
Cyber Security Body of
Knowledge:
Secure Software
Lifecycle

© Crown Copyright, The National Cyber Security Centre
2019. This information is licensed under the Open
Government Licence v3.0. To view this licence, visit
http://www.nationalarchives.gov.uk/doc/open-
government-licence/.

When you use this information under the Open
Government Licence, you should include the following
attribution: CyBOK Secure Software Lifecycle Knowledge
Area Issue 1.0 © Crown Copyright, The National Cyber
Security Centre 2019, licensed under the Open
Government Licence
http://www.nationalarchives.gov.uk/doc/open-
government-licence/.

The CyBOK project would like to understand how the
CyBOK is being used and its uptake. The project would like
organisations using, or intending to use, CyBOK for the
purposes of education, training, course development,
professional development etc. to contact it at
contact@cybok.org to let the project know how they are
using CyBOK.

http://www.nationalarchives.gov.uk/doc/open-government-licence/
http://www.nationalarchives.gov.uk/doc/open-government-licence/
mailto:contact@cybok.org

Security Software Lifecycle

The components of a
comprehensive software
development process to
prevent and detect all
classes of security defects
and to respond in the
event of an exploit.

Agenda

• History

• Prescriptive Secure Software Lifecycle Processes

– Microsoft Security Development Lifecycle (12 practices)

– Touchpoints (7 practices)

– SAFECode (8 practices)

• Adaptations of the Secure Software Lifecycle

– Agile, Mobile, Cloud, Internet of Things (IoT), Road Vehicles,
eCommece/Payment card Industry

• Assessing the Secure Development Lifecycle

– SAMM

– BSIMM

– Common Criteria

History (and Current): Penetrate
and Patch

• Security is assessed when
“complete”; discovered
vulnerabilities then fixed/patched

– Costly

– Attackers can find and exploit
vulnerabilities without being noticed

– (Urgent) Patches can introduce new
vulnerabilities

– Patches go unapplied by customers

▪ 1998: Gary McGraw DARPA funded project on
the application of software engineering to
assessment of security vulnerabilities

▪ McGraw (and with John Viega) advocated for
proactive and rigorous software analysis to
assess and prevent vulnerabilities

• Book: Building Secure Software

▪ 2002: Bill Gates announces the Trustworthy
Computing Initiative

▪ 2004: Turned into a structured process, the SDL
(http://microsoft.com/sdl)

• Evolved to Version 5.2 in 2012, Version 6.0 in 2013

• Microsoft offers many (free) tools and templates to
support SDL

“Trustworthy Computing is the highest priority for all
the work we are doing. We must lead the industry to
a whole new level of Trustworthiness in computing.”

Agenda

• History

• Prescriptive Secure Software Lifecycle Processes

– Microsoft Security Development Lifecycle (12 practices)

– Touchpoints (7 practices)

– SAFECode (8 practices)

• Adaptations of the Secure Software Lifecycle

– Agile, Mobile, Cloud, Internet of Things (IoT), Road Vehicles,
eCommece/Payment card Industry

• Assessing the Secure Development Lifecycle

– SAMM

– BSIMM

– Common Criteria

1: Provide Training

Assess organizational knowledge on security and privacy –
establish training program as necessary

• Establish training criteria

– Content covering secure design, development, test and privacy

– (e.g. 80% of all technical personnel trained)

• Establish minimum training frequency – attackers are a moving target

– Employees must attend n classes per year

• Need to cover all the topics in the SDL

Training Requirements Compliance
Threat

modeling
Design Cryptography 3rd party Tools Static Anal Dynamic Anal Penetration Response

2: Security Requirements

Consider security at the outset of a project
• Development team identifies security

requirements
• Factor in security implications of functional

requirements, legal and industry, compliance,
standards, known threats, previous security
incidents.

• Techniques for systematically developing:
examples: SQUARE, abuse cases, i*, and KAOS

Training Requirements Compliance
Threat

modeling
Design Cryptography 3rd party Tools Static Anal Dynamic Anal Penetration Response

3: Define Metrics and
Compliance Reporting

• Define and document a bug bar for security

– Classification of what are moderate, important, or critical
security and privacy bug types

– User to set priority for fixing and to determine if the
product can ship

• Ensure that bug reporting tools can track security and issues
and that a database can be queried dynamically
for all security bugs

• Understand requirement compliance and
associate reporting requirements

Training Requirements Compliance
Threat

modeling
Design Cryptography 3rd party Tools Static Anal Dynamic Anal Penetration Response

4: Perform Threat Modeling
Training Requirements Compliance

Threat
modeling

Design Cryptography 3rd party Tools Static Anal Dynamic Anal Penetration Response

Threat modeling is a process to understand (potential) security
threats to a system, determine risks from those threats, and establish
appropriate mitigations.

