), it is important to realise that the IOMMU was designed to facilitate virtual-isation and really should not be seen as a proper security solution. There are many thingsthat may go wrong [64]. For instance, perhaps the administrator wants to revoke a device’saccess rights to a memory page. Since updating the IOMMU page tables is a slow operation,it is not uncommon for operating systems to delay this operation and batch it with other op-erations. The result is that there may be a small window of time during which the device stillhas access to the memory page even though it appears that these rights have already beenrevoked.
Finally, we can observe that the increasing number of transistors per surface area enablesa CPU vendor to place more and more hardware extensions onto their chips, and the onesdiscussed above are by no means the only security-related ones in modern processors. Ad-ditional examples include cryptographic units, memory encryption, instructions to switch ex-tended page tables efficiently, and pointer authentication (where the hardware detects mod-ification of pointer values). There is no doubt that more features will emerge in future gener-ations and operating systems will have to adapt in order to use them in a meaningful way. Abroader view of these issues is found in the Hardware Security CyBOK Knowledge Area [65].

KA Operating Systems & Virtualisation Security | October 2019 Page 23

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

4.7 Protection rings
Among themost revolutionary ideas introducedbyMulticswas the notion of protection rings—a hierarchical layering of privilege where the inner ring (ring 0) is the most privileged and theouter ring is the least privileged [41]. Accordingly, untrusted user processes execute in theouter ring, while the trusted and privileged kernel that interacts directly with the hardwareexecutes in ring 0, and the other rings could be used for more or less privileged system pro-cesses.
Protection rings typically assume hardware support, something most general purpose pro-cessors offer today, although the number of rings may differ. For instance, the Honeywell6180 supported as many as eight rings, Intel’s x86 four, ARM v7 three (plus an extra one forTrustZone) and PowerPC two. However, as we shall see, the story becomes slightly confus-ing, because some modern processors have also introduced more and different processormodes. For now, we simply observe that most regular operating systems use only two rings:one for the operating system and one for the user processes.
Whenever less privileged code needs a function that requiresmore privileges, it ‘calls into’ thelower ring to request the execution of this function as a service. Thus, only trusted, privilegedcode may execute the most sensitive instructions or manipulate the most sensitive data.Unless a process with fewer privileges tricks more privileged code into doing something thatit should not be doing (as a confused deputy), the rings provide powerful protection. Theoriginal idea inMulticswas that transitioning between ringswould occur via special call gatesthat enforce strict control andmediation. For instance, the code in the outer ring cannotmakea call to just any instruction in the inner ring, but only to predefined entry points where thecall is first vetted to see if it and its arguments do not violate any security policy.
While processors such as the x86 still support call gates, few operating systems use them,as they are relatively slow. Instead, user processes transition into the operating system ker-nel (a ‘system call’) by executing a software interrupt (a ‘trap’) which the operating systemhandles, or more commonly, by means of a special, highly efficient system call instruction(with names such as SYSCALL, SYSENTER, SVC, SCALL etc., depending on the architecture).Many operating systems place the arguments to the system call in a predefined set of regis-ters. Like the call gates, the traps and system call instructions also ensure that the executioncontinues at a predefined address in the operating system, where the code inspects the ar-guments and then calls the appropriate system call function.
Besides the user process calling into the operating system, most operating systems alsoallow the kernel to call into the user process. For instance, UNIX-based systems support
signals which the operating system uses to notify the user program about ‘something inter-esting’: an error, an expired timer, an interrupt, a message from another process etc. If theuser process registered a handler for the signal, the operating system will stop the currentexecution of the process, storing all its processor states on the process’ stack in a so-calledsignal frame, and continue execution at the signal handler. When the signal handler returns,the process executes a sigreturn system call that makes the operating system take over,restore the processor state that is on the stack and continue executing the process.
The boundary between security domains, such as the operating systemkernel and user spaceprocesses is a good place to check both the system calls themselves and their argumentsfor security violations. For instance, in capability-based operating systems, the kernel will val-idate the capabilities [55], and in operating systems such as MINIX 3 [24], specific processesare only allowed to make specific calls, so that any attempt to make a call that is not on

KA Operating Systems & Virtualisation Security | October 2019 Page 24

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

the pre-approved list is marked as a violation. Likewise, Windows and UNIX-based operatingsystems have to check the arguments of many system calls. Consider, for instance, the com-mon read and write system calls, by which a user requests the reading of data from a fileor socket into a buffer, or the writing of data from a buffer into a file or socket, respectively.Before doing so, the operating system should check if the memory to write from or read intois actually owned by the process.
After executing the system call, the operating system returns control to the process. Herealso, the operating system must take care not to return results that jeopordise the system’ssecurity. For instance, if a process uses the mmap system call to request the operating sys-tem to map more memory into its address space, the operating system should ensure thatthe memory pages it returns no longer contain sensitive data from another process (e.g., byinitialising every byte to zero first [66]).
Zero intialisation problemscanbe very subtle. For instance, compilers often introduce paddingbytes for alignment purposes in data structures. Since these padding bytes are not visibleat the programming language level at all, the compiler may see no reason to zero initialisethem. However, a security violation occurs when the operating system returns such a datastructure in response to a system call and the unitialised padding contains sensitive datafrom the kernel or another process.
Incidentally, even the signalling subsystem in UNIX systems that we mentioned earlier is aninteresting case for security. Recall that the sigreturn takes whatever processor state ison the stack and restores that. Now assume that attackers are able to corrupt the stack ofthe process and store a fake signal frame on the stack. If the attackers are then also able totrigger a sigreturn, they can set the entire processor state (with all the register values) inone fell swoop. Doing so provides a powerful primitive in the hands of a skilled attacker andis known as Sigreturn-Oriented Programming (SROP) [67].
4.8 One ring to rule them all. And another. And another.
As also mentioned earlier, the situation regarding the protection rings is slightly more con-fusing these days, as recent CPUs offer virtualisation instructions for a hypervisor, allowingthem to control the hardware accesses at ring 0. To do so, they have added what, at firstsight, looks like an extra ring at the bottom. Since on x86 processors, the term ‘ring 0’ has be-come synomymouswith ‘operating system kernel’ (and ‘ring ” with ‘user processes’), this newhypervisor ring is commonly referred to as ‘ring –1’. It also indicates that operating systemsin their respective virtual machines can keep executing ring 0 instructions natively. However,strictly speaking, it serves a very different purpose from the original rings, andwhile the namering –1 has stuck, it is perhaps a bit of a misnomer.
For the sake of completeness, we should mention that things may get even more complex,as some modern processors still have other modes. For instance, x86 offers what is knownas System Management Mode (SMM). When a system boots, the firmware is in control ofthe hardware and prepares the system for the operating system to take over. However, whenSMM is enabled, the firmware regains control when a specific interrupt is sent to the CPU. Forinstance, the firmware can indicate that it wants to receive an interrupt whenever the powerbutton is pressed. In that case, the regular execution stops, and the firmware takes over. Itmay, for instance, save the processor state, do whatever it needs to do and then resume theoperating system for an orderly shutdown. In a way, SMM is sometimes seen as a level lowerthan the other rings (ring –2).

