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INTRODUCTION
The pervasiveness of data collection, processing, and dissemination raises severe privacyconcerns regarding individual and societal harms. Information leaks may cause physical orpsychological damage to individuals, e.g., when published information can be used by thievesto infer when users are not home, by enemies to find out weak points to launch attacks onusers or by advertising companies to build profiles and influence users. On a large scale,the use of this information can be used to influence society as a whole, causing irreversibleharm to democracy. The extent of the harms that privacy loss causes highlights that privacycannot simply be tackled as a confidentiality issue. Beyond keeping information private, it isimportant to ensure that the systems we build support freedom of speech and individuals’autonomy of decision and self-determination.
The goal of this knowledge area is to introduce system designers to the concepts and tech-nologies that are used to engineer systems that inherently protect users’ privacy. We aimto provide designers with the ability to identify privacy problems, to describe them from atechnical perspective, and to select adequate technologies to eliminate, or at least, mitigatethese problems.
Privacy is recognised as a fundamental human right [1]: “No one shall be subjected to ar-bitrary interference with his privacy, family, home or correspondence, nor to attacks uponhis honour and reputation”. As such, it has been studied for many years from a socio-legalperspective with two goals. First, to better understand what privacy means for society andindividuals. Second, to ensure that the legal frameworks that underpin our democracies sup-port privacy as a right. The former studies proposed definitions such as privacy being ‘theright to be let alone’ [2], ‘the right to informational self-determination’ [3, 4] or ‘the freedomfrom unreasonable constraints on the construction of one’s own identity’ [5]. Probably oneof the best examples of the latter are the principles and rules associated with the EuropeanData Protection Legislation [6] covered in the Law & Regulation CyBOK Knowledge Area [7].All of these conceptualisations are of great importance to define and understand the bound-aries of privacy and its role for society. However, their abstract and context-free nature oftenmakes them not actionable for system designers who need to select technologies to ensurethat privacy is supported in their systems.
To address this gap, in this knowledge area, we conceptualise privacy in a similar way as secu-rity engineering conceptualises security problems [8, 9]. We consider that privacy concerns,and the solutions that can address them, are defined by the adversarial model considered bythe designer, the nature of the information to be protected, and the nature of the protectionmechanism itself. Typical examples of adversarial models can be: third-party services withwhom data are shared are not trusted, the service provider itself is not trusted with privatedata of the users, or users of a service should not learn private data from other users. Typi-cal examples of private data to be protected from these adversaries can be: the content ofusers’ communications, their service usage patterns, or the mere existence of users and/ortheir actions. Finally, typical examples of protection means can be techniques that enableinformation availability to be controlled, such as access control settings, or techniques tohide information, such as Encryption.
This knowledge area is structured as follows. The first part, comprising three sections, con-siders three different privacy paradigms that have given rise to different classes of privacytechnologies. The first is privacy as confidentiality (Section 1), in which the privacy goal is to
hide information from the adversary. We revise technological approaches to hide both data
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and Metadata, and approaches to hinder the adversary’s ability to perform inferences usingthe data that cannot be hidden. The second is privacy as informational control (Section 2),in which the goal is to provide users with the means to decide what information they willexpose to the adversary. We revise technologies that support users in their privacy-orienteddecisions and techniques that help them express their preferences when interacting with dig-ital services. Finally, we introduce privacy as transparency (Section 3), in which the goal is to
inform the user about what data she has exposed and who has accessed or processed thesedata. We revise solutions that show users their digital footprint, and solutions that supportaccountability through secure logging.
The privacy requirements that define the privacy goals in the paradigms mentioned aboveare often context dependent. That is, revealing a particular piece of information may be ac-ceptable in some environments but not in others. For instance, disclosing a rare disease isnot considered a privacy concern in an interaction with a doctor but would be considered aprivacy violation in a commercial interaction. Nissembaum formalizes this concept as con-
textual integrity [10], which explicitly addresses an information flow may present differentprivacy needs depending on the entities exchanging this information or the environment inwhich it is exchanged. We note that once the requirement for a flow are clear (including theadversarial model), a designer can directly apply the technologies described in this chapter.
The second part of the knowledge area is devoted to illustrating how privacy technologies canbe used to support democracy and civil liberties (Section 4). We consider two core examples:systems for secure voting and to circumvent censorship. For the former, privacy of the votesis imperative for the functionality itself. For the latter, privacy of communication partners isnecessary to ensure that content cannot be blocked by a censor.
We acknowledge that privacy technologies can be used in to support illicit (e.g., distribution ofchild pornography) or anti-social behaviors (e.g., cyberbullying), as described in the Adversar-ial Behaviours CyBOK Knowledge Area [11]. While there exist solutions to selectively revokethe protection provided by privacy technologies, these are strongly discouraged by privacyresearchers and privacy advocates. The reason is that adding backdoors or escrow possi-bilities to ease law enforcement, inherently weakens the security of the privacy-preservingsystems as they can also be exploited by malicious actors to undermine user’s rights. There-fore, we do not consider these techniques within this document.
We conclude the knowledge area by outlining the steps involved in the engineering of privacy-preserving systems (5). We provide guidelines for engineers to make informed choices aboutarchitectural and privacy technologies. These guidelines can help system designers to buildsystems in which the users’ privacy does not depend on a centralised entity that may becomea single point of failure.
We note that many of the privacy technologies we revise in this knowledge area rely on thecryptographic concepts introduced in the Cryptography CyBOK Knowledge Area [12]. Through-out this knowledge area, we assume that the reader is familiar with these basic concepts andavoid repeating cryptographic definitions and reiterating on the explanation of common prim-itives.
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CONTENT

1 PRIVACY AS CONFIDENTIALITY
[13][14][15][16][17][18][19][20]

In a technical re-interpretation of the ‘right to be let alone’ [2] privacy definition, a commonconceptualisation of privacy is to avoid making personal information accessible to any entity,in particular to a wider public [8]. Under this definition, the objective of privacy technologiesis to enable the use of services while minimising the amount of exposed information. Here,information refers to both data exchanged explicitly with the service, as well as informationmade implicitly available in the Metadata associated with these exchanges (e.g., identity ofthe users or frequency of usage).
1.1 Data Confidentiality

We now describe two approaches to minimise the amount of exposed information. We firstpresent methods that provably prevent unauthorised access to information, typically basedon the use of advanced cryptographic primitives to ensure that no data can be inferred. Sec-ond, we present disclosure control methods, which relax the Confidentiality definition to en-sure that the information leaked to the adversary is limited to a certain amount, or is notlinkable to an individual person.
1.1.1 Cryptography-based access control

A first flavour of Confidentiality-oriented privacy technologies focus on protecting the datathrough the use of cryptography. These technologies mainly consider two adversary models:one where the recipient is considered trusted and the data have to be protected while intransit, and one in which the recipient is not trusted and the data must be kept private evenwhen it is processed.
Protecting data in transit. The protection of data in transit is typically known as end-to-end
encryption (E2EE). Here, an end refers to the origin and destination of the communication.For instance, the sender and receiver of an email, or the client and server of a service. E2EEensures that the Confidentiality of data is ensured between both ends. That is, no third party,from the routers in the communication infrastructure, to the application (e.g., email, mes-saging) servers that enable the communication, can access the communication. Addition-ally, E2EE typically provides Integrity, impeding any intermediary from modifying the data ex-changed, and Authentication, ensuring that the communication parties can be sure of eachothers’ identity.
From a technical perspective, in E2EE the devices at the end of the communication hold theEncryption key used to protect the data. Usually, these are symmetric encryption keys andcan be agreed using key transport, or can be established using any modality of the Diffie-Hellman exchange. The use of Diffie-Hellman to agree one key per session additionally pro-vides forward secrecy, but one must be careful when implementing the exchange [21]. Typi-cally, Digital Signatures and Message Authentication Codes are used to provide Integrity andauthentication. Canonical examples of E2EE encryption are the TLS protocol [22], widelyused in client-server scenarios; or the PGP protocol, a common encryption mechanism foremail communications [23].
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A special type of E2EE is Off-the-Record Messaging (OTR) [14].1 OTR seeks to provide strongerprivacy properties than the above protocols. It considers an adversary that can not only ob-serve the communication, but also eventually compromise one of the devices participatingin the communication. This compromise gives the adversary the chance to get the long-termkeys of the participants. In such a demanding scenario the two main goals of OTR are toprovide i) perfect forward secrecy and ii) repudiable Authentication, which permits a user todeny having sent a message in the past. The protocol derives the cryptographic keys usedfor the conversation using an unauthenticated Diffie-Hellman key exchange. Then, the partic-ipants carry out a mutual authentication inside the protected channel, which guarantees thefuture repudiability. Encryption keys are rotated, and old keys are deleted, so as to maintainforward secrecy. Current OTR protocols also include strong protection against man-in-the-middle attacks, even if the participants do not pre-share secrets [24, 25].
Finally, we can remark that E2EE is nowadays prevalent in instant messaging applicationssuch as Signal, WhatsApp, Facebook Messenger, or Viber. All of these applications are basedon the so-called Signal Protocol (previously known as Axolotl or TextSecure) [26]. Similar toOTR, this protocol provides authenticated messaging between users with end-to-end Confi-dentiality, and messages are kept secret even if the messaging server is compromised, andeven if the user’s long-term keys are compromised. These properties rely on an authenticatedkey exchange protocol that mixes multiple Diffie-Hellman shared secrets, and on a protocolto refresh the keys called double ratcheting [18]. Cohn-Gordon et al. provided in [27] a detaileddescription of this protocol, including a formal analysis.
Note that all of the above protocols only offer strong guarantees as long as the mechanismsto authenticate the communication parties work as expected. For instance, the Confidential-ity provided by TLS relies on services keeping their keys secret and the Public Key Infrastruc-ture operating reliably, so that the communication parties can be authenticated. Similarly,WhatsApp’s Confidentiality relies on the fact that phone numbers are hard to spoof and, thus,users are sure that the recipient of their message is their intended interlocutor.
Protection of data during processing. The previous protocols focus on protecting data intransit from third parties other than the communication participants. We now consider situ-ations in which the recipient needs to perform some computation on the data, even thoughshe is considered adversarial. We distinguish two scenarios: one in which computation iscompletely outsourced and one in which the sender participates in the computation.
In the first scenario, commonly known as outsourcing, the data belong to the sender andthe recipient acts as the data processor. Typical examples are the use of cloud servicesto compute on big data, e.g., privacy-preserving training and classification using machinelearning [28], or to hold a database in which the sender wants to perform searches [29]. Thesolutions to this problem are based on advanced cryptographic protocols. We now illustratethe use of these protocols in a couple of examples, and we refer the reader to the Cryptog-raphy CyBOK Knowledge Area [12] for more details on the technical details of the underlyingprimitives.
A common problem when outsourcing services is that accessing particular pieces of out-sourced data may reveal information about the user to the entity holding the data. For in-stance, accessing a given entry on a patent database reveals business intentions; and ac-cessing a particular entry in a messaging directory reveals relationships between users. Thisproblem can be mitigated by using Private Information Retrieval (see the Cryptography Cy-