Diagramming

Threat
enumeration

Mitigation

Validation

• Consider design principles, such as:
– Economy of mechanism

– Fail-safe defaults

– Complete mediation

– Separation of privilege

– Least privilege

– Least common mechanism

– Secure the weakest link

– Defense in depth

– Give or earn but never assume trust

– Always consider the users

5: Establish design requirements

Training Requirements Compliance
Threat

modeling
Design Cryptography 3rd party Tools Static Anal Dynamic Anal Penetration Response

6: Define and use cryptography
standards

Training Requirements Compliance
Threat

modeling
Design Cryptography 3rd party Tools Static Anal Dynamic Anal Penetration Response

Through the proper use of cryptography, one can protect the
confidentiality of data, protect data from unauthorized
modification, and authenticate the source of data.

7: Manage the security risk of
using 3rd party components

Training Requirements Compliance
Threat

modeling
Design

Cryptogra
phy

3rd party Tools Static Anal Dynamic Anal Penetration Response

https://snyk.io/stateofossecurity/

8: Use approved tools

Training Requirements Compliance
Threat

modeling
Design

Cryptogra
phy

3rd party Tools Static Anal Dynamic Anal Penetration Response

• Specification of approved build tools and options
– Compilers and code generators

– Static analysis

– Debuggers

– Dynamic analysis

– Test verification

– IDE

• Decide on settings and ensure settings are correct

• Security isn’t static
– Update your tools because they change with dynamic threat environment

http://www.ultraedit.com/support/tutorials_power_tips/uestudio/integrated_debugger.html

9: Perform static analysis
security testing (SAST)

Training Requirements Compliance
Threat

modeling
Design

Cryptogra
phy

3rd party Tools Static Anal Dynamic Anal Penetration Response

10: Perform dynamics analysis
security testing (DAST)

Training Requirements Compliance
Threat

modeling
Design

Cryptogra
phy

3rd party Tools Static Anal Dynamic Anal Penetration Response

11: Perform penetration testing

Training Requirements Compliance
Threat

modeling
Design

Cryptogra
phy

3rd party Tools Static Anal Dynamic Anal Penetration Response

12: Establish a standard incident
response practice

Training Requirements Compliance
Threat

modeling
Design

Cryptogra
phy

3rd party Tools Static Anal Dynamic Anal Penetration Response

• Prepare Cyber Security Incident Response Plan (CSIRP)

– Identify contact for Cyber Security Council and resources to
respond to incidents

– 24x7x365 contact information for engineering, marketing
and management individuals with decision-making
authority

• Ensure ability to service all code “emergency” releases and all
licensed 3rd party code.

Creation of a clearly defined support policy

Agenda

• History

• Prescriptive Secure Software Lifecycle Processes

– Microsoft Security Development Lifecycle (12 practices)

– Touchpoints (7 practices)

– SAFECode (8 practices)

• Adaptations of the Secure Software Lifecycle

– Agile, Mobile, Cloud, Internet of Things (IoT), Road Vehicles,
eCommece/Payment card Industry

• Assessing the Secure Development Lifecycle

– SAMM

– BSIMM

– Common Criteria

Touchpoints

Code review
(tools)

Architecture
risk

Penetration
Testing

Risk-based
testing

Abuse cases
Security

requirements
Security ops

4. Risk-based security testing

Code review
(tools)

Architecture
risk

Penetration
Testing

Risk-based
testing

Abuse cases
Security

requirements
Security ops

Diagramming

Threat
enumeration

Mitigation

Validation

5. Abuse cases

Code review
(tools)

Architecture
risk

Penetration
Testing

Risk-based
testing

Abuse cases
Security

requirements
Security ops

I. Alexander, Misuse Cases: Use Cases with Hostile Intent, IEEE Software, Jan/Feb 2003.

7. Security operations

Code review
(tools)

Architecture
risk

Penetration
Testing

Risk-based
testing

Abuse cases
Security

requirements
Security ops

Agenda

• History

• Prescriptive Secure Software Lifecycle Processes

– Microsoft Security Development Lifecycle (12 practices)

– Touchpoints (7 practices)

– SAFECode (8 practices)

• Adaptations of the Secure Software Lifecycle

– Agile, Mobile, Cloud, Internet of Things (IoT), Road Vehicles,
eCommece/Payment card Industry

• Assessing the Secure Development Lifecycle

– SAMM

– BSIMM

– Common Criteria

SAFECode

Security
control

Design
Secure
coding

3rd party Testing
Security
findings

Vulnerability
response

Deploy SDL

3. Secure coding practices

Security
control

Design
Secure
coding

3rd party Testing
Security
findings

Vulnerability
response

Deploy SDL

8. Planning the implementation and
deployment of secure development

Security
control

Design
Secure
coding

3rd party Testing
Security
findings

Vulnerability
response

Deploy SDL

Agenda

• History

• Prescriptive Secure Software Lifecycle Processes

– Microsoft Security Development Lifecycle (12 practices)

– Touchpoints (7 practices)

– SAFECode (8 practices)

• Adaptations of the Secure Software Lifecycle

– Agile, Mobile, Cloud, Internet of Things (IoT), Road Vehicles,
eCommerce/Payment card Industry

• Assessing the Secure Development Lifecycle

– SAMM

– BSIMM

– Common Criteria

Adaptations

• Agile:

– SAFECode provides security user stories

– Microsoft Secure DevOps

• Keeping credentials safe

• Continuous learning and monitoring

• Mobile

– OWASP resources for secure testing and threat modeling

• Cloud

– SAFECode practices for cloud

• Cloud-based security threats

Adaptations - 2

• Internet of Things (IoT)
– NIST practices: RFID, not allowing default passwords, use of

Manufacturer Usage Description (MUD) specifications, secure
update process

• Road Vehicles

– US Highway/Traffic Safety Administration guidelines, particularly
related to the systems engineering

• eCommerce/ Payment Card Industry (PCI)

– Data Security Standard

Agenda

• History

• Prescriptive Secure Software Lifecycle Processes

– Microsoft Security Development Lifecycle (12 practices)

– Touchpoints (7 practices)

– SAFECode (8 practices)

• Adaptations of the Secure Software Lifecycle

– Agile, Mobile, Cloud, Internet of Things (IoT), Road Vehicles,
eCommece/Payment card Industry

• Assessing the Secure Development Lifecycle

– SAMM

– BSIMM

– Common Criteria

Open SAMM Framework

Governance Intelligence SSDL
Touchpoints

Deployment

Strategy &
Metrics (SM)

Attack Models
(AM)

Architecture
Analysis (AA)

Penetration
Testing (PT)

Compliance &
Policy (CP)

Security
Features &
Design (SFD)

Code Review (CR) Software
Environment (SE)

Training (T)
Standards &
Requirements
(SR)

Security Testing
(ST)

Configuration
Management &
Vulnerability
Management
(CMVM)

BSIMM Framework

Objectives of the Common Criteria

▪ Permits comparability between the results of
independent security evaluations by providing common
set of requirements for secure functionality of IT
products;

▪ Establishes level of confidence in the security
functionality of IT products; and

▪ May help consumers determine whether the IT product
fulfills their security needs

http://www.commoncriteriaportal.org/theccra.html

CC Assurance* Levels

▪ EAL1: Functionally Tested

▪ EAL2: Structurally Tested

▪ EAL3: Methodically Tested and Checked

▪ EAL4: Methodically Designed, Tested, and Reviewed

▪ EAL5: Semiformally Designed and Tested

▪ EAL6: Semiformally Verified Design and Tested

▪ EAL7: Formally Verified Design and Tested

*Assurance: grounds for confidence that an entity meets its
security objectives - http://www.commoncriteriaportal.org/files/ccfiles/ccpart1v2.3.pdf

Summary

• Important for an organization to have a
comprehensive secure software lifecycle

• Organizations usually customize their own secure
software lifecycle (rather than take a prescriptive
approach)

• Successful adoption requires cultural change (in
addition to adopting the technical practices)

Images

• https://online.stanford.edu/courses/xacs101-software-security-foundations

• http://www.greatpriceshere.com/2008/06/30/bill-gates-dethroned/

• https://www.govtech.com/dc/articles/Time-for-a-Cybersecurity-Overhaul.html

• https://news.virginia.edu/content/qa-technology-expert-and-uva-grad-gary-mcgraw-talks-cybersecurity

• http://www.webdesigncompany.net/website-optimization-moving-target/

• https://www.ioausa.com/employee-benefits/compliance/

• http://www.michiganemploymentlawadvisor.com/technology-employment-issues/employees-the-weakest-
link-in-the-company-data-security-defense/

• https://towardsdatascience.com/the-basics-of-cryptography-80c7906ba2f7

• http://www.ultraedit.com/support/tutorials_power_tips/uestudio/integrated_debugger.html

• https://jrebel.com/rebellabs/developers-guide-static-code-analysis-findbugs-checkstyle-pmd-coverity-
sonarqube/

• https://medium.com/@dieswaytoofast/fuzzing-and-deep-learning-5aae84c20303

• https://www.synopsys.com/blogs/software-security/automated-secure-code-review/

• https://www.opsfolio.com/risk-center/use-secure-coding-standards/

• https://content.wisestep.com/implementing-change-workplace-best-tips/

https://online.stanford.edu/courses/xacs101-software-security-foundations
http://www.greatpriceshere.com/2008/06/30/bill-gates-dethroned/
https://www.govtech.com/dc/articles/Time-for-a-Cybersecurity-Overhaul.html
https://news.virginia.edu/content/qa-technology-expert-and-uva-grad-gary-mcgraw-talks-cybersecurity
http://www.webdesigncompany.net/website-optimization-moving-target/
https://www.ioausa.com/employee-benefits/compliance/
http://www.michiganemploymentlawadvisor.com/technology-employment-issues/employees-the-weakest-link-in-the-company-data-security-defense/
https://towardsdatascience.com/the-basics-of-cryptography-80c7906ba2f7
http://www.ultraedit.com/support/tutorials_power_tips/uestudio/integrated_debugger.html
https://jrebel.com/rebellabs/developers-guide-static-code-analysis-findbugs-checkstyle-pmd-coverity-sonarqube/
https://medium.com/@dieswaytoofast/fuzzing-and-deep-learning-5aae84c20303
https://www.synopsys.com/blogs/software-security/automated-secure-code-review/
https://www.opsfolio.com/risk-center/use-secure-coding-standards/