KA Operating Systems & Virtualisation Security | October 2019 Page 25

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

Finally, Intel even added a ring –3 in the form of the Intel Management Engine (ME). MEis a completely autonomous system that is now in almost all of Intel’s chipsets; it runs asecret and completely independent firmware on a separate microprocessor and is alwaysactive: during the booting process, while the machine is running, while it is asleep, and evenwhen it is powered off. As long as the computer is connected to power, it is possible tocommunicate with the ME over the network and, say, install updates. While very powerful, itsfunctionality is largely unknown except that it runs its own small operating system11 whichresearcher found contained vulnerabilities. The additional processors that accompany themain CPU (be it the ME or related ones such as Apple’s T2 and Google’s Titan chips) raise aninteresting point: is the operating system running on the main CPU even capable of meetingtoday’s security requirements? At least, the trend appears to augment it with special-purposesystems (hardware and software) for security.
4.9 Low-end devices and the IoT
Many of the features described above are found, oneway or another, inmost general-purposeprocessor architectures. However, this is not necessarily true in the IoT, or embedded sys-tems in general, and tailored operating systems are commonly used [68]. Simple microcon-trollers typically have no MMUs, and sometimes not even MPUs, protection rings, or any ofthe advanced features we rely on in common operating systems. The systems are generallysmall (reducing attack surface) and the applications trusted (and possibly verified). Never-theless, the embedded nature of the devicesmakes it hard to check or even test their securityand, wherever they play a role in security sensitive activities, security by means of isolation/-containment and mediation should be enforced externally, by the environment. Wider IoTissues are addressed in the Cyber-Physical Systems Security CyBOK Knowledge Area [69].
5 OPERATING SYSTEM HARDENING

[19, 33, 70, 71]
The best way to secure operating systems and virtual machines is to have no vulnerabilitiesat all: security by design. For instance, we can use formal verification to ensure that cer-tain classes of bugs cannot be present in the software or hardware, and that the system isfunctionally correct [55]. Scaling the verification to very large systems is still challenging, butthe field is advancing rapidly and we have now reached the stage that important componentssuch as amicrokernel, file systems and compilers have been verified against a formal specifi-cation. Moreover, it is not necessary to verify all the components of a system: guaranteetingisolation simply requires a verified microkernel/hypervisor and a few more verified compo-nents. Verification of other components may be desirable, but is not essential for isolation.Of course, the verification itself is only as good as the underlying specification. If you get thatwrong, it does not matter if you have verified it, you may still be vulnerable.
Despite our best efforts, however, we have not been able to eradicate all security bugs fromlarge, real-world systems. To guard themselves against the types of attacks described in thethreats model, modern operating systems employ a variety of solutions to complement theabove isolation and mediation primitives. We distinguish between five different classes ofprotection: information hiding, control flow restrictions, partitioning, code and data integritychecks, and anomaly detection.

11Version 11 of the ME, at the time of writing, is based on MINIX-3.

KA Operating Systems & Virtualisation Security | October 2019 Page 26

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

5.1 Information hiding
One of the main lines of defense in most current operating systems consists of hiding what-ever the attackers may be interested in. Specifically, by randomising the location of all rel-evant memory areas (in code, heap, global data and stack), attackers will not know whereto divert the control flow, nor will they be able to spot which addresses contain sensitivedata, etc. The term Address Space Layout Randomization (ASLR) was coined around the re-lease of the PaX security patch, which implemented this randomisation for the Linux kernelin 2001 [72]—see also the discussion in the Software Security CyBOK Knowledge Area [73].Soon, similar efforts appeared in other operating systems and the firstmainstream operatingsystems to haveASLR enabled by default wereOpenBSD in 2003 and Linux in 2005. WindowsandMacOS followed in 2007. However, these early implementations only randomised the ad-dress space in user programs and randomisation did not reach the kernel of major operatingsystems, under the name of Kernel ASLR (KASLR), until approximately a decade after it wasenabled by default in user programs.
The idea of KASLR is simple, but there are many non-trivial design decisions to make. For in-stance, how random is random? In particular, what portion of the address do we randomise?Say your Linux kernel has an address range of 1GB (=230) for the code, and the code shouldbe aligned to 2MB (=221) boundaries. The number of bits available for randomisation (the
entropy) is 30 − 21 = 9 bits. In other words, we need at most 512 guesses to find the kernelcode. If attackers find a vulnerability to divert the kernel’s control flow to a guessed addressfrom a userspace program and each wrong guess leads to a system crash, it would sufficeto have userspace access to a few hundred machines to get it right at least once with highprobability (although many machines will crash in the process).
Another important decision iswhat to randomise. Most implementations today employ coarse-grained randomisation: they randomise the base location of the code, heap or stack, butwithin each of these areas, each element is at a fixed offset from the base. This is simpleand very fast. However, once attackers manage to get hold of even a single code pointer viaan information leak, they know the addresses for every instruction. The same is true,mutatis
mutandis, for the heap, stack etc. It is no surprise that these information leaks are highlyvalued targets for attackers today.
Finer-grained randomisation is also possible. For instance, it is possible to randomise atthe page level or the function level. If we shuffle the order of functions in a memory area,even knowing the base of the kernel code is not sufficient for an attacker. Indeed, we can gomore fine-grained still, and shuffle basic blocks, instructions (possibly with junk instructionsthat never execute or have no effect) or even the register allocations. Many fine-grainedrandomisation techniques come at the cost of space and time overheads, for instance, dueto reduced locality and fragmentation.
Besides the code, fine-grained randomisation is also possible for data. For instance, researchhas shown that heap allocations, globals and even variables on the stack can be scatteredaround memory. Of course, doing so will incur a cost in terms of performance and memory.
Considering KASLR, and especially coarse-grained KASLR, as our first line of defense againstmemory error exploits would not be far off the mark. Unfortunately, it is also a very weak de-fense. Numerous publications have shown that KASLR can be broken fairly easily, by leakingdata and/or code pointers from memory, side channels, etc.

KA Operating Systems & Virtualisation Security | October 2019 Page 27

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

5.2 Control-flow restrictions
An orthogonal line of defense is to regulate the operating system’s control flow. By ensuringthat attackers cannot divert control to code of their choosing, we make it much harder toexploitmemory errors, even if we do not remove them. The best example is known as Control-Flow Integrity (CFI) [71], which is now supported by many compiler toolchains (such as LLVMand Microsoft’s Visual Studio) and incorporated in the Windows kernel under the name ofControl Flow Guard as of 2017 — see also the Software Security CyBOK Knowledge Area [73].
Conceptually, CFI is really simple: we ensure that the control flow in the code always followsthe static control flow graph. For instance, a function’s return instruction should only beallowed to return to its callsite, and an indirect call using a function pointer in C, or a virtualfunction in C++, should only be able to target the entry point of the legitimate functions thatit should be able to call. To implement this protection, we can label all the legitimate targetsfor an indirect control transfer instruction (returns, indirect calls and indirect jumps) and addthese labels to a set that is specific for this instruction. At runtime, we check whether thecontrol transfer the instruction is about to make is to a target that is in the set. If not, CFIraises an alarm and/or crashes the program.
Like ASLR, CFI comes inmany flavours, fromcoarse-grained to fine-grained, and fromcontextsensitive to context insensitive. And just like in ASLR, most implementations today employonly the simplest, most coarse-grained protection. Coarse-grained CFI means relaxing therules a little, in the interest of performance. For instance, rather than restricting a function’sreturn instruction to target-only legitimate call sites that could have called this function, itmaytarget any call site. While less secure than fine-grained CFI [74], it still restricts the attackers’wiggle room tremendously, and has a much faster runtime check.
On modern machines, some forms of CFI are (or will be) even supported by hardware. Forinstance, Intel Control-Flow Enforcement Technology (CET) supports shadow stacks and in-direct branch tracking to help enforce the integrity of returns and forward-edge control trans-fers (in a very coarse-grained way), respectively. Not to be outdone, ARM provides pointerauthentication to prevent illegitimate modification of pointer values—essentially by using theupper bits of a pointer to store a Pointer Authentication Code (PAC), which functions like acryptographic signature on the pointer value (and unless you get the PAC right, your pointeris not valid).
Unfortunately, CFI only helps against attacks that change the control flow—by corruptingcontrol data such as return addresses, function pointers and jump targets—but is powerlessagainst non-control data attacks. For instance, it cannot stop a memory corruption that over-writes the privilege level of the current process and sets it to ‘root’ (e.g., by setting the effectiveuser id to that of the root user). However, if restrictions on the control flow are such a suc-cess in practice, youmay wonder if similar restrictions are also possible on data flow. Indeedthey are, which is called Data-Flow Integrity (DFI) [75]. In DFI, we determine statically for eachload instruction (i.e., an instruction that reads from memory) which store instructions maylegitimately have produced the data, and we label these instructions and save these labelsin a set. At runtime we remember, for each byte in memory, the label of the last store to thatlocation. When we encounter a load instruction, we check if the last store to that addressis in the set of legitimate stores, and if not, we raise an alarm. Unlike CFI, DFI has not beenwidely adopted in practice, presumably because of the significant performance overheads.