1https://otr.cypherpunks.ca/
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BOK Knowledge Area [12]), which allows a database to be queried without revealing whichrecord is being accessed. An example use case for information retrieval is the creation ofprivacy-preserving directories for social networks [30, 31, 32].
Another example where remote processing is needed comprises digital shops or digital bank-ing, where a server returns information to a user depending on the inputs. The shop needsto process payments and then ship the digital item; and the bank provides money, or makesa payment, upon authentication. Users’ shopping patterns, however, may reveal a lot abouttheir profiles. In this case, Oblivious Transfer (see the Cryptography CyBOK Knowledge Area [12]),in which a service can transfer an item without knowing which item is being transferred, canbe used to support privacy-preserving interactions [33, 34].
The previous techniques are useful for particular operations: search an item on a database,transfer that item. Ideally, we would like to be able to perform any operation on outsourceddata. A very relevant technology for this is Homomorphic encryption encryption (see theCryptography CyBOK Knowledge Area [12]). This type of encryption allows any operation onencrypted data to be performed. Such flexibility, however, comes at a high cost in terms ofcomputation time, and for some implementations also in terms of bandwidth, thus makingit far from practical at this point. Less general versions such as somewhat homomorphicencryption or partially homomorphic encryption, which only permit limited operations (sums,multiplications or evaluating a given function) provide better trade-offs and can already beused for simple concrete tasks.
We note that in recent years, the privacy-preserving cryptographic primitives above have beencombined with new secure hardware [35, 36] in order to improve performance. While thiscombination indeed brings the performance of privacy-preserving cryptography closer to thebenchmarks needed for deployment, it is important to highlight that such an improvementcomes at the expense of trusting the manufacturer of the secure hardware not to leak theinformation (or the key) to unintended parties.
In the case of database outsourcing, it is worth mentioning tailored solutions that combinedifferent types of privacy-preserving cryptography in order to increase efficiency [37]. Thesedatabases rely on techniques such as homomorphic encryption, order-preserving encryp-tion [38, 39], or deterministic encryption, among others. These schemes indeed provide greatperformance. However, it has been demonstrated that choosing weaker cryptographic prim-itives to favour efficiency may have a significant impact on privacy [40, 41, 42, 43]. Therefore,they are only recommended to support compliance, and should only be deployed in a trustedenvironment where attacks are unlikely. It is not recommended to use them in scenarioswhere data privacy is of critical importance and the entity that holds the database is nottrusted.
The second scenario is collaborative computation, i.e., the entities involved in the commu-nication collaborate to perform the computation. The result of this computation may be ofinterest for the sender, for the receiver, for both, or for third parties. Yet, if the participants donot trust each other, i.e., for a given entity, any of the other participants may be consideredan adversary. Typical applications are comparing databases or computing statistics acrossdatasets [44, 45]. Such applications can be supported by Multi Party Computation (see theCryptography CyBOK Knowledge Area [12]), as described by Archer et al. in [46]. When thegoal of the application is to find similarities between two databases (e.g., contacts [47, 48],malicious activities [49], or genetic information [50]), one can also use lighter protocols suchas Private Set Intersection [51, 52, 53]. These protocols allow two parties to compute theintersection of datasets without revealing anything except the intersection, or the cardinality
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of the intersection.
Verification in the encrypted domain. When data are processed in the encrypted domain,it is hard for the entities performing the computation to run any check on the adequacy ofthe inputs. To solve this problem, many primitives build on Zero-Knowledge Proofs (see theCryptography CyBOK Knowledge Area [12]) to prove to the entity performing the computationthat the inputs comply with a certain format or with certain constraints. We now describethree cases in which verification in the encrypted domain is key to enabling the use of privacy-preserving cryptographic protocols.
Private computation - input verification. Zero knowledge proofs are very well suited to ensur-ing that the input to a privacy-preserving protocol is of a particular form or is not malicious.For instance, they have been used, among others, to prove the adequacy of inputs in billing ap-plications, e.g., that they belong to a set of valid inputs [54], or are within particular ranges [55],to prove that there are no malicious inputs when requesting information from a messagingsystem [56], or when running a private intersection protocol [57].
Private authentication. To maintain Confidentiality, entities participating in protocols maywant to authenticate their communication partners. However, typical Authentication systemsare based on revealing the identity of the authenticating party. Revealing one’s identity, in andof itself, may result in a privacy breach (e.g., when the authentication is against a sensitiveservice, such as a medical service). A solution to avoid this problem is the use of AnonymousCredentials, also known as Attribute-Based Credentials (ABCs) [58, 15, 59].
Instead of authenticating an entity with respect to an identity in order to grant authorisation,ABCs enable the entity to prove possession of a combination of different attributes to obtainthe same authorisation. This proof does not reveal any additional information about the entityauthenticating, nor does it reveal the concrete values of the attributes. Furthermore, ABCsare unlinkable between contexts. In other words, credentials look different every time theyare shown, such that different showings cannot be linked to each other.
While from the point of view of privacy, ABCs bring many advantages, they also introducenew challenges. Anonymity may open the door to misbehaviour. Unfortunately, the strongAnonymity and Unlinkability properties provided by original ABCs do not allow an authorityto limit or revoke authorisation for misbehaving users. In response, several schemes haveappeared that provide capabilities to limit the amount of times that a credential can be usedbefore the user is identifiable [60]; capabilities to blacklist credentials so that access can betemporarily revoked [61, 62]; or capabilities to completely revoke the credentials [63].
There exist several implementations of ABCs [64, 65] available under diverse licenses. Theseimplementations offer different subsets of the functionalities mentioned above.
Private payments. Verification of encrypted data is also key to enabling privacy-preservingpayments, in which the payer may have to prove to the buyer, for instance, that he has enoughfunds without revealing the exact amount. Early digital cash systems relied on Blind Signa-tures (see the Cryptography CyBOK Knowledge Area [12]) to enable banks to sign e-coins [16].In a nutshell, to extend an e-coin to a client, a bank would blindly sign a random value. Tospend the e-coin, the client would give this number to the seller, who could redeem it at thebank. By storing the random number, banks can detect double spending, but not identify thedouble spender.
More recent privacy-preserving payment schemes, like the blockchain-based Zerocash [66,
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67] system, include more information in the transactions to provide better guarantees. Ineach transaction, the user proves, in zero knowledge, that she owns the e-coins input to thetransaction; that each one of the input e-coins was either recently mined (minted in Zerocashterms) or was the output of a previous transaction; and that the input and output values of thetransaction are the same, i.e., no money would be lost. For the sake of efficiency, Zerocashrelies on particularly efficient zero-knowledge proofs called zero-knowledge Succinct Non-interactive ARguments of Knowledge (ZK-SNARK) systems [68]. These proofs are shorter(in the order of hundreds of bytes) and relatively fast to verify.
1.1.2 Obfuscation-based inference control

