
Secure Software Lifecycle
Knowledge Area
Issue 1.0
Laurie Williams North Carolina State

University

EDITOR
Andrew Martin Oxford University

REVIEWERS
Rod Chapman Altran UK
Fabio Massacci University of Trento
Gary McGraw Synopsys
Nancy Mead Carnegie Mellon University
James Noble Victoria University Wellington
Riccardo Scandariato University of Gothenburg



The Cyber Security Body Of Knowledge
www.cybok.org

COPYRIGHT
© Crown Copyright, The National Cyber Security Centre 2019. This information is licensedunder the Open Government Licence v3.0. To view this licence, visit:
http://www.nationalarchives.gov.uk/doc/open-government-licence/

When you use this information under the Open Government Licence, you should include thefollowing attribution: CyBOK © Crown Copyright, The National Cyber Security Centre 2018, li-censed under the Open Government Licence: http://www.nationalarchives.gov.uk/doc/open-
government-licence/.
The CyBOK project would like to understand how the CyBOK is being used and its uptake.The project would like organisations using, or intending to use, CyBOK for the purposes ofeducation, training, course development, professional development etc. to contact it at con-
tact@cybok.org to let the project know how they are using CyBOK.
Issue 1.0 is a stable public release of the Secure Software Lifecycle Knowledge Area. How-ever, it should be noted that a fully-collated CyBOK document which includes all of the Knowl-edge Areas is anticipated to be released by the end of July 2019. This will likely include up-dated page layout and formatting of the individual Knowledge Areas

KA Secure Software Lifecycle | October 2019 Page 1

https://www.cybok.org
http://www.nationalarchives.gov.uk/doc/open-government-licence/
http://www.nationalarchives.gov.uk/doc/open-government-licence/
http://www.nationalarchives.gov.uk/doc/open-government-licence/
mailto:contact@cybok.org
mailto:contact@cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

INTRODUCTION
The purpose of this Secure Software Lifecycle knowledge area is to provide an overview ofsoftware development processes for implementing secure software from the design of thesoftware to the operational use of the software. This implementation may involve new cod-ing as well as the incorporation of third party libraries and components. The goal of thisoverview is for use in academic courses in the area of software security; and to guide indus-try professionals who would like to use a secure software lifecycle.
The Software Security CyBOK Knowledge Area [1] provides a structured overview of securesoftware development and coding and the known categories of software implementationvulnerabilities and of techniques that can be used to prevent or detect such vulnerabilitiesor to mitigate their exploitation. By contrast, this Secure Software Lifecycle Knowledge Areafocuses on the components of a comprehensive software development process to preventand detect security defects and to respond in the event of an exploit.
This Knowledge Area will begin with a history of secure software lifecycle models. Section 2provides examples of three prescriptive secure software lifecycle processes; the MicrosoftSecure Development Lifecycle, Touchpoints, and SAFECode. Section 3 discusses how theseprocesses can be adapted in six specific domains: agile/DevOps, mobile, cloud computing,internet of things, road vehicles, and ecommerce/payment card. Section 4 provides informa-tion on three frameworks for assessing an organisation’s secure software lifecycle process.
CONTENT

1 MOTIVATION
[2, 3, 4, 5, 6, 7, 8, 9, 10]

Historically, and at times currently, organisations have focused their security strategies atthe network system level, such as with firewalls, and have taken a reactive approach to soft-ware security, using an approach commonly referred to as ’penetrate and patch’. [5] Withthis approach, security is assessed when the product is complete via penetration testing byattempting known attacks; or vulnerabilities are discovered post release when organisationsare victims of an attack on deployed software. In either case, organisations then react byfinding and fixing the vulnerability via a security patch. The following shortcomings are likelyto be more prevalent with a predominantly reactive approach to cyber security:
• Breaches are costly. Based upon a study of 477 companies in 15 countries, in 2018 thePoneman Institute [4] reported that a breach cost, on average, 7.9 million US dollars inthe United States and 5.3 million US dollars in the Middle East. Breaches were the leastexpensive in India and Brazil, but these countries still spent an average of 1.8 million and1.2 million US dollars per breach, respectively. Loss of reputation caused by a breachis difficult to quantify.
• Attackers can find and exploit vulnerabilities without being noticed. Based upon astudy of 477 companies in 15 countries, in 2018 the Poneman Institute [4] reported that