KA Operating Systems & Virtualisation Security | October 2019 Page 28

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

5.3 Partitioning.
Besides the structural decomposition of a system in different security domains (e.g, intoprocesses and the kernel) protected by isolation primitives with or without hardware support,there are many additional techniques that operating systems employ to make it harder forattackers to compromise the TCB. In this section, we discuss the most prominent ones.
W⊕X memory. To prevent code injection attacks, whereby the attackers transfer control toa sequence of instructions they have stored in memory areas that are not meant to containcode such as the stack or the heap, operating systems today draw a hard line between codeand data [70]. Every page of memory is either executable (code pages) or writable, but notboth at the same time. The policy, frequently referred to asW⊕X (‘write xor execute’), preventsthe execution of instructions in the data area, but also themodification of existing code. In theabsence of code injection, attackers interested in diverting the control flowof the programareforced to reuse code that is already present. Similar mechanisms are used to make sensitivedata in the kernel (such as the system call table, the interrupt vector table, etc.) read-onlyafter initialisation. All major operating systems support this mechanism, typically relyingon hardware support (the NX bit in modern processors12)—even if the details differ slightly,and the name may vary from operating system to operating system. For instance, Microsoftrefers to its implementation by the name Data Execution Prevention (DEP). Preventing the
kernel fromaccessing userspace. Wehave already seen that operating systemsuse theCPU’sprotection rings to ensure that user processes cannot access arbitrary data or execute codein the operating system, in accordance with the security principles by Saltzer & Schroeder,which prescribe that all such accesses be mediated. However, sometimes we also need toprotect the other direction and prevent the kernel fromblindly accessing (orworse, executing)things in userspace.
To see why this may be bad, consider an operating system where the kernel is mapped intoevery process’ address space and whenever it executes a system call, it executes the kernelcode using the process’ page tables. This is how Linux worked from its inception in 1991 untilDecember 2017. The reason is that doing so is efficient, as there is no need to switch pagetables when executing a system call, while the kernel can efficiently access all the memory.Also since the kernel pages have the supervisor (S) bit set, there is no risk that the userprocess will access the kernel memory. However, suppose the kernel has a bug that causesit to de-reference a function pointer that under specific circumstances happens to be NULL.The most likely thing to happen is that the kernel crashes. After all, the kernel is trying toexecute code on a page that is not valid. But what if a malicious process deliberately maps apage at address 0, and fills it with code that changes the privileges of the current process tothat of root? In that case, the kernel will execute the code, with kernel privileges. This is bad.
It should now be clear that the kernel should probably not blindly execute process code. Norshould it read blindly from user data. After all, an attacker could use it to feed malicious datato the kernel instructions. To prevent such accesses, we need even more isolation than thatprovided by the default rings. For this reason, many CPUs today provide Supervisor ModeExecution Protection (SMEP) and Supervisor Mode Access Protection (SMAP)13. SMEP andSMAP are enabled by setting the appropriate bits in a control register. As soon as they areon, any attempt to access or transfer control to user memory will result in a page fault. Of

12NX (no execute) is how AMD originally called the feature in its x86 compatible CPUs. Intel calls it ExecuteDisable (XD) and ARM Execute Never (XN).13Again, this is x86 terminology. On ARM similar features are called Privileged Access Never (PAN) andPrivileged Execute Never (PXN).

KA Operating Systems & Virtualisation Security | October 2019 Page 29

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

course, this also means that SMAP should be turned off explicitly whenever the kernel needsto access user memory.
Some operating systems, including Linux, got SMEP-like restrictions ‘for free’ on systems vul-nerable to the Meltdown vulnerability in 2017 [13], which forced them to adopt an alternativedesign, which came with a price tag. In particular, they were forced to abandon the singleaddress space (where the kernel executes in the address space of the process), because ofthe Meltdown out-of-order execution side channel from Table 1. To recap, the Meltdown (andrelated Spectre) attacks consist of attackers abusing the CPU’s (over-)optimism about whathappens in the instructions it executes out-of-order or speculatively. For instance, it wronglyassumes that load instructions have the privilege to read the data they access, the outcomeof a branch is the same as the previous time a branch at a similar address was executed, orthe data needed for a load instruction is probably the data in this temporary CPU buffer thatwas just written. However, even if any of these assumptions are wrong, the CPU can recoverby squashing the results of the code that was executed out-of-order or speculatively.
In a Meltdown-like attack, the attackers’ process executes an out-of-order instruction to reada byte at a (supposedly inaccessible) kernel address, and the CPU optimistically assumesall is well and simply accesses the byte. Before the CPU realises things are not well afterall and this byte should not be accessible, the attackers have already used the byte to read aparticular element in a large array in their own process’ address space . Although the CPUwilleventually squash all the results, the damage is already done: even though the byte cannot beread directly, the index of the array element that is in the cache (and is, therefore, measurablyfaster to access than the other elements) must be the kernel byte.
To remedy this problem on somewhat older processors that do not have a hardware fix forthis vulnerability, operating systems such as Linux use a design that completely separatesthe page tables of the kernel from those of the processes. In other words, the kernel alsoruns in its own address space, and any attempt by an out-of-order instruction to read a kerneladdress will fail. The kernel can still map in the pages of the user process and thus accessthem if needed, but the permissions can be different. Specifically, if they are mapped in asnon-executable, we basically get SMEP functionality for free.
For other vulnerabilities based on speculative execution (such as Spectre and RIDL), the fix ismore problematic. Often, multiple different spot solutions are used to patch themost seriousissues. For instance, after a bounds check that could be influenced by untrusted users, wemay want to insert special instructions to stop speculation completely. Likewise, operatingsystems such asWindows try to "gang schedule" only code that belongs to the same securitydomain on the same core (so that leaking from on thread to another on the same core isless of an issue), while others such as OpenBSD disable hyperthreading altogether on Intelprocessors. However, it is unclear how complete the set of patches will be, while we arewaiting for the hardware to be fixed.
Partitioningmicro-architectural states Sophisticated side channel attacks build on the aggres-sive resource sharing in modern computer systems. Multiple security domains share thesame cache, the same TLB, the same branch predictor state, the same arithmetic units, etc.Sharing is good for efficiency, but, as indicated by the Principle of Least Common Mecha-nism, they also give rise to side channels. To prevent such attacks, operating systems mayneed to sacrifice some of the efficiency and partition resources even at fine granularity. Forinstance, by means of page colouring in software or hardware-based cache allocation tech-nology, an operating system may give different processes access to wholly disjointed por-tions of the cache (e.g., separating the cache sets or separating the ways within a cache

KA Operating Systems & Virtualisation Security | October 2019 Page 30

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

set). Unfortunately, partitioning is not always straightforward and currently not supportedfor many low-level resources.
5.4 Code and data integrity checks
One way to reduce the exploitability of code in an operating system, is to ensure that thecode and/or data is unmodified and provided by a trusted vendor. For instance, for manyyears Windows has embraced driver signing. Some newer versions have taken this a stepfurther and use a combination of hardware and software security features to lock a machinedown, ensuring that it runs only trusted code/apps—a process referred to by Microsoft as‘Device Guard’. Even privileged malware cannot easily get non-authorised apps to run, as themachinery to check whether to allow an app to run sits in a hardware-assisted virtualisedenvironment. Most code signing solutions associate digital signatures associated with theoperating systemextensions allow the operating system to checkwhether the code’s integrityis intact and the vendor is legitimate. A similar process is popularly used for updates.
However, what about the code that checks the signature and, indeed, the operating systemitself—are we sure that this has not been tampered with by a malicious bootkit? Ensuring theintegrity of the system software that is loaded during the booting involves a number of steps,mostly related to the multiple steps in the boot process itself. From the earliest commercialcomputers onward, booting involved multiple stages. Even the IBM 701, a popular computerin the early 1950s with as many as 19 installations, already had such a multi-stage bootingprocedure that started with pressing a special ‘Load’ button tomake the system load a single36-bit word from, typically, a punched card. It would execute (part of) this word to load evenmore instructions, and then start executing these instructions as the "boot program".
In general, securely booting devices starts with an initial ‘root of trust’ which initiates thebooting process and is typically based in hardware, for instance, a microcontroller that startsexecuting software from internal, immutable memory, or from internal flash memory thatcannot be reprogrammed at all, or only with strict authentication and authorisation checks.As an example, modern Apple computers use a separate processor, the T2 Security Chip,to provide the hardware root of trust for secure boot among other things, while Google hasalso developed a custom processor for this called the Titan. We will now discuss how ahardware-root of trust helps to verify that a system booted securely.
Booting general-purpose computers typically starts with the firmware which initiates a se-quence of stages that ends with a fully booted system. For instance, the firmware may loada special bootloader programwhich then loads the operating system kernel which in turnmayload additional boot drivers until finally the operating system is fully initialised and ready tointeract with the user or applications. All of these stages need protection. For instance,theUnified Extensible Firmware Interface (UEFI) can protect the first stage (i.e., verify the integrityof the bootloader), by means of Secure Boot. Secure boot verifies whether the boot loaderswere signed with the appropriate key, i.e., using keys that agree with the key information thatis stored in the firmware. This will prevent loaders and drivers without the appropriate signa-tures from gaining control of the system. The bootloader can now verify the digital signatureof the operating system kernel before loading it. Next, the kernel verifies all other compo-nents of the operating system (such as boot drivers and possibly integrated anti-malwaresoftware) before starting them. By starting the anti-malware program before other drivers, itcan subsequently check all these later components, and extend the chain of trust to a fullyinitialised operating system.