The protocols discussed in the previous section provide strong (cryptographic) guaranteesregarding the Confidentiality of data. Such strong protection, however, comes at the costof efficiency and flexibility. On one hand, privacy-preserving cryptographic primitives requiresignificant resources in terms of computation and/or bandwidth. On the other hand, theynarrow down the type of processing that can be done on data. This is inherent to crypto-graphic constructions that fix inputs and outputs, and strictly define what information will beavailable after the protocol is executed.
In this section, we describe approaches to protect data Confidentiality based on obfuscatingthe data exposed to an adversary. These techniques provide a more relaxed definition of Con-fidentiality than cryptography, in the sense that they cannot completely conceal information.Instead, their goal is to provide a way to control the extent to which an adversary can makeinferences about users’ sensitive information. In fact, for most of these techniques, the levelof protection depends on the concrete data and adversarial knowledge. Thus, it is importantto run an ad-hoc analysis for the inference capability, as explained in Section 5. Also, wenote that the privacy gained from these techniques is based on limiting the information avail-able to one’s adversary. Consequently, these techniques reduce the amount of informationavailable for anyone and, hence, may have an impact on utility if the purpose of the applica-tion is based on sensitive information, e.g., finding matches on dating applications. However,we note that when the sensitive information is not crucial for the purpose of the applicationthese techniques may be deployed without affecting utility, e.g., a weather application thatcan operate using very rudimentary location data.
Obfuscation-based inference control techniques are not suitable for protecting data in tran-sit, but can be used to support privacy-preserving outsourcing, privacy-preserving collabo-rative computations, and privacy-preserving publishing. There are four main techniques toobfuscate data, as described below. We note that these techniques are mostly oriented toobfuscate numerical or categorical fields. Obfuscating more complex content, such as freetext, is a much more difficult task due to correlations that are hard to remove in a systematicmanner. To date, there are no known techniques that can reliably anonymise free text. How-ever, these techniques are quite effective at reducing the information leaked by Metadata, aswe discuss in Section 1.2.
For the sake of illustration, let us take the following microdata file as a current example. Thisis a very simple example, and we stress that the techniques introduced below can be appliedto many types of data formats and domains.
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Name Age Gender ZIP Salary
Alice 21 Female 21345 51300Bob 32 Male 25669 67400Carla 25 Female 18934 51500Diana 64 Female 21223 60200Eve 34 Female 18022 73400Frank 37 Male 25321 55800Gerald 19 Female 18235 68900

Table 1: An example database

Anonymisation. A common technique used to permit data processing without risk for in-dividuals is data anonymisation. Anonymisation, as its name indicates, seeks to decoupleidentity from information. The idea is that removing identifying information from data pointsmakes them unlinkable (i.e., they cannot be grouped as belonging to the same entity), thushindering the ability of the adversary to perform inferences from the data.
However, achieving full Anonymity is extremely difficult. In fact, when a dataset can be de-clared anonymous remains unclear. Data in and on themselves contains enough informationto correlate different attributes and/or records on a database. Given these groups, there aremany techniques to re-identify individuals behind the data release. A key insight into under-standing the difficulty of anonymisation is the uniqueness of individual’s data patterns [69,70]. There may be many combinations of the information released in a dataset that are uniqueto an individual. These are called quasi-identifiers. Finding quasi-identifiers enables the re-identified data by mapping them to identifying information in other data sources [71, 19]. Thus,anonymisation is commonly combined with the obfuscation techniques described below tolimit the risk of re-identification.
At this point in the knowledge area, it is worth referring to the notion of k-anonymity, whichadvocates combining generalisation and suppression in order to ensure that records on adatabase are anonymous among (i.e., indistinguishable from) at least other k entries in thesame dataset [72]. For instance, in the example above, one can generalise the ZIP code toachieve two-anonymity:

Name Age Gender ZIP Salary
* 21 Female 21* 51300* 32 Male 25* 67400* 25 Female 18* 51500* 64 Female 21* 60200* 34 Female 18* 73400* 37 Male 25* 55800* 19 Female 18* 68900

Table 2: Anonymization: A two-anonymous database through generalisation
While this notion is promising, there are several factors that make it unappealing and hardto use in practice. First, due to the uniqueness of the problem mentioned above, obtaining k-anonymity may require an unacceptable amount of generalisation in the database. Second,depending on the application, k-anonymity may not actually prevent inference of sensitiveattributes. This is illustrated in our running example in the Gender column. Even though
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the generalisation in the ZIP code ensures two-anonymity, the adversary knows with a 100%probability the gender of the users in each ZIP area, e.g., all users living in 21* are women.Similarly, the adversary learns that females in their 20s earn approximately 51000.
To address this issue, researchers argue that privacy not only requires k-anonymity, but also
l-diversity, which ensures that for each k anonymous individual, there are at least l possiblevalues for the sensitive attribute [73]. Researchers have also shown that l-diversity can bebroken and so-called t-closeness, where the set of sensitive attributes is not only diverse butfollows the general distribution for this attribute across a population, is needed [74].
The k-anonymity notion is very popular in health-related applications [75]. It has also beenadapted to fields other than databases [76, 77].
Generalisation. This technique consists in reducing the precision with which data are shared,with the goal of reducing the accuracy of the adversary’s inferences. Generalisation canbe achieved via a direct precision reduction of the shared values, or a bucketisation (i.e.,a mapping from values to ranges) before data are released. This technique has been applied,among others, for database anonymisation [72], reducing the precision of the values in thedifferent cells; or in private web searches [78], where words are mapped to the closest wordof a pre-defined set.

Name Age Gender ZIP Salary
Alice 10–30 Female 21*** 51300Bob 30–40 Male 25*** 67400Carla 20–30 Female 18*** 51500Diana 60–70 Female 21*** 60200Eve 30–40 Female 18*** 73400Frank 30–40 Male 25*** 55800Gerald 10–20 Female 18*** 68900

Table 3: Generalisation: Reducing the precision of the ZIP code to the first two digits; reduc-ing the precision of the Age column via bucketisation.

Suppression. This technique consists in suppressing part of the information before it ismade available to the adversary. The rationale behind suppression is that the fewer the dataare provided to the adversary, the more difficult is for her to make inferences. The suppres-sion strategy, which decides which information to hide, is key for the level of privacy protec-tion that such a scheme may provide. For instance, suppressing information at random isunlikely to destroy the patterns in the data that allow for inferences. Thus, unless most of thedata are deleted, this strategy seldom provides good protection. A common strategy is smallcount suppression, where aggregated values below a threshold are not reported. The levelof protection of this strategy depends on the type of access to the data and the knowledgeof the adversary [79]. Other suppression strategies, tailored to the nature of the data underconsideration and their characteristics [80, 81] provide better privacy results. This techniquehas been applied, among others, for database anonymisation [72], to hide some of the valuesin the different cells; or in location data publishing [80], to hide location samples that providetoo much information.
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Name Age Gender ZIP Salary
Alice 21 Female 21345 51300Bob 32 Male 25669 67400Carla 25 * 18934 51500Diana 64 * 21223 60200Eve 34 Female 18022 73400Frank 37 * 25321 55800Gerald 19 Female 18235 68900

Table 4: Suppression: Suppression of the Gender attribute for 50% of the records.

Dummy addition. This technique consists in adding fake data points, so-called dummies, tothe data made available to the adversary in order to hide which are the real samples. Theidea is that, as the adversary considers fake points when running the attack, her inferencewill have errors. For this defense to be effective, fake points have to be indistinguishable fromreal points. Ideally, from the point of the view of the adversary, any sample should look likea real or dummy one with equal probability. However, creating such indistinguishable pointstends to be difficult [82], and the adversary can easily filter them out. Thus, this technique isuseful in very few domains. Dummy addition techniques have been used to increase privacyin web searches [78, 83] or to protect databases from inferences [84].
Name Age Gender ZIP Salary
Alice 21 Female 21345 51300Bob 32 Male 25669 67400Carla 25 Female 18934 51500Donald 54 Male 25669 53500Diana 64 Female 21223 60200Eve 34 Female 18022 73400Frank 37 Male 25321 55800Goofy 61 Male 21346 41500Gerald 19 Female 18235 68900Minnie 23 Female 18456 62900

Table 5: Dummy addition: Adding 50% of fake records (in red).

Perturbation. Perturbation techniques inject noise into the data made available to the adver-sary. The noise is aimed at reducing the adversary’s inference performance. Similar to sup-pression techniques, the strategy used to introduce noise plays a crucial role in the level of pri-vacy provided. Initial schemes drew noise from many kinds of random distributions [85, 86]and added them to the data. This approach was not really effective, as an adversary withknowledge of the noise distribution could infer the original data values with reasonable ac-curacy and thus risked leaking more information than intended.
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Name Age Gender ZIP Salary
Alice 21 Female 21345 51345Bob 32 Male 25669 67863Carla 25 Female 18934 51053Diana 64 Female 21223 60302Eve 34 Female 18022 74558Frank 37 Male 25321 55005Gerald 19 Female 18235 69425

Table 6: Perturbation: Obfuscating salary with noise drawn from a normal distributionN(0,1000).
Currently, the gold standard in perturbation-based techniques is to add noise to achieve so-called differential privacy. The main goal of this technique is to address the limitations ofdata anonymisation techniques for publishing such as the aforementioned k-anonymity.
Differential privacy, introduced by Dwork [87], is a privacy definition originally intended to en-able the design of techniques that permit maximising accuracy when querying statistical in-formation (mean, variance, median etc.) about users on a database while minimising the riskof unintended inferences. Rather than a property of a dataset (like the techniques above), dif-ferential privacy is a property of a mechanism used to output the answers to queries againsta dataset. An algorithm is differentially private if, by looking at the result of the query, theadversary cannot distinguish whether an individual’s data were included in the analysis ornot. More formally, an algorithm A provides ε-differential privacy if, for all datasets D1 and
D2 that differ on a single element (i.e., the data of one individual), and all possible outputs Sof the algorithm:

Pr[A(D1) ∈ S] ≤ eε × Pr[A(D2) ∈ S],.