KA Operating Systems & Virtualisation Security | October 2019 Page 31

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

The next problem is: how do we know that this is the case? In other words, how do weknow that the system really did boot securely and we can trust whatever is displayed on thescreen? The trick here is to use attestation, whereby a (remote) party can detect any changesthat have beenmade to our system. Remote attestation typically uses special hardware suchas a Trusted Platform Module (TPM) that serves as a root of trust and consists of verifying,in steps, whether the system was loaded with the ‘right’ kind of software. In particular, aTPM is a cryptograhic hardware module that supports a range of cryptographic functions,key generation and management, secure storage (e.g., for keys and other security-sensitiveinformation), and importantly, integrity measurements. See the Hardware Security CyBOKKnowledge Area [65] for further discussion.
For the integrity measurements, TPMs have a set of Platform Configuration Registers calledPCR-0, PCR-1, . . . , that are set to a known value on every boot. These registers are not forwriting to directly, but rather for extending. So, if the current value of the PCR-0 register is Xand we want to extend it with Y , the TPM calculates hash(X, Y) and stores the outcome inPCR-0. Now, if we want to extend it further, say with Z , the TPM again calculates the hash of
Z and the value currently in PCR-0 and stores the outcome in PCR-0. In other words, it willcalculate hash(Z, hash(X, Y)). We can now extend this further and create an arbitrarily long“hash chain".
The values in the PCRs can serve as evidence that the system is in a trustworthy state. Specif-ically, the first code that executes when you boot your system is firmware boot code that issometimes referred to as the Core Root of Trust for Measurements (CRTM) or BIOS bootblock. This code will ‘measure’ the full firmware by generating a hash of its content whichit sends to the TPM to extend PCR-0, before it starts executing it. Next, the firmware thatis now executing will measure the next component of the boot process and again store thevalue in a PCR of the TPM (e.g., by extending PCR-0), before executing it. After a number ofthese stages, the PCR register(s) contain a hash chain of all steps that the system took toboot. A remote party can now verify whether the system booted securely by asking the TPMfor a ‘quote’: a report of a set of PCR values currently in PCRs (together with a nonce suppliedby the remote party), that is signed with the TPM’s private Attestation Identity Key that neverleaves the TPM (and derives from a hardcoded key that was created at manufacturing time).As the public key is well-known, anyone can verify that the quote came from the TPM. Uponreceiving the quote and after verifying that it came from the TPM and that it was fresh, theremote party knows that the booting process could only have followed the steps that createdthese hashes in the PCRs. If they correspond to the hashes of known and trusted code, theremote party knows that the system booted securely.
Code and data integrity checking may well continue at runtime. For instance, the hypervisormay provide functionality to perform introspection of its virtual machines: is the code stillthe same, do the data structures still make sense? This technique is known as Virtual Ma-chine Introspection (VMI). The VMI functionality may reside in the hypervisor itself, althoughit could be in a separate application. Besides the code, common things to check in VMI solu-tions include the process list (is any rootkit trying to hide?), the system call table (is anybodyhijacking specific system calls?), the interrupt vector table, etc.

KA Operating Systems & Virtualisation Security | October 2019 Page 32

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

5.5 Anomaly detection
A monitor, be it in the hypervisor or in the operating system, can also be used to monitorthe system for unusual events—anomaly detection [76]. For instance, a system that crasheshundreds of times in a row could be under attack by someone who is trying to break thesystem’s address space layout randomisation. Of course, there is no hard evidence and justbecause an anomaly occurred does not mean there is an attack. Anomaly detection systemsmust strike a balance between raising too many false alarms, which are costly to process,and raising too few, which means it missed an actual attack.
6 OPERATING SYSTEMS, HYPERVISORS—WHAT ABOUT
RELATED AREAS?

[33, c4,c7]
The problems that we encounter at the operating system and hypervisor levels resurfacein other systems areas and the solutions are sometimes similar. In this section, we brieflydiscuss databases as an example of how operating system security principles, issues andsolutions are applied to other domains [77]. Security in database systems follows similar prin-ciples as those in operating systemswith authentication, privileges, access control and so onas prime concerns. The same is true for access control, where many databases offer discre-tionary access control by default, and role-based and mandatory access control for strictercontrol to more sensitive data. Representing each user as a security domain, the questionswe need to answer concern, for instance, the user’s privileges, the operations that should belogged for auditing, and the resource limits such as disk quota, CPU processing time, etc. Auser’s privileges consist of the right to connect to the database, create tables, insert rowsin tables, or retrieve information from other users’ tables, and so on. Note that sometimesusers who do not have access to a database except by means of a specific SQL query maycraft malicious inputs to elevate their privileges in so-called SQL injection attacks [78].
While database-level access control limits who gets access to which elements of a database,it does not prevent accesses at the operating system level to the data on disk. For this reason,many databases support transparent data encryption of sensitive table columns on disk—often storing the encryption keys in a module outside the database. In an extreme case, thedata in the database may be encrypted while only the clients hold the keys.
Querying such encrypted data is not trivial [79]. While sophisticated cryptographic solutions(such as homomorphic encryption) exist, they are quite expensive and simpler solutions arecommonly used. For instance, sometimes it is sufficient to store the hash of a credit cardnumber, say, instead of the actual number and then query the database for the hash. Ofcourse, in that case, only exact matches are possible—as we cannot query to see if thevalue in the database is greater than, smaller than, or similar to some other value (nor areaggregated values such as averages or sums possible). The problem of querying encrypteddatabases is an active field of research and beyond the scope of this Knowledge Area.
While security and access control in regular databases is non-trivial already, things get evenmore complex in the case of Outsourced Databases (ODBs), where organisations outsourcetheir data management to external service providers [80]. Specifically, the data owner cre-ates and updates the data at an external database provider, which then deals with the client’squeries. In addition to our earlier concerns about confidentiality and encryption, questions

KA Operating Systems & Virtualisation Security | October 2019 Page 33

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

that arise concern the amount of trust to place in the provider. Can the data owner or thequerying client trust the provider to provide data that was created by the original data owner(authenticity), unmodified (integrity), and fresh results to the queries? Conceptually, it is pos-sible to guarantee integrity and authenticity by means of signatures. For instance, the dataowner may sign entire tables, rows/records in a table, or even individual attributes in a row,depending on the desired granularity and overhead. More advanced solutions based on au-thenticated data structures are also commonly advocated, such as Merkle hash trees. InMerkle hash trees, originally used to distribute authenticated public keys, leaf nodes in thetree contain a hash of their data value (the database record), each non-leaf node contains ahash of the hashes of its children, and the root node’s hash is signed and published. All thatis needed to verify if a value in a leaf node is indeed part of the original signed hash tree is thehashes of the intermediate nodes, which the client can quickly verify with a number of hashesproportional to the logarithm of the size of the tree. Of course, range queries and aggregationaremore involved and researchers have proposedmuchmore complex schemes thanMerklehash trees, but these are beyond the scope of this knowledge area. The take-away messageis that with some effort we can guarantee authenticity, integrity and freshness, even in ODBs.
7 EMBRACING SECURITY

[5, c9][33, c1-c21]
Increasingly advanced attacks are leading to increasingly advanced defenses. Interestingly,many of these innovations in security do not originally come from the operating system ven-dors or large open source kernel teams, but rather ‘from the outside’—sometimes academicresearchers, but in the case of operating systemsecurity, also often from independent groupssuch as GRSecurity and the PaX Team. For instance, the PaX Team introduced ASLR as earlyas 2001, played a pioneering role in making data areas non-executable and executable sec-tions non-writable, as well as in ensuring the kernel cannot access/execute user memory.Surprisingly, where you might think that the major operating systems would embrace theseinnovations enthusiastically, the opposite is often true and security measures are adoptedinconsistently.
The main reason is that nothing is free and a slow-down or increase in power consumptionbecause of a security measure is not very popular. The Linux kernel developers in particularhave been accused of being obsessed with performance and having too little regard for se-curity. However, when the situation is sufficiently pressing, there is no other way than to dealwith the problem, even if it is costly. In operating systems, this performance versus secu-rity trade-off has become increasingly important. Research often focuses on methods thatsignificantly raise the bar for attackers, at an acceptable overhead.

KA Operating Systems & Virtualisation Security | October 2019 Page 34

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

CONCLUSION
In this Knowledge Area, we addressed security issues at the lowest levels of the softwarestack: the operating system and the hypervisor. Operating system / hypervisor security in-volves both the security of the operating system / hypervisor and the security guaranteesoffered by the operating system / hypervisor. As the most privileged components, operatingsystems and hypervisors play a critical role in making systems (in)secure. Unfortunately, theattack surface of a modern operating system or hypervisor is often large and threats of in-creasing sophistication involving both software and hardware call for increasingly powerfuldefenses also involving software and hardware. Starting from security principles and funda-mentals, we showed that the system’s security is influenced by the design of the system (e.g.,in the isolation of security domains), and the available security primitives and mechanismsto enforce the principles (e.g., memory isolation, capabilities, protection rings). Many of theprinciples of operating system design are useful across many application domains and arecommonly applied in other areas, such as database management systems. As with most do-mains, we saw that design decisions at the operating system/hypervisor level are a trade-offbetween security and performance—a balancing act that often slows down the adoption ofsecurity measures.
CROSS-REFERENCE OF TOPICS VS REFERENCE MATERIAL

tan
enb

aum
201

5m
ode

rn[
5]

and
ers

on2
008

sec
urit

y[3
3]

Per
la:2

010
:GK

E:19
413

04
[4]

van
-de

r-ve
en-m

em
ory

-20
12[

6]
Sga

ndu
rra:

201
6:E

AT:
285

614
9.2

856
126

[2]
Jae

ger
:20

08:
OSS

:150
240

6[2
1]

Sal
tzer

75t
hep

rote
ctio

n[1
]

ora
nge

boo
k:85

[34
]

levy
201

4ca
pab

ility
[39

]
Kar

ger
:20

02:
TYL

:784
592

.784
794

[40
]

1 Attacker model c9 c1-c9 [6] [2] c12 OS design and security c1-c12 [2] c1 [1] [34] [40]3 Principles and models c9 c4,c7 [1] [34]4 primitives c3,c9 c4,c7 [1] [34] c1-c9 [40]5 OS hardening c9 c1-c9 [6]6 Security in databases c4,c6 [6]7 Embracing Security c9 c1-c21 [6]

KA Operating Systems & Virtualisation Security | October 2019 Page 35

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

REFERENCES
[1] J. H. Saltzer and M. D. Schroeder, “The protection of information in computer systems,”

Proceedings of the IEEE, vol. 63, no. 9, pp. 1278–1308, 1975. [Online]. Available:https://doi.org/10.1109/PROC.1975.9939
[2] D. Sgandurra and E. Lupu, “Evolution of attacks, threat models, and solutions forvirtualized systems,” ACM Computing Surveys, vol. 48, no. 3, pp. 46:1–46:38, Feb. 2016.[Online]. Available: http://doi.acm.org/10.1145/2856126
[3] G. C. Hunt and J. R. Larus, “Singularity: Rethinking the software stack,” SIGOPS

Oper. Syst. Rev., vol. 41, no. 2, pp. 37–49, Apr. 2007. [Online]. Available: http://doi.acm.org/10.1145/1243418.1243424
[4] E. Perla and M. Oldani, A Guide to Kernel Exploitation: Attacking the Core. SyngressPublishing, 2010.
[5] A. S. Tanenbaum and H. Bos, Modern operating systems. Pearson, 2015.
[6] V. van der Veen, N. Dutt-Sharma, L. Cavallaro, and H. Bos, “Memory errors:The past, the present, and the future,” in RAID, Oct. 2012. [Online]. Available:http://www.few.vu.nl/~herbertb/papers/memerrors_raid12.pdf
[7] S. Boyd-Wickizer and N. Zeldovich, “Tolerating malicious device drivers in linux,” in

Proceedings of the 2010 USENIX Conference on USENIX Annual Technical Conference,ser. USENIXATC’10. Berkeley, CA, USA: USENIX Association, 2010, pp. 9–9. [Online].Available: http://dl.acm.org/citation.cfm?id=1855840.1855849
[8] B. Grill, A. Bacs, C. Platzer, and H. Bos, “Nice boots—a large-scale analysis ofbootkits and new ways to stop them,” in DIMVA, Sep. 2015. [Online]. Available:http://www.cs.vu.nl/%7Eherbertb/papers/bootkits_dimva2015.pdf
[9] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson, K. Lai, and O. Mutlu,“Flipping bits in memory without accessing them: An experimental study of DRAMdisturbance errors,” in Proceeding of the 41st Annual International Symposium on

Computer Architecuture, ser. ISCA ’14. Piscataway, NJ, USA: IEEE Press, 2014, pp.361–372. [Online]. Available: http://dl.acm.org/citation.cfm?id=2665671.2665726
[10] P. Wang, J. Krinke, K. Lu, G. Li, and S. Dodier-Lazaro, “How double-fetch situationsturn into double-fetch vulnerabilities: A study of double fetches in the linuxkernel,” in Proceedings of the 26th USENIX Conference on Security Symposium, ser.SEC’17. Berkeley, CA, USA: USENIX Association, 2017, pp. 1–16. [Online]. Available:http://dl.acm.org/citation.cfm?id=3241189.3241191
[11] R. N. M. Watson, “Exploiting concurrency vulnerabilities in system call wrappers,” in

Proceedings of the First USENIX Workshop on Offensive Technologies, ser. WOOT’07. Berkeley, CA, USA: USENIX Association, 2007, pp. 2:1–2:8. [Online]. Available:http://dl.acm.org/citation.cfm?id=1323276.1323278
[12] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache side-channel attacksare practical,” in Security and Privacy (SP), 2015 IEEE Symposium on. IEEE, 2015, pp.605–622.
[13] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn, S. Mangard,P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg, “Meltdown: Reading kernel memory

KA Operating Systems & Virtualisation Security | October 2019 Page 36

https://www.cybok.org
https://doi.org/10.1109/PROC.1975.9939
http://doi.acm.org/10.1145/2856126
http://doi.acm.org/10.1145/1243418.1243424
http://doi.acm.org/10.1145/1243418.1243424
http://www.few.vu.nl/~herbertb/papers/memerrors_raid12.pdf
http://dl.acm.org/citation.cfm?id=1855840.1855849
http://www.cs.vu.nl/%7Eherbertb/papers/bootkits_dimva2015.pdf
http://dl.acm.org/citation.cfm?id=2665671.2665726
http://dl.acm.org/citation.cfm?id=3241189.3241191
http://dl.acm.org/citation.cfm?id=1323276.1323278

The Cyber Security Body Of Knowledge
www.cybok.org

from user space,” in Proceedings of the 27th USENIX Conference on Security Symposium,ser. SEC’18. Berkeley, CA, USA: USENIX Association, 2018, pp. 973–990. [Online].Available: http://dl.acm.org/citation.cfm?id=3277203.3277276
[14] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher,M. Schwarz, and Y. Yarom, “Spectre attacks: Exploiting speculative execution,” ArXiv

Preprint ArXiv:1801.01203, 2018.
[15] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens, M. Silberstein,T. F. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow: Extracting the keys to theIntel SGX kingdom with transient out-of-order execution,” in Proceedings of the 27th