Differential privacy ensures that, given a perturbed data sample, the adversary gains a negli-gible amount of new information about the original data sample with respect to the her priorknowledge, regardless of what this prior knowledge was. There exist a number of algorithmsto ensure that differential privacy is met for a variety of queries [17].
Differential privacy is an extremely useful definition because it gives a formal framework toreason about the amount of information a powerful adversary might be able to infer aboutindividuals in the data, regardless of the adversary’s prior knowledge. However, it must benoted that:

• Differential privacy provides a relative guarantee, as opposed to an absolute privacyprotection. This means that the protection provided is regarding the prior knowledgeof the adversary. If the adversary already has full knowledge, differential privacy willnot improve privacy. In other words, differential privacy ensures that the release of datadoes not worsen the privacy loss of a user or population by more than a set threshold.However, this does not automatically ensure that a user’s privacy is preserved overall.Therefore, to claim privacy, it is important to not only ensure that a scheme providesa given guarantee, but also computes the adversarial error on the inferences so as toensure that users’ sensitive information is actually protected (see Section 5).
• One of the current practical challenges of differential privacy is to determine what val-ues of ε provide an acceptable level of privacy. The level of protection of crucially de-
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pends on the value of this parameter. This means that merely fulfilling the differentialprivacy definition with arbitrary parameter values does not directly guarantee that theadversary does not learn too much new information from the data. It is important toensure that the value of ε is such that the probabilities for different inferences are ac-tually indistinguishable. For example, if ε = 3, this only ensures that the ratio betweenthe probability of observing a result when an individual is, or is not, in the dataset is:
Pr[A(D1) ∈ S]/Pr[A(D2) ∈ S] ≤ e3 = 20.08. This probabilistic difference can typ-ically be detected by classical statistical detectors, or any modern machine-learningclassifier. In general, ε values greater than one deserve a closer look to verify that thealgorithms provide the sought level of protection.

• The amount of noise required to hinder inferences on the data depends on the so-called
sensitivity of the algorithm. Sensitivity measures how much a change in the input willchange the output of the algorithm A. When the input is a database and the output astatistical function, small input changes have little influence on the output and, thus, asmall amount of noise is enough to make the algorithm differentially private. We note,however, that when differentially private algorithms are applied to protect the privacy ofa single sample instead of to the result of a statistical query on a database, the sensitiv-ity may be much higher. Thus, only a large amount of noise may ensure protection. Forinstance, when differential privacy is applied to obfuscate a user’s reported position toobtain location privacy, protection may be less than expected if the parameters are notcarefully chosen [88].

• Differential privacy provides a worst-case guarantee, which means that the amount ofnoise introduced is tailored to bound the leakage given by the data point in the datasetthat provides the most information to the adversary with the best knowledge. Thismeans that in an average case the amount of noise is larger than needed. Recent stud-ies have been working towards tighter bounds that permit reduction in the noise re-quired to provide a desired protection level [89].
The differential privacy notion has been extended to account for metrics other than the Ham-ming distance (i.e., distinguishing whether one individual is in a database or not) [90]. Pertur-bations with differential privacy guarantees have been used to protect, among others, privacyin collaborative learning [91], or locations when querying location-based services [92]. It hasalso been recently adopted by the US to protect census data [93].
Finally, it is important to remark that for many real cases, one of these inference controlscannot provide enough privacy on its own. Therefore, typically one needs to combine severalof these techniques to limit the numbers of inferences that can be made.
1.2 Metadata Confidentiality

In the previous section, we discussed means to protect the Confidentiality of the contentsof messages, databases, queries, etc. These techniques are essential to ensure privacy. Yet,they do not protect against an adversary that uses the Metadata to infer sensitive informationabout individuals. Concretely, there are three types of metadata that have been demonstratedto be extremely vulnerable to privacy attacks: traffic metadata, associated to the communi-cation infrastructure; device metadata, associated with the platform generating the data, andlocation metadata, associated with the physical location from which data is generated.
In this section, we discuss the privacy risks associated with these types of metadata and therelevant controls to address these risks.
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Traffic Metadata. Network-layer information, such as the identities of the participants in thecommunication (IP addresses), the amount and timing of the data transferred, or the durationof the connection, is accessible to observers even if communications are encrypted or ob-fuscated. This information, commonly known as traffic data, can be exploited to deduce po-tentially sensitive private information about the communication. For instance, in an e-healthcontext, messages are generally encrypted to preserve patients’ privacy. However, the merefact that a patient is seen communicating with a specialised doctor can reveal highly sen-sitive information even when the messages themselves cannot be decrypted. Confidentialcommunications are not only desirable for personal reasons, but they also play an importantrole in corporate environments. The browsing habits of a company’s employees (e.g., access-ing a given patent from a patent database) can be used to infer the company’s future linesof investment, thus giving an advantage to their competitors. Finally, even if the identity ofthe communicating parties is innocuous, encrypted flows can reveal search keywords [94] oreven conversations [95].
A technique to protect traffic data is the use of anonymous communications networks. Thesenetworks are typically formed by a series of relays such that communications do not traveldirectly from origin to destination, but are sent from relay to relay. These relays also changethe appearance of a message through means of Encryption to provide bitwise Unlinkability,i.e., to ensure that packets cannot be linked just by looking at their bit content; they can alsochange traffic patterns by introducing delays, re-packaging messages, or introducing dummytraffic.
Anonymous communications networks follow different designs regarding how the infrastruc-ture is built (by users or dedicated relays), how they consider communications (message-based vs. flow-based), or how they reroute messages (deciding a route at the source, orletting relays decide on routing), among others. In the following, we focus on the two mostknown anonymous communications network types which have real-world deployment. Werefer readers to the surveys by Danezis et al. [96] for a historical overview of anonymous com-munications and by Shirazi et al. [20] for a comprehensive overview of more recent anony-mous communication systems.
The most popular anonymous communication network is Tor2 [97]. The core element of theTor Network are Onion Routers (ORs), which are essentially routers that forward encrypteddata. ORs encrypt, respectively, decrypt packets along the way to achieve bitwise unlinkabil-ity, as detailed below. When a user who wants to anonymously access an Internet servicethrough the Tor network, she installs a Tor client in her device. This software builds a cir-
cuit of connections over three ORs, called entry, middle and exit nodes, and the client routesencrypted traffic to the destination server through this circuit.
Tor uses so-called onion encryption, in which the client establishes a secret key with eachof the ORs in the circuit using an adapted version of authenticated Diffie-Helmann (see theCryptography CyBOK Knowledge Area [12]). Every packet routed through the circuit gets en-crypted with these three keys, first with the exit OR’s key, then the middle OR’s key, and finallythat of the entry OR. When the message travels through the circuit, the nodes ‘peel’ each layerof encryption until the original packet is sent to the destination. The server sends data to theclient using the same circuit, but in the inverse order; i.e., the server encrypts the messagein layers that are decrypted by exit, middle, and entry ORs. In order to support low-latencyapplications, Onion Routers do not impose delays on the messages they receive and resend.Thus, traffic patterns are conserved while packets travel through the network. This enables

2https://www.torproject.org/
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an adversary with the capability to observe both ends of the communication (i.e., the entryand exit nodes) to correlate incoming and outgoing flows in order to link the origin and des-tination of communications [98].
At this point it is important to highlight the difference between using Tor and using a VirtualPrivate Network (VPN). Both technologies give the protection against an adversary that ob-serves only one side of the communication, and both fail to protect against an adversarythat can see both extremes. However, while in Tor no single relay can on itself learn the linkbetween sender and receiver (i.e., the trust model is decentralized), in a P3P the provideractually knows this correspondence and thus is a single point of failure.
In order to destroy traffic patterns and protect correlation attack relays in an anonymous com-munication, networks need to delay packets or add new ones. This is the principle behindthe design of mix networks [99]. As opposed to onion routing, where all the packets froma communication are routed through a circuit, in mix-based communications routes are se-lected for every message. Then, when a mix relay receives a packet, instead of immediatelydecrypting and send it to the next hop on the path, the message is delayed. How many mes-sages are delayed is determined by a firing condition, which is an event such as the arrival ofa message or the expiration of a timeout that causes the mix to forward some of the mes-sages it has stored. Which messages are fired depends on the batching strategy, which canselect all of the messages or a fraction according to a probabilistic function. Both mixes andusers can send dummy traffic, which may be absorbed by other mixes or by the recipient.
A mix network designed to provide low latency is Loopix3 [100]. As opposed to Tor, whereusers’ clients communicate directly with the Tor nodes, Loopix assumes that users communi-cate with providers that in turn send messages to each other through the Loopix anonymouscommunication network. Providers choose a random route composed of Loopix routers andsend the message to the first node. Similar to Tor, messages get encrypted with the keys ofeach of these routers using the Sphinx packet format [101]. In addition to the Encryption, mes-sages are assigned a delay for every relay they visit according to an exponential distribution.Finally, providers inject dummy traffic into the network by sending packets to themselvesvia a Loopix path, so as to provide cover for real messages. The combination of providersthat hide mix messages from users sending (respectively receiving) messages at the sametime, delays and cover traffic enable Loopix to provide provable guarantees regarding theUnlinkability of the senders and receivers of messages.
Device Metadata. In today’s optimised Internet services, the concrete characteristics ofusers’ devices are frequently sent along with their data requests in order to optimise the ser-vice providers’ responses. Even if users are anonymous on the network layer, these character-istics may become a quasi-identifier that enables service providers to track users across theweb [102, 103]. This is because combinations of features such as the User Agent (the browsersoftware vendor, software revision, etc.), its Language, or the Plugins it has installed, or theplatform are mostly unique.4.
Device or browser fingerprinting is the systematic collection of this information for identifi-cation and tracking purposes. A large number of attributes, such as browser and operatingsystem type and version, screen resolution, architecture type, and installed fonts, can becollected directly, using client-side scripting and result in unique fingerprints. When this in-formation is not directly available, other techniques can be used to learn this information, as

3https://katzenpost.mixnetworks.org/4https://amiunique.org/, https://panopticlick.eff.org/
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explained below.
As an illustrative example, let us consider the list of fonts installed on a particular user’s webbrowser as an identifier that enables tracking. There are two techniques to obtain the list of in-stalled fonts, which is known to provide a good level of uniqueness. This is because browsersinstall fonts on demand depending on the sites visited. Since users have different browsingpatters, their lists of installed fonts become different as well. Font fingerprinting techniquesexploit the fact that if a font is installed, browsers will render it, but if not. browsers will revertto monospace font. Thus, depending on whether a font is installed or not, sentences will berendered differently. In the first technique, the tracking web sends a sentence to the browserto be printed with a series of fonts. Then, the client-side script checks the size of each sen-tence. When the size is equal to the sentence printed in monospace, the tracker learns thatthe font is not installed. A similar technique is called canvas fingerprinting. In this case, thetracker exploits the HTML5 Canvas feature, which renders pixels on the fly. As before, differ-ent font size result in different pixel footprints. Measuring the result of the canvas renderingthe tracker can ascertain which fonts are installed in a browser.
Defending against device Metadata attacks while retaining utility is extremely difficult. On thehand, hiding these metadata from service providers has an impact on the performance of theservices, since it limits personalisation and deteriorates the rendering of information. On theother hand, it is hard to establish which combination of features would actually make usersindistinguishable from other users. This is because we have no knowledge of the distributionof fingerprints in order to imitate one of them, and trying combinations at random runs therisk of being as unique as the original fingerprint [104]. Therefore, mechanisms need to becarefully crafted and evaluated [105].
We note that besides tracking based on metadata, trackers also use a series of techniquesbased on the use of cookies. For instance, web pages can include cookies from third parties,which allows these parties to detect when users revisit a page [106]. Third parties can alsouse cookie syncing, whereby, besides adding their own tracking, webs redirect cookies toother trackers to inform them of where the users are going [107]. Finally, there exist perva-sive mechanisms to install cookie-like information that cannot be removed by cleaning thebrowser’s cache [13].
Location metadata. Finally, a user’s geographical location revealed to online services can beused to infer sensitive information. This information can be revealed explicitly, for example,when the user makes queries to location-based services to find nearby points of interestor friends; or implicitly, for example, when GPS coordinates are associated with photos orcontent published on social networks, or inferred from the access point used to access theInternet.
Clustering techniques to find groups of nearby points where the user spends not significantamounts of time can be used to infer users’ points of interest such as where they live, wherethey work or their favourite leisure places. In many cases, points of interest can be usedas quasi-identifiers for users. For instance, the three most commonly visited locations areunique to a user in a majority of cases, even when the locations are provided on a moregeneral level (e.g., US counties) [108]. Similarly, the types and patterns of locations visitedcan be used to infer demographic data about users such as age or gender [109]. Furthermore,once movement patterns have been characterised, they can be used to predict individuals’future movements [110].
There are two kinds of defence for protecting location Metadata in the literature. The first
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relies on cryptographic techniques to process location-based services’ queries (see Sec-tion 1.1.1). For instance, users can privately learn whether a friend is nearby. This servicecan be realised by Homomorphic encryption encryption [111], private equality testing [112] orprivate threshold set intersection [113]. The second kind of defence is based on the obfus-cation techniques described in Section 1.1.2 in order to control the inferences that an adver-sary draws from the location data. For instance, user’s location can be hidden [114], i.e., notreported to the provider; perturbed [115], i.e., reporting a location different from the user’s ac-tual position; generalised [116], i.e., reported with less precision; or accompanied by dummylocations so that the user’s real movement patterns cannot be identified [117].
2 PRIVACY AS CONTROL

[118][119][120]
In the previous section, we discussed privacy technologies that keep data confidential, byminimising the collection of data and/or minimising the amount of information that can beinferred from any released data. A wider notion of privacy, which is usually referenced inregulations, broadens privacy from the notion of concealment of personal information, tothe ability to control what happens with the information that is revealed [4, 6].
The idea behind the shift from technologies that minimise disclosure to technologies thatprovide the means to control information use, is that in many cases, revealing data may beunavoidable or perceived as beneficial to the data subject. Thus, it is advisable to considerthe use of technologies that address two major concerns: i) enable users to express howthey expect that data disclosed to the service provider are used, so as to prevent undesirableprocessing of these data; and ii) enable organisations to define and enforce policies thatprevent the misuse of information, as defined by the users.
In this section, we revise techniques that have been designed under the privacy as controlparadigm. We focus on techniques for the creation and configuration of good privacy settingsthat help users express their preferences with respect to data disclosure and processing;and techniques that support the automated negotiation of privacy policies across services.Because much of the protection relies on trust, privacy technologies that enhance privacyin a system through improved control are less numerous and varied than those designed toachieve Confidentiality.
It is important to highlight that these techniques inherently trust the service provider thatcollects the data to correctly enforce the policies established by the user with respect tothird parties, as well as not to abuse the collected data itself. Also, as noted by Acquisti etal. [118], providing users with tools to control information flows can reduce risk perceptionand increase risk-taking, effectively reducing the overall privacy of users.
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2.1 Support for privacy settings configuration
Privacy settings are those controls in a web service that allow users to express their prefer-ences regarding how data should be revealed to other users, shared with third parties, andprocessed by the service providers. Madejski et al. have shown that the complexity of theseprivacy settings makes them barely usable by individuals [119]. This lack of usability causesusers to misconfigure their privacy settings, i.e., establish configurations that do not matchtheir expectations. This in turn results in unintended disclosure of data. We refer readers tothe Human Factors CyBOK Knowledge Area [121] for further information about the impact ofusability of systems on security and privacy.
To counter this problem, researchers have proposed a number of techniques whose goal is toidentify groups of individuals that share certain characteristics, and then establish the mostadequate settings for each user group. One area of research suggests letting security andprivacy experts define what are the best policies are. [122]. This approach, however, is difficultto generalise from targeted groups to the general population, and in many cases may result instrategies that overestimate the need for protection. This in turn limits too much the sharingand processing of data, thus rendering systems unusable. Other proposals advocate forusing machine-learning techniques to infer adequate settings for a user based on the socialgraph of a user’s friends and acquaintances [101]. This technique, however, requires users,or a centralised recommender system, to know a user’s social graph in order to performthe inferences, which raises privacy concerns in itself. A third approach does not requireknowledge of a user’s social graph, but tries to find adequate privacy settings by looking at alarger set of users. [123]. As opposed to the previous technique, a user’s suggested settingspreference is derived from generic data. These techniques have been shown to be proneto produce policies that are valid for the majority of users, but often discriminate againstuser groups with specific privacy requirements such as activists or persons of public interest.Furthermore, ML-based techniques often augment and perpetuate biases present in the datafrom which the initial policies are inferred. A final research areas suggests crowdsourcingthe optimum composition of these policies [124]. These techniques are more flexible in thesense that users have more leeway to influence the policies. However, they are still influencedby majority votes and may not be ideal for users who do not follow mainstream practices.
2.2 Support for privacy policy negotiation

The previous technologies support users at the time of configuring their privacy settings inan online service. An orthogonal line of work is dedicated to automating the communicationof user preferences to the service, or between services.
Technologies such as the W3C’s Platform for Privacy Preferences Project (P3P) [125], whichfacilitate the communication of setting preferences between user and service provider. P3Pis an industry standard that allows websites to encode their privacy policies (what informa-tion is collected, how it is used etc.) in a pre-defined format. These policies can be read andinterpreted by browsers equipped to do so. The browser can then compare the site’s policywith a user’s specified privacy preferences written in a machine readable language such asP3P Preference Exchange Language (APPEL) [126]. P3P, however, does not have any meansto enforce that the service provider actually follows the practices described in the policy.
Other technologies such as purpose-based access control [127] or sticky policies [128] pro-vide the means to specify allowed uses of collected information, and to verify that the pur-pose of a data access is compliant with the policy. These technologies can be supported by
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cryptographic mechanisms that guarantee that the service providers must comply with thepreferences established by users.
2.3 Support for privacy policy interpretability