USENIX Conference on Security Symposium, ser. SEC’18. Berkeley, CA, USA: USENIXAssociation, 2018, pp. 991–1008. [Online]. Available: http://dl.acm.org/citation.cfm?id=3277203.3277277
[16] S. van Schaik, A. Milburn, S. Österlund, P. Frigo, G. Maisuradze, K. Razavi, H. Bos, andC. Giuffrida, “RIDL: Rogue In-flight Data Load,” in S&P, May 2019. [Online]. Available:https://mdsattacks.com/files/ridl.pdf
[17] B. Gras, K. Razavi, H. Bos, and C. Giuffrida, “Translation leak-aside buffer: Defeatingcache side-channel protections with TLB attacks,” in USENIX Security, Aug. 2018.[Online]. Available: https://www.vusec.net/download/?t=papers/tlbleed_sec18.pdf
[18] E. Bosman, K. Razavi, H. Bos, and C. Giuffrida, “Dedup est machina: Memorydeduplication as an advanced exploitation vector,” in IEEE Security & Privacy, May 2016.[Online]. Available: https://www.vusec.net/download/?t=papers/dedup-est-machina_sp16.pdf
[19] P. Larsen and A.-R. Sadeghi, Eds., The Continuing Arms Race: Code-Reuse Attacks and

Defenses. New York, NY, USA: Association for Computing Machinery and Morgan &Claypool, 2018.
[20] A. Kurmus, R. Tartler, D. Dorneanu, B. Heinloth, V. Rothberg, A. Ruprecht, W. Schröder-Preikschat, D. Lohmann, and R. Kapitza, “Attack surface metrics and automatedcompile-time OS kernel tailoring,” in NDSS. The Internet Society, 2013. [Online].Available: http://dblp.uni-trier.de/db/conf/ndss/ndss2013.html#KurmusTDHRRSLK13
[21] T. Jaeger, Operating System Security, 1st ed. Morgan and Claypool Publishers, 2008.
[22] D. M. Ritchie and K. Thompson, “The UNIX time-sharing system,” Communications

of the ACM, vol. 17, no. 7, pp. 365–375, Jul. 1974. [Online]. Available: http://doi.acm.org/10.1145/361011.361061
[23] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian, and M. Young,“Mach: A new kernel foundation for UNIX development,” Computer Science DepartmentCarnegie Mellon University, Tech. Rep., 1986.
[24] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S. Tanenbaum, “MINIX 3: A highlyreliable, self-repairing operating system,” SIGOPS Oper. Syst. Rev., vol. 40, no. 3, pp.80–89, Jul. 2006. [Online]. Available: http://doi.acm.org/10.1145/1151374.1151391
[25] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr., “Exokernel: An operating systemarchitecture for application-level resource management,” in Proceedings of the Fifteenth

ACM Symposium on Operating Systems Principles, ser. SOSP ’95. New York, NY, USA:ACM, 1995, pp. 251–266. [Online]. Available: http://doi.acm.org/10.1145/224056.224076

KA Operating Systems & Virtualisation Security | October 2019 Page 37

https://www.cybok.org
http://dl.acm.org/citation.cfm?id=3277203.3277276
http://dl.acm.org/citation.cfm?id=3277203.3277277
http://dl.acm.org/citation.cfm?id=3277203.3277277
https://mdsattacks.com/files/ridl.pdf
https://www.vusec.net/download/?t=papers/tlbleed_sec18.pdf
https://www.vusec.net/download/?t=papers/dedup-est-machina_sp16.pdf
https://www.vusec.net/download/?t=papers/dedup-est-machina_sp16.pdf
http://dblp.uni-trier.de/db/conf/ndss/ndss2013.html#KurmusTDHRRSLK13
http://doi.acm.org/10.1145/361011.361061
http://doi.acm.org/10.1145/361011.361061
http://doi.acm.org/10.1145/1151374.1151391
http://doi.acm.org/10.1145/224056.224076

The Cyber Security Body Of Knowledge
www.cybok.org

[26] I. M. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham, D. Evers, R. Fairbairns, andE. Hyden, “The design and implementation of an operating system to support distributedmultimedia applications,” IEEE J.Sel. A. Commun., vol. 14, no. 7, pp. 1280–1297, Sep. 96.[Online]. Available: http://dx.doi.org/10.1109/49.536480
[27] A. Madhavapeddy and D. J. Scott, “Unikernels: Rise of the virtual library operatingsystem,” Queue, vol. 11, no. 11, pp. 30:30–30:44, Dec. 2013. [Online]. Available:http://doi.acm.org/10.1145/2557963.2566628
[28] A. S. Tanenbaum, Operating Systems: Design and Implementation. Upper Saddle River,NJ, USA: Prentice-Hall, Inc., 1987.
[29] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter, T. Roscoe,A. Schüpbach, and A. Singhania, “The multikernel: A new OS architecture for scalablemulticore systems,” in Proceedings of the ACM SIGOPS 22Nd Symposium on Operating

Systems Principles, ser. SOSP ’09. New York, NY, USA: ACM, 2009, pp. 29–44. [Online].Available: http://doi.acm.org/10.1145/1629575.1629579
[30] Version 7 Unix, “chroot,” Modern chroot man page http://man7.org/linux/man-pages/man2/chroot.2.html, 1979.
[31] P.-H. Kamp and R. N. M. Watson, “Jails: confining the omnipotent root,” in Proceedings

of SANE, Maastricht, The Netherlands, May 2000.
[32] D. Merkel, “Docker: Lightweight linux containers for consistent development anddeployment,” Linux J., vol. 2014, no. 239, Mar. 2014. [Online]. Available: http://dl.acm.org/citation.cfm?id=2600239.2600241
[33] R. J. Anderson, Security Engineering: a guide to building dependable distributed systems.Wiley, 2008.
[34] United States Department of Defense,Department of Defense, Trusted Computer System

Evaluation Criteria, ser. Rainbow Series. Dept. of Defense, 1985, no. 5200.28-STD.[Online]. Available: https://books.google.nl/books?id=-KBPAAAAMAAJ
[35] D. E. Bell and L. J. LaPadula, “Secure computer systems: Mathematical foundations,”The MITRE Corporation, Bedford MA, Tech. Rep. ESD-TR-73-278, Nov. 1973.
[36] K. J. Biba, “Integrity considerations for secure computer systems,” MITRE CORP BED-FORD MA, Tech. Rep., Apr. 1977.
[37] P. G. Neumann, New Solutions for Cybersecurity. MIT Press, 2017, ch. FundamentalSecurity Principles.
[38] D. Ferraiolo and D. Kuhn, “Role-based access controls,” in Proceedings of the 15th Annual

National Computer Security Conference. NSA/NIST, 1992, pp. 554–563.
[39] H. M. Levy, Capability-based computer systems. Digital Press, 1984.
[40] P. A. Karger and R. R. Schell, “Thirty years later: Lessons from the multicssecurity evaluation,” in Proceedings of the 18th Annual Computer Security Applications

Conference, ser. ACSAC ’02. Washington, DC, USA: IEEE Computer Society, 2002, pp.119–. [Online]. Available: http://dl.acm.org/citation.cfm?id=784592.784794
[41] J. H. Saltzer, “Protection and the control of information sharing in multics,” Com-

munications of the ACM, vol. 17, no. 7, pp. 388–402, Jul. 1974. [Online]. Available:http://doi.acm.org/10.1145/361011.361067

KA Operating Systems & Virtualisation Security | October 2019 Page 38

https://www.cybok.org
http://dx.doi.org/10.1109/49.536480
http://doi.acm.org/10.1145/2557963.2566628
http://doi.acm.org/10.1145/1629575.1629579
http://man7.org/linux/man-pages/man2/chroot.2.html
http://man7.org/linux/man-pages/man2/chroot.2.html
http://dl.acm.org/citation.cfm?id=2600239.2600241
http://dl.acm.org/citation.cfm?id=2600239.2600241
https://books.google.nl/books?id=-KBPAAAAMAAJ
http://dl.acm.org/citation.cfm?id=784592.784794
http://doi.acm.org/10.1145/361011.361067