In order to configure the privacy settings according to their expectations of how data shouldbe handled, users need to understand the privacy policies that describe the meanings ofthese settings. These policies are often long, verbose, and contain a lot of legal terms; andthey often evolve over time. Thus, users find them difficult to understand. Researchers havedeveloped technologies that enhance users’ability to interpret privacy policies.
Currently, there exist two approaches to improve users’ understanding of privacy policies.One is to trust experts to label, analyse and provide reasons for existing privacy policies [129].Another avenue is to completely automate the interpretation process. Polisis5 [120] is amachine-learning-based framework that enables users to ask questions about natural lan-guage privacy policies. This tool offers a visual representation of the policy specifying thetypes of data collected, the purpose of this collection, and the sharing practices, among oth-ers.
3 PRIVACY AS TRANSPARENCY

[130][131][132]
The last privacy design paradigm we consider is privacy as transparency. As opposed totechnologies that limit data disclosure or the use of disclosed data, transparency mecha-nisms analyse users’ online activities in order to either provide them with feedback aboutthe implications of their actions, or run audits to check that there has been no violation ofprivacy.
As with control-oriented technologies, transparency-based privacy cannot prevent privacy vi-olations in and of themselves. In fact, feedback or audits happen after the users have alreadydisclosed data to the provider. Thus, providers are again trusted with making sure that thecollected data are not processed or shared in ways not authorised by the users.
3.1 Feedback-based transparency

We first describe mechanisms that make transparent the way in which information is col-lected, aggregated, analysed and used for decision making. The common factor betweenthese technologies is that they provide users with feedback about how their information isprocessed or perceived by others.
An early effort in this direction is the concept of privacy mirrors [130], which show users their‘digital selves’; i.e., how others see their data online. This concept was adopted by popular on-line social networks such as Facebook, which allows users to check how different audiences(e.g., friends, friends of friends, others), or even individual users, see their profiles wheneverthey make changes to their privacy controls. A similar line of work provides other means ofvisualising how privacy settings affect data sharing in order to improve users’ understandingof the set of permissions they have selected. This solution provides visual cues to users thatindicate the access permissions associated with the data they shared [133]. For instance,

5https://pribot.org/polisis
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it can highlight fields in a social network profile with a different colour depending on whohas access to that particular information. Both solutions help users understand their prac-tices and modify their actions. However, they can only do so after the information has beenrevealed to the provider (and possibly to other users).
A different type of user feedback comprises so-called privacy nudges [131]. Nudges assistusers in making choices about their privacy and security settings. They give users imme-
diate feedback whenever the user performs an online action in a way that the action couldbe cancelled or modified. For instance, the nudge can inform the user that the post sheis currently writing is public so that the user is careful about the words she chooses to use.Nudging tools can be even more sophisticated and use modern machine learning algorithmsto analyse photos or text as they are being uploaded, and provide users with more concretefeedback such as ‘the post can be perceived as negative’ or ‘the photo is very explicit’. Whileimmediate feedback presents evident benefits compared to mirrors, since actions can bemodified before information is sent to the provider, it also has drawbacks. Experiments withusers have shown that immediate feedback results in an uncomfortable feeling for users asthey feel monitored, and users sometimes perceive the advice as paternalistic and out ofplace [132].
3.2 Audit-based transparency

As mentioned before, even with privacy policies and access control in place, there is no guar-antee that user preferences will be respected. Additional measures can be put in place toenable users to verify that no abuse has taken place. To realise these audits, the systemis required to log all data access and processing operations. This logging may reveal whenusers log into the system, and when and how their data are transmitted to others. Thus, de-pending on the amount and granularity of the information, logging may introduce additionalprivacy risks.
Therefore, logging policies must be carefully crafted. One approach to do this is to derive theauditing specifications from the policies using formal methods [134]. This guarantees thatthe generated logs, while being minimal, still contain enough information to audit whetherthe policies are being respected. The solutions, however, are limited in their expressivenessand cannot handle privacy policies in modern systems where the amount of data collectedand the number of entities involved make a formal analysis extremely cumbersome.
The use of formal methods assumes that data sharing is managed by a centralised authoritythat must be trusted. This is problematic because the centralised authority becomes a singlepoint of failure. Recent advances in cryptography and distributed ledgers permit the design ofsolutions that provide the means to create highly secure logs, while ensuring that no privateinformation is shared with unauthorised parties. When logging is made in such a distributedmanner, no individual party can modify the log on its own, reducing the need for trust andeliminating any single point of failure. For instance, systems like UnLynx [135] permit entitiesto share sensitive data, and perform computations on them, without entrusting any entitywith protecting the data. All actions are logged in a distributed ledger for auditing, and thecorrectness of the operations is ensured by using verifiable cryptographic primitives and zero-knowledge proofs. Therefore, it is not necessary to publish or log the sensitive data or theoperations done on them.
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4 PRIVACY TECHNOLOGIES AND DEMOCRATIC VALUES
[136][137][138]

Privacy technologies are of paramount importance to ensure that our fundamental right toprivacy is respected in the digital world. Privacy protection is crucial for underpinning thevalues that support our democratic societies. Citing Daniel Solove: ‘Part of what makes asociety a good place in which to live is the extent to which it allows people freedom fromthe intrusiveness of others. A society without privacy protection would be suffocation’ [138].While such a society seemed science fiction not so long ago, episodes such as the FacebookCambridge Analytica case highlight the importance of securing data from being accessed byunintended parties (e.g., using Confidentiality or control techniques) to protect citizens frominterference and manipulation.
In this section, we provide two examples that highlight the importance of privacy technolo-gies in supporting democracy. On one hand, we consider electronic voting systems that en-able fair elections to take place using electronic infrastructure in adversarial conditions. Onthe other hand, we give an overview of censorship resistance technologies. These systemsensure that in a digital world, where communication infrastructure is dominated by a smallnumber of companies and state actors can observe all communications, individuals have themeans to communicate freely.
4.1 Privacy technologies as support for democratic political systems

The growing use of electronic applications to interact with governmental bodies brings greatadvantages to society. Providing citizens with easy means to express their opinions, com-ment on government initiatives, or vote in elections, increases their involvement in publicdecision processes. This in turn improves the power balance between those who can exe-cute decisions and those who are affected by the outcome of the decision process.
For these improvements to be effective, citizens must be able to freely express their opinionsand must be sure that their inputs cannot be modified or lost during the process. The useof common infrastructures (e.g., cloud services or unprotected communication networks) toimplement these democracy-oriented applications, however, raises concerns about surveil-lance and manipulation. Therefore, it is important that these applications are supported bystrong privacy technologies that can protect users’ identities, as well as their sensitive dataand inputs to the system. We describe two example applications, electronic voting and elec-tronic petitions, whereby the technologies introduced in the previous sections are combinedto enable citizens and governments to enjoy technological progress without compromisingour democratic values.
Electronic voting (eVoting). Electronic voting systems have the goal of enabling fair electionsto be conducted via electronic infrastructure in adversarial conditions. In particular, eVotingschemes provide:

• Ballot secrecy: an adversary cannot determine which candidate a user voted for.
• Universal verifiability: an external observer can verify that all the votes cast are countedand that the tally is correct. Some protocols provide a weaker property, individual verifi-
ability, where each voter can verify that his/her vote has been correctly tallied. Benalohet al. provide a comprehensive overview of the aspects to assess to obtain end-to-endverifiability [139].
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• Eligibility verifiability: an external observer can verify that all the votes cast were madeby a unique eligible voter.
In order to guarantee the first aspect, it is key to break the links between the votes putting theirballots into the system, and the ballots that come out. In traditional pen-and-paper physicalelections, this is done by mixing the ballots all of which have exactly the same appearancein an urn. In eVoting, Unlinkability is typically achieved using mix networks [140, 141]. thevotes are passed through a series of mixes, which must not belong to the same authority.Otherwise, this authority could trace the votes and link the voters to their voting choices. Theresults are published on a public bulletin board which anybody can read and verify that theelection was carried out in a honest manner.
Voting mix networks are designed in a slightly different way than those mentioned in Sec-tion. 1.2. In the case of eVoting, the mixes fire when all votes are in, and the batching strategyis to take all the votes. In simple terms, it ensures that all votes are mixed together, obtainingthe maximum Anonymity set. This fulfills the ballot secrecy criterion as any vote could havebeen cast by any voter. Furthermore, to ensure universal verifiability, in eVoting mix networksevery node does verifiable shuffles [136]. This means that the mixes prove, in zero knowledge,that they mix all the votes (all the votes at the input appear at the output) and the mixing israndom. Eligibility verifiability can be obtained by requiring voters to prove in zero-knowledgethat they are eligible to vote.
Other voting protocols provide ballot secrecy through the use of blind signatures: an autho-rised entity verifies the eligibility of a user and blindly signs her vote (i.e., without seeing thevote content) [142]. The user provides a zero-knowledge proof along with the vote that thevote has been correctly constructed. Then, users submit the signed votes to the tally serverusing an anonymous communication channel. This way no entity in the system can link voterto votes.
A third strategy is based on Homomorphic encryption encryption. In these schemes, thetally server creates a bulletin board with encrypted zero entries for every candidate [143, 144].Then, every user adds his vote to the desired candidate, and randomises the rest of the en-cryptions (so that encryptions of the same number never look the same). As before, zero-knowledge proofs can be used to ensure that sums and randomisation have been performedin the correct way.
Besides the above three properties, some voting protocols additionally aim to provide coer-
cion resistance, whereby a user cannot be forced to vote for a particular candidate against herwill. One strategy to implement such a system is to provide users with fake credentials [145].Then, when users are under coercion they follow the instructions of the coercer, but providetheir fake credentials to the system. This enables the tally server to ignore any votes pro-duced under coercion. Related approaches prevent coercion via re-voting, i.e., the schemespermit users to recast a vote so as to cancel their coerced choice [146]. These schemes de-fine policies to establish how to count votes whenever a given credential has cast more thanone vote. (e.g., count the last one, or add a pointer to the cancelled vote).
Anonymous petitions. We define a petition as a formal request to a higher authority, e.g., par-liament or another authority, signed by one or more citizens. Signing a petition publicly, how-ever, might raise concerns or conflicts in terms of relationships between friends, colleagues,and neighbours, discouraging citizens from participation [147]. Privacy technologies, in par-ticular, anonymous credentials, can help in creating secure and privacy-preserving petitionsystems.
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In petition systems based on anonymous credentials, citizens can register with the authoritymanaging the petition system to obtain an anonymous signing key associated with someattributes relevant for the petitions. Then, at the time of signing a particular petition, they canprove they are eligible (e.g., they are inhabitants of the municipality referred to) but do notneed to reveal their identity. Advanced credential properties such as double signing detectionenable the creation of this system while avoiding abuse from misbehaving citizens [148].
More modern approaches rely on advanced cryptographic primitives to remove the need fora central trusted party that registers users. For instance, Sonnino et al. [149] enable thresholdissuance and verification of credentials to sign the petition, i.e., several authorities participatein the issuance. This scheme improves Confidentiality, authenticity, and availability throughthe use of distributed ledgers. This approach increases the level of privacy in the system,while at the same time reducing the need to trust one single party.
4.2 Censorship resistance and freedom of speech

Censorship systems attempt to impose a particular distribution of content across a system.They may prevent users from publishing particular content that is considered controversial ordangerous for the censorship regime; or they may prevent users from accessing content thatmay undermine the societal equilibrium that the censor wishes to impose on their society.
In this section, we show how privacy-preserving technologies can act as a cornerstone tosupport freedom of speech and freedom of access to information. We will elaborate on someexamples for each of these goals in order to illustrate the fundamental principles that makecensorship resistance possible. We refer the interested reader to the surveys by Khattaket al. [137] and Tschantz et al. [150] for a comprehensive revision of censorship resistancesystems.
Data publishing censorship resistance. Motivated by the ‘Church of Scientology’ court order,which caused the closure of the Penet remailer at the end of the 1990s [151], Anderson pro-posed the Eternity Service. This was the first system to use privacy technologies to protectthe publishing of content on the Internet [152]. Anderson’s scheme proposed to distributecopies of files across servers in different jurisdictions, so that those servers cannot be sub-poenaed at the same time. In this scheme, privacy technologies have fundamental roles forresistance: Encryption not only provides privacy for users, but also prevents selective denialof service at retrieval time; and anonymous Authentication not only protects users from theservice, it also protects the service from being coerced into revealing the identities of users,e.g., by law enforcement, since it cannot know these users’ identities.
Anderson’s proposal inspired later designs such as Freenet, a peer-to-peer system to pub-lish, replicate, and retrieve data while protecting the Anonymity of both the authors and read-ers [153]. Additionally, the system provides deniability for the entities storing the information;i.e., the servers cannot know the content of the files they store and thus, can always claimto be unaware of what they are serving. In Freenet, files are located according to a key thatis typically the hash of the file, but can also include a file description, or be a simple string.To retrieve a file, a user obtains or computes the keys and asks Freenet nodes to find it. If anode does not contain the file, it asks a neighbour. When the file is found, it is sent back alongthe same path that the request followed in the network. This ensures that the node holdingthe data does not know the recipient. To store a file, if the key does not already exist, thepublisher sends the file along a path and every node on the path stores the file. To protectthe anonymity of the publisher, nodes that store the file also decide at random whether to
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also claim ownership. Such random claims also provide nodes with deniability as to whichof the files they are storing are actually theirs.
The design of Freenet is based on strong cryptography, which protects the content of mes-sages. However, in the early days, the routes and timing of messages allowed attacks tobreak the system’s anonymity. Tian et al. [154] show that a passive attacker deploying a num-ber of nodes in the network that can monitor requests can re-identify the requester by recur-sively asking other nodes if they have seen the request. Freenet also allows for the collectionof privacy-preserving statistics. However, the statistic obfuscation method is vulnerable toinference attacks where the adversarial node combines several queries in order to learn in-formation about other Freenet nodes’ properties (e.g., bandwidth) [155]. These issues arenow addressed by Freenet, but others remain such as the attack by Levine et al. [156], whichenables a single node to distinguish whether a neighbouring peer is the actual requester ofa file or just forwarding the requests for other peers. The attack only requires passive ob-servation of traffic, and exploits the fact that the Freenet protocol determines the averagenumber of requests for a file observable by a node depending on how far this node is fromthe requester. Thus, a simple Bayesian inference suffices to detect whether a neighbour isthe request initiator.
A different approach to censorship is followed in Tangler [157]. The system also providespublisher and reader anonymity, but achieves censorship resistance in a different way. In-stead of simply storing the file replicated in many nodes in an anonymous way, Tangler filesare split into small blocks that are stored on different servers. In order to recover a file, onemust thus contact a number of servers to retrieve enough of these blocks. In order to avoida server being compelled to delete a block belonging to a file, Tangler builds blocks in such away that blocks contain parts of many documents. To ‘tangle’ files into blocks, Tangler usessecret sharing (See the Cryptography CyBOK Knowledge Area [12]). Tangling improves avail-ability in two ways. First, a censor can only delete a target file by causing collateral damageto other files that may be allowed. Second, whenever one wants to replicate a file, the filesentangled in the replicated file blocks are also replicated.
Data access censorship resistance. To enable censorship-free access to data, systems mustbe able to conceal that users are accessing these data. This can be done in a number ofways [137]. A first approach is mimicking, where censorship resistance is obtained by at-tempting to make accessing to censored data look like accessing allowed data (e.g., as aSkype call [158] or as a visit to an innocuous web page [159]). These approaches are effec-tive, but have been shown to be vulnerable to active attacks in which the adversary probesthe suspicious connection to find out if any of the expected functions of the application beingmimicked are missing [160].
A second approach is tunnelling. In this case, the censored communication is directly tun-nelled through an uncensored service, instead of pretending to be that service. In particular,these systems use widely used services as tunnels, e.g., cloud services [161, 162], so thatblocking communications imposes a high cost for the censor. A third approach is to em-bed the communication inside some content (e.g., hidden in a photo or video [163]). Thisapproach not only makes communications unobservable, but also deniable for all senders,recipients and applications hosting the content.
Finally, some censorship resistance systems rely on hiding the destination of the communi-cation to prevent censors from blocking connections. This is achieved by relaying censoredtraffic through one or more intermediate nodes. These nodes can be proxies, such as bridges
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in the Tor network [97]. These bridges are Tor relays whose IPs are not public so that they can-not be identified as members of a censorship resistance system. To avoid the censor iden-tifying connections to bridges due to their appearance, these are disguised using so-calledpluggable transports [164], which transform the traffic flow following one of the approachesreferenced in this section.
Another option to hide the destination is the use of decoy routing, also known as refraction
networking [165, 166]. In decoy routing, clients direct their censored traffic to a benign desti-nation. This traffic includes an undetectable signal that can only be interpreted by a cooper-ating Internet router. This router deflects the client’s traffic to the censored site and returnsthe responses to the client. Obviously, the cooperating router must be outside of the censor’sdomain, but, depending on the scheme, it can be on the forward path from the client to theuncensored destination [165, 166], or on the downstream path [167, 168].
5 PRIVACY ENGINEERING

[169][170]
The growing privacy concerns in society have made the concept of ‘privacy by design’ verypopular among policy makers. This concept advocates for the design and development ofsystems that integrate privacy values to address users’ concerns. However, the literaturearound this concept rarely addresses the actual processes behind the design, implementa-tion, and integration of privacy protections into products and services.
In this knowledge area, we first gave an overview of the landscape of privacy technologies,and subsequently provided a series of examples in which these technologies are combinedto support the use of electronic systems while maintaining core democratic values. In thissection, we elaborated on the design principles behind these, and other, privacy-preservingsystems. We briefly discussed how these principles can be used to generally approach theengineering of systems that embed strong privacy protections. We refered the reader to thework by Gürses et al. [169] for a more comprehensive explanation of these principles andtheir role in the design of privacy-preserving systems. A relevant paper to help the readerunderstanding these principles is the work Hoepman on privacy strategies [171]
The two primary goals when designing privacy-preserving systems are to:

• Minimise trust: limit the need to rely on other entities to behave as expected with re-spect to sensitive data. For instance, in mix-based eVoting, trust is not only distributedacross the entities managing the mixes, but verifiable shuffles are put in place to limitto a maximum the amount of reliance on the good behaviour of each mix. Similarly, thecryptographic primitives used to implement privacy-preserving electronic petitions donot require trust on the registration authority to protect the identities of the signers.
• Minimise risk: limit the likelihood and impact of a privacy breach. For instance, in Tor,compromising one relay does not provide any sensitive information about users’ brows-ing habits. If one compromises the entry node, one cannot learn the destinations of thecommunications, only the middle nodes of the circuits; and if one compromises theexit node, one cannot learn the origin of the communication.

To minimise both trust and risk, privacy experts typically design systems in accordance withthe following strategies:
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• Minimise Collection: whenever possible, limit the capture and storage of data in thesystem.
• Minimise Disclosure: whenever possible, constrain the flow of information to partiesother than the entity to whom the data relates. This refers both to direct flows betweensenders and receivers, and to indirect flows, e.g., use of control techniques to limit theinformation available when publishing or querying a dataset.
• Minimise Replication: whenever possible, limit the number of entities where data arestored or processed in the clear.
• Minimise Centralization: whenever possible, avoid a single point of failure regarding theprivacy properties in the system.
• Minimise Linkability: whenever possible, limit the capability of the adversary to link data.
• Minimise Retention: whenever possible, limit the amount of time information is stored.

Implementing these strategies at first may seem incompatible with maintaining the Integrityof the system. For instance, if no information is disclosed or collected, how can one makesure that no entity is abusing the system? If there is no central authority, how can one makesure that Authentication and authorisation work as expected? This is where privacy technolo-gies come into play. They enable the design of systems where as little information as possi-ble is revealed to parties other than the ones to which the information relates, and in whichthere is a minimum need to trust providers or other users in order to preserve the privacy ofsensitive information while still pertaining Integrity and allowing information exchange.
In order to decide which privacy technology is most adequate to build a system, a first stepis to identify the data flows that should be minimised; i.e., those that move data to entities towhom the data do not relate. The second step is to identify the minimal set of data that needsto be transferred to those entities. To identify the minimum required information that needs tobe transferred, the designer should attempt to keep as much data as possible out of reach ofthose entities without harming the functionality of the system. Strategies to minimise unnec-essary information flow (based mainly on the technologies introduced throughout Section. 1)are:

• Keep the data local: perform any computation on sensitive data on the user side, andonly transmit the result of the operation. Additional information, such as zero-knowledgeproofs or commitments, may be needed to guarantee the correctness of the operations.
• Encrypt the data: encrypt the data locally and send only the encrypted version to otherentities. If any operations on the data are needed, see the next point.
• Use privacy-preserving cryptographic protocols: process data locally to obtain inputs toa protocol in which, by interacting with the untrusted entities using one of the protocolsintroduced in the previous sections, the user can obtain or prove information while lim-iting the information made available to those entities. For instance, using anonymouscredentials for Authentication without revealing the identity or even the value of an at-tribute, or using private information retrieval to perform a search on a database withoutrevealing the query to the database holder.
• Obfuscate the data: use techniques to control inference to process the data locally andonly send the perturbed version to the untrusted entity.
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• Anonymise the data: process the data locally to remove identifiable information andsend it to the untrusted party via an anonymous channel.
By seeking minimisation of trust and using the above techniques, system designers arebound to collect, process and retain fewer data than with other strategies based on com-pliance with regulation. We recognise that many systems and applications cannot be builtwithout collecting some user-related data. For these cases, designers must take into accountthe privacy technologies outlined in Section. 2 and Section. 3. These techniques, while requir-ing trust, help minimise the risk of a breach and, if the breach happens, minimise the impactthat the disclosure of data may have for the users.
Privacy evaluation. Once privacy technologies or end-to-end systems have been designed, itis important to conduct a privacy evaluation. This evaluation has the goal of quantifying thelevel of privacy that the technology, and respectively the system, can provide.
For privacy technologies based on cryptographic primitives, the privacy evaluation is typicallycovers the cryptographic proofs that ensure that only the intended information is leaked bythe operations. On the contrary, for privacy techniques based on obfuscation, it is necessaryto carry out an analysis to validate that the combination of techniques provides the desiredlevel of privacy.
A systematic privacy evaluation typically consists of the following steps. First, one needs tomodel the privacy-preserving mechanism as a probabilistic transformation. This establishesthe probability that, given an input, the privacy mechanism returns a given output. Second,one needs to establish the threat model, i.e., what the adversary can see and what is herprior knowledge. Third, assuming that the adversary knows the mechanism, consider how hewould annul the effect of the privacy mechanism. This usually entails either doing an analysisof the probability distributions, or using inference techniques such as machine learning tocompute what the adversary can learn.
At the end of the process, one usually has a distribution describing the probability that theadversary infers each of the possible inputs. This probability distribution is then used asinput to a privacy metric that captures the inference capability of the adversary. We referthe reader to the survey by Wagner and Eckhoff for a comprehensive description of privacymetrics in the literature [170].
6 CONCLUSIONS

Protecting privacy, as we have described in this knowledge area, is not limited to guaran-teeing the Confidentiality of information. It also requires means to help users understandthe extent to which their information is available online, and mechanisms to enable users toexercise control over this information. We have described techniques to realise these threeprivacy conceptions, emphasising the adversarial model in which they operate, as well as pro-viding guidelines to combine these techniques in order to build end-to-end privacy-preservingsystems.
Preserving privacy and online rights is not only important for individuals, it is essential tosupport democratic societies. The deployment of privacy technologies is key to allow usersfree access to content, and freedom of speech. Of equal importance is to avoid that anyentity gaining a disproportionate amount of information about individuals or groups, in orderto prevent manipulation and abuse that could damage democratic values.
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lance Cultures: A Global Surveillance Society?, 2010.[9] S. Gürses and C. Diaz, “Two tales of privacy in online social networks,” IEEE Security
and Privacy, vol. 11, no. 3, pp. 29–37, 2013.[10] H. Nissenbaum, “Privacy as contextual integrity,” Washington Law Review, 2 2004.[11] G. Stringhini, The Cyber Security Body of Knowledge. University of Bristol, 2019, ch.Adversarial Behaviours, version 1.0. [Online]. Available: https://www.cybok.org/[12] N. Smart, The Cyber Security Body of Knowledge. University of Bristol, 2019, ch.Cryptography, version 1.0. [Online]. Available: https://www.cybok.org/[13] G. Acar, C. Eubank, S. Englehardt, M. Juárez, A. Narayanan, and C. Dı́az, “The web never
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ACRONYMS
ABCs Attribute-Based Credentials.
E2EE End-to-end encryption.
GPS Global Positioning System.
OTR Off-the-Record messaging.
P3P Privacy Preferences Project.
VPN Virtual Private Network.
W3C World Wide Web Consortium.
ZK Zero Knowledge.
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GLOSSARY
anonymity The state of being not identifiable within a set of subjects, the anonymity set.
authentication The process of verifying the identity of an individual or entity.
confidentiality The property that ensures that information is not made available or disclosedto unauthorised individuals, entities, or processes.
encryption The process of transforming information (commonly referred to as plaintext/data)using an algorithm (called cipher) to make it unreadable to anyone except those pos-sessing special knowledge, commonly referred to as a cryptographic key.
homomorphic encryption A form of encryption that when computing on ciphertexts, gener-ates an encrypted result which, when decrypted, matches the result of the computationas if it had been performed on the plaintext.
integrity The property that ensures that data is real, accurate and safeguarded from unau-thorised user modification.
metadata Information about data or sent along with data, e.g., the IP address, the location,or the operative system a message is sent from.
unlinkability The property of two (or more) items in a system that ensures that these itemsare no more and no less related than they are related concerning the a-priori knowledgeof the adversary.

KA Privacy & Online Rights | October 2019 Page 37

https://www.cybok.org

	1 Privacy as Confidentiality
	1.1 Data Confidentiality
	1.1.1 Cryptography-based access control
	1.1.2 Obfuscation-based inference control

	1.2 Metadata Confidentiality

	2 Privacy as Control
	2.1 Support for privacy settings configuration
	2.2 Support for privacy policy negotiation
	2.3 Support for privacy policy interpretability

	3 Privacy as Transparency
	3.1 Feedback-based transparency
	3.2 Audit-based transparency

	4 Privacy Technologies and Democratic Values
	4.1 Privacy technologies as support for democratic political systems
	4.2 Censorship resistance and freedom of speech

	5 Privacy Engineering
	6 Conclusions