The Cyber Security Body Of Knowledge
www.cybok.org

[42] D. Gollmann, The Cyber Security Body of Knowledge. University of Bristol, 2019,ch. Authentication, Authorisation & Accountability, version 1.0. [Online]. Available:https://www.cybok.org/
[43] R. C. Daley and P. G. Neumann, “A general-purpose file system for secondary storage,”in Proceedings of the November 30–December 1, 1965, Fall Joint Computer Conference,

Part I, ser. AFIPS ’65 (Fall, part I). New York, NY, USA: ACM, 1965, pp. 213–229. [Online].Available: http://doi.acm.org/10.1145/1463891.1463915
[44] S. Smalley, C. Vance, and W. Salamon, “Implementing SELinux as a linux security mod-ule,” NAI Labs Report, vol. 1, no. 43, p. 139, 2001.
[45] R. Spencer, S. Smalley, P. Loscocco, M. Hibler, D. Andersen, and J. Lepreau,“The flask security architecture: System support for diverse security policies,” in

Proceedings of the 8th Conference on USENIX Security Symposium - Volume 8, ser.SSYM’99. Berkeley, CA, USA: USENIX Association, 1999, pp. 11–11. [Online]. Available:http://dl.acm.org/citation.cfm?id=1251421.1251432
[46] P. Efstathopoulos, M. Krohn, S. VanDeBogart, C. Frey, D. Ziegler, E. Kohler, D. Mazieres,F. Kaashoek, and R. Morris, “Labels and event processes in the asbestos operating sys-tem,” in ACM SIGOPS Operating Systems Review, vol. 39, no. 5. ACM, 2005, pp. 17–30.
[47] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières, “Making information flow ex-plicit in HiStar,” in Proceedings of the 7th symposium on Operating systems design and

implementation. USENIX Association, 2006, pp. 263–278.
[48] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek, E. Kohler, and R. Morris, “Infor-mation flow control for standard OS abstractions,” in ACM SIGOPS Operating Systems

Review, vol. 41, no. 6. ACM, 2007, pp. 321–334.
[49] J. B. Dennis and E. C. Van Horn, “Programming semantics for multiprogrammed com-putations,” Communications of the ACM, vol. 9, no. 3, pp. 143–155, 1966.
[50] S. J. Mullender and A. S. Tanenbaum, “The design of a capability-based distributed op-erating system,” The Computer Journal, vol. 29, no. 4, pp. 289–299, 1986.
[51] W. B. Ackerman andW.W. Plummer, “An implementation of a multiprocessing computersystem,” in Proceedings of the First ACM Symposium on Operating System Principles,ser. SOSP ’67. New York, NY, USA: ACM, 1967, pp. 5.1–5.10. [Online]. Available:http://doi.acm.org/10.1145/800001.811666
[52] R. Fabry, “A user’s view of capabilities,” ICR Quarterly Report. U. of Chicago Institute forComputer Research, pp. pages C1–C8, Nov. 1967.
[53] R. M. Needham and R. D. Walker, “The cambridge CAP computer and its protectionsystem,” in Proceedings of the Sixth ACM Symposium on Operating Systems Principles,ser. SOSP ’77. New York, NY, USA: ACM, 1977, pp. 1–10. [Online]. Available:http://doi.acm.org/10.1145/800214.806541
[54] W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson, and F. Pollack, “HYDRA: thekernel of a multiprocessor operating system,” Communications of the ACM, vol. 17, no. 6,pp. 337–345, Jun. 1974. [Online]. Available: http://doi.acm.org/10.1145/355616.364017
[55] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe,K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood, “seL4: formalverification of an OS kernel,” in Proceedings of the ACM SIGOPS 22Nd Symposium on

KA Operating Systems & Virtualisation Security | October 2019 Page 39

https://www.cybok.org
https://www.cybok.org/
http://doi.acm.org/10.1145/1463891.1463915
http://dl.acm.org/citation.cfm?id=1251421.1251432
http://doi.acm.org/10.1145/800001.811666
http://doi.acm.org/10.1145/800214.806541
http://doi.acm.org/10.1145/355616.364017

The Cyber Security Body Of Knowledge
www.cybok.org

Operating Systems Principles, ser. SOSP ’09. New York, NY, USA: ACM, 2009, pp.207–220. [Online]. Available: http://doi.acm.org/10.1145/1629575.1629596
[56] R. N. M. Watson, J. Anderson, B. Laurie, and K. Kennaway, “Capsicum: Practicalcapabilities for UNIX,” in Proceedings of the 19th USENIX Conference on Security, ser.USENIX Security’10. Berkeley, CA, USA: USENIX Association, 2010, pp. 3–3. [Online].Available: http://dl.acm.org/citation.cfm?id=1929820.1929824
[57] F. Güntsch, “Logischer entwurf eines digitalen rechnergerätes mit mehreren asynchronlaufenden trommeln und automatischemschnellspeicherbetrieb Logical Design of a Dig-ital Computer with Multiple Asynchronous Rotating Drums and Automatic High SpeedMemory Operation,” Ph.D. dissertation, Technische Universität Berlin, 1957.
[58] T. Killburn, “One-level storage system,” IRE Transactions on Electronic Computers, vol.EC-ll, no. 2, Apr. 1962.
[59] R. C. Daley and J. B. Dennis, “Virtual memory, processes, and sharing in MULTICS,”

Communications of the ACM, vol. 11, no. 5, pp. 306–312, May 1968. [Online]. Available:http://doi.acm.org/10.1145/363095.363139
[60] Oracle, “M7: Next generation SPARC.” [Online]. Available: https://www.hotchips.org/wp-content/uploads/hc_archives/hc26/HC26-12-day2-epub/HC26.12-8-Big-Iron-Servers-epub/HC26.12.820-Next_Gen_SPARC_Phillips-Oracle-FinalPub.pdf
[61] ARM, “Arm a-profile architecture developments 2018: Armv8.5-a.” [On-line]. Available: https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/arm-a-profile-architecture-2018-developments-armv85a
[62] J. Götzfried, M. Eckert, S. Schinzel, and T. Müller, “Cache attacks on intelSGX,” in Proceedings of the 10th European Workshop on Systems Security, ser.EuroSec’17. New York, NY, USA: ACM, 2017, pp. 2:1–2:6. [Online]. Available:http://doi.acm.org/10.1145/3065913.3065915
[63] U. Frisk, “Direct memory attack the kernel,” Aug. 2016. [Online]. Available: https://archive.org/details/youtube-fXthwl6ShOg
[64] A. T. Markettos, C. Rothwell, B. F. Gutstein, A. Pearce, P. G. Neumann, S. W. Moore, andR. N. M. Watson, “Thunderclap: Exploring vulnerabilities in operating system IOMMUprotection via DMA from untrustworthy peripherals,” in Proceedings of the Network and

Distributed Systems Security Symposium (NDSS), Feb. 2019.
[65] I. Verbauwhede, The Cyber Security Body of Knowledge. University of Bristol, 2019, ch.Hardware Security, version 1.0. [Online]. Available: https://www.cybok.org/
[66] A. Milburn, H. Bos, and C. Giuffrida, “SafeInit: Comprehensive and PracticalMitigation of Uninitialized Read Vulnerabilities,” in NDSS, Feb. 2017. [Online]. Available:https://www.vusec.net/download/?t=papers/safeinit_ndss17.pdf
[67] E. Bosman and H. Bos, “Framing signals-a return to portable shellcode,” in 2014 IEEE

Symposium on Security and Privacy. IEEE, 2014, pp. 243–258.
[68] E. Baccelli, O. Hahm, M. Gunes, M. Wahlisch, and T. C. Schmidt, “RIOT OS: Towards anOS for the internet of things,” in 2013 IEEE Conference on Computer Communications

Workshops (INFOCOM WKSHPS), 2013, pp. 79–80.

KA Operating Systems & Virtualisation Security | October 2019 Page 40

https://www.cybok.org
http://doi.acm.org/10.1145/1629575.1629596
http://dl.acm.org/citation.cfm?id=1929820.1929824
http://doi.acm.org/10.1145/363095.363139
https://www.hotchips.org/wp-content/uploads/hc_archives/hc26/HC26-12-day2-epub/HC26.12-8-Big-Iron-Servers-epub/HC26.12.820-Next_Gen_SPARC_Phillips-Oracle-FinalPub.pdf
https://www.hotchips.org/wp-content/uploads/hc_archives/hc26/HC26-12-day2-epub/HC26.12-8-Big-Iron-Servers-epub/HC26.12.820-Next_Gen_SPARC_Phillips-Oracle-FinalPub.pdf
https://www.hotchips.org/wp-content/uploads/hc_archives/hc26/HC26-12-day2-epub/HC26.12-8-Big-Iron-Servers-epub/HC26.12.820-Next_Gen_SPARC_Phillips-Oracle-FinalPub.pdf
https://www.hotchips.org/wp-content/uploads/hc_archives/hc26/HC26-12-day2-epub/HC26.12-8-Big-Iron-Servers-epub/HC26.12.820-Next_Gen_SPARC_Phillips-Oracle-FinalPub.pdf
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/arm-a-profile-architecture-2018-developments-armv85a
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/arm-a-profile-architecture-2018-developments-armv85a
http://doi.acm.org/10.1145/3065913.3065915
https://archive.org/details/youtube-fXthwl6ShOg
https://archive.org/details/youtube-fXthwl6ShOg
https://www.cybok.org/
https://www.vusec.net/download/?t=papers/safeinit_ndss17.pdf

The Cyber Security Body Of Knowledge
www.cybok.org

[69] A. Cardenas, The Cyber Security Body of Knowledge. University of Bristol, 2019, ch.Cyber-Physical Systems Security, version 1.0. [Online]. Available: https://www.cybok.org/
[70] PaX Team, “Design & implementation of PAGEEXEC,” 2000.
[71] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow integrity,” in

Proceedings of the 12th ACM Conference on Computer and Communications Security,ser. CCS ’05. New York, NY, USA: ACM, 2005, pp. 340–353. [Online]. Available:http://doi.acm.org/10.1145/1102120.1102165
[72] PaX Team, “Address space layout randomization,” https://pax.grsecurity.net/docs/aslr.txt (Patch originally released in 2001), 2001.
[73] F. Piessens, The Cyber Security Body of Knowledge. University of Bristol, 2019, ch.Software Security, version 1.0. [Online]. Available: https://www.cybok.org/
[74] E. Goktas, E. Athanasopoulos, H. Bos, and G. Portokalidis, “Out of control: Overcomingcontrol-flow integrity,” in IEEE Security & Privacy, Dec. 2014. [Online]. Available:http://www.cs.vu.nl/%7Eherbertb/papers/outofcontrol_sp14.pdf
[75] M. Castro, M. Costa, and T. Harris, “Securing software by enforcing data-flow integrity,”in Proceedings of the 7th Symposium on Operating Systems Design and Implementation,ser. OSDI ’06. Berkeley, CA, USA: USENIX Association, 2006, pp. 147–160. [Online].Available: http://dl.acm.org/citation.cfm?id=1298455.1298470
[76] E. Bauman, G. Ayoade, and Z. Lin, “A survey on hypervisor-based monitoring:Approaches, applications, and evolutions,” ACM Comput. Surv., vol. 48, no. 1, pp.10:1–10:33, Aug. 2015. [Online]. Available: http://doi.acm.org/10.1145/2775111
[77] R. Natan, Implementing Database Security and Auditing. Elsevier Science, 2005.[Online]. Available: https://books.google.nl/books?id=5WIP24cbtSEC
[78] J. Forristal, “NTweb technology vulnerabilities,” PhrackMagazine, vol. 8, no. 4, Dec. 1998,published as rain.forest.puppy.
[79] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan, “CryptDB: protectingconfidentialitywith encrypted query processing,” inProceedings of the Twenty-Third ACM

Symposium on Operating Systems Principles, ser. SOSP ’11. New York, NY, USA: ACM,2011, pp. 85–100. [Online]. Available: http://doi.acm.org/10.1145/2043556.2043566
[80] E. Mykletun, M. Narasimha, and G. Tsudik, “Authentication and integrity in outsourceddatabases,” Trans. Storage, vol. 2, no. 2, pp. 107–138, May 2006. [Online]. Available:http://doi.acm.org/10.1145/1149976.1149977

KA Operating Systems & Virtualisation Security | October 2019 Page 41

https://www.cybok.org
https://www.cybok.org/
https://www.cybok.org/
http://doi.acm.org/10.1145/1102120.1102165
https://pax.grsecurity.net/docs/aslr.txt
https://pax.grsecurity.net/docs/aslr.txt
https://www.cybok.org/
http://www.cs.vu.nl/%7Eherbertb/papers/outofcontrol_sp14.pdf
http://dl.acm.org/citation.cfm?id=1298455.1298470
http://doi.acm.org/10.1145/2775111
https://books.google.nl/books?id=5WIP24cbtSEC
http://doi.acm.org/10.1145/2043556.2043566
http://doi.acm.org/10.1145/1149976.1149977

The Cyber Security Body Of Knowledge
www.cybok.org

ACRONYMS
ACL Access Control List.
ADI Application Data Integrity.
API Application Programming Interface.
ASLR Address Space Layout Randomization.
BIOS Basic Input/Output System.
CET Control-Flow Enforcement Technology.
CFI Control-Flow Integrity.
CHERI Capability Hardware Enhanced RISC Instructions.
CPU Central Processing Unit.
CRTM Core Root of Trust for Measurements.
DAC Discretionary Access Control.
DEP Data Execution Prevention.
DFI Data-Flow Integrity.
DMA Direct Memory Access.
DoS Denial of Service.
DRAM Dynamic Random Access Memory.
FLASK Flux Advanced Security Kernel.
FS File System.
FUSE File System in User Space.
IOMMU Input-Output Memory Management Unit.
IoT Internet of Things.
IPC Inter-Process Communication.
ISA Instruction Set Architecture.
KASLR Kernel ASLR.
MAC Mandatory Access Control.
ME Management Engine.
MMU Memory Management Unit.
MPK Memory Protection Key.
MPU Memory Protection Unit.

KA Operating Systems & Virtualisation Security | October 2019 Page 42

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

MPX Memory Protection Extensions.
MTE Memory Tagging Extensions.
NSA National Security Agency.
NX No Execute.
ODB Outsourced Database.
OS Operating System.
PAC Pointer Authentication Code.
PAN Privileged Access Never.
PCR Platform Configuration Register.
POLA Principle Of Least Authority.
PTE Page Table Entry.
PXN Privileged Execute Never.
RBAC Role-Based Access Control.
RIDL Rogue In-Flight Data.
SGX Software Guard Extension.
SMAP Supervisor Mode Access Protection.
SMEP Supervisor Mode Execution Protection.
SMM System Management Mode.
SoC System on a Chip.
SQL Structured Query Language.
SROP Sigreturn-Oriented Programming.
SSD Solid State Drive.
TCB Trusted Computing Base.
TCSEC Trusted Computer System Evaluation Criteria.
TLB Transaction Lookaside Buffer.
TOCTOU Time Of Check Time Of Use.
TPM Trusted Platform Module.
UEFI Unified Extensible Firmware Interface.
UMDF User Mode Driver Framework.
USB Universal Serial Bus.

KA Operating Systems & Virtualisation Security | October 2019 Page 43

https://www.cybok.org

The Cyber Security Body Of Knowledge
www.cybok.org

VM Virtual Machine.
VMI Virtual Machine Introspection.
XD Execute Disable.
XN Execute Never.

KA Operating Systems & Virtualisation Security | October 2019 Page 44

https://www.cybok.org

	1 Attacker model
	2 The role of operating systems and their design in security
	3 Operating System Security Principles and Models
	3.1 Security principles in operating systems
	3.2 Security models in operating systems

	4 Primitives for Isolation and Mediation
	4.1 Authentication and identification
	4.2 Access control lists
	4.3 Capabilities
	4.4 Physical access and secure deletion
	4.5 Memory protection and address spaces
	4.6 Modern hardware extensions for memory protection
	4.7 Protection rings
	4.8 One ring to rule them all. And another. And another.
	4.9 Low-end devices and the IoT

	5 Operating System Hardening
	5.1 Information hiding
	5.2 Control-flow restrictions
	5.3 Partitioning.
	5.4 Code and data integrity checks
	5.5 Anomaly detection

	6 Operating Systems, Hypervisors—what about related areas?
	7 Embracing Security