KA Secure Software Lifecycle | October 2019 Page 2

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

the mean time to identify that a breach had occurred was 197 days, and the mean timeto find and fix a vulnerability once the breach was detected was an additional 69 days.
• Patches can introduce new vulnerabilities or other problems. Vulnerability patches areconsidered urgent and can be rushed out, potentially introducing new problems to a sys-tem. For example, Microsoft’s early patches for the Meltdown1 chip flaw introduced aneven more serious vulnerability in Windows 72. The new vulnerability allowed attackersto read kernel memory much faster and to write their own memory, and could allow anattacker to access every user-level computing process running on a machine.
• Patches often go unapplied by customers. Users and system administrators may bereluctant to apply security patches. For example, the highly-publicised Heartbleed3 vul-nerability in OpenSSL allows attackers to easily and quietly exploit vulnerable systems,stealing passwords, cookies, private crypto-keys, and much more. The vulnerability wasreported in April 2014; but in January 2017 a scan revealed 200,000 Internet-accessibledevices remained unpatched [7]. Once a vulnerability is publicly reported, attackersformulate a new mechanism to exploit the vulnerability with the knowledge that manyorganisations will not adopt the fix.

In 1998, McGraw [5] advocated moving beyond the penetrate and patch approach based uponhis work on a DARPA-funded research effort investigating the application of software engi-neering to the assessment of software vulnerabilities. He contended that proactive rigoroussoftware analysis should play an increasingly important role in assessing and preventingvulnerabilities in applications based upon the well-known fact that security violations occurbecause of errors in software design and coding. In 2002, Viega and McGraw published thefirst book on developing secure programs, Building Secure Software [6], with a focus on pre-venting the injection of vulnerabilities and reducing security risk through an integration ofsecurity into a software development process.
In the early 2000s, attackers became more aggressive, and Microsoft was a focus of thisaggression with exposure of security weaknesses in their products, particularly the InternetInformation Services (IIS). Gartner, a leading research and advisory company who seldomadvises its clients to steer clear of specific software, advised companies to stop using IIS. Inresponse to customer concerns and mounting bad press, the then Microsoft CEO, Bill Gates,sent the Trustworthy Computing memo [2] to all employees on January 15, 2002. The memowas also widely circulated on the Internet. An excerpt of the memo defines TrustworthyComputing:

‘Trustworthy Computing is the highest priority for all the work we are doing. Wemust lead the industry to a whole new level of Trustworthiness in computing ...Trustworthy Computing is computing that is as available, reliable and secure aselectricity, water services and telephony’.
The Trustworthy Computing memo caused a shift in the company. Two weeks later, Mi-crosoft announced the delay of the release of Windows .NET Server [8] to ensure a propersecurity review (referred to as the Windows Security Push), as mandated by Microsoft’s Trust-worthy Computing initiative outlined in this memo. In 2003, Microsoft employees Howardand Le Blanc [9] publicly published a second edition of a book on writing secure code to

1https://meltdownattack.com/ Meltdown lets hackers get around a barrier between applications and computermemory to steal sensitive data.2https://www.cyberscoop.com/microsoft-meltdown-patches-windows-7-memory-management/3http://heartbleed.com/

KA Secure Software Lifecycle | October 2019 Page 3

https://www.cybok.org
https://meltdownattack.com/
https://www.cyberscoop.com/microsoft-meltdown-patches-windows-7-memory-management/
http://heartbleed.com/


The Cyber Security Body Of Knowledge
www.cybok.org

prevent vulnerabilities, to detect design flaws and implementation bugs, and to improve testcode and documentation. The first edition had been required reading for all members of theWindows team during the Push.
During the ensuing years, Microsoft changed their development process to build secure prod-ucts through a comprehensive overhaul of their development process from early planningthrough product end-of-life. Their products contained demonstrably fewer vulnerabilities [9].After internal use of the process, Microsoft codified and contributed their 13-stage internaldevelopment process, the Microsoft Security Development Lifecycle (SDL) to the commu-nity through its book entitled The Security Development Lifecycle [3] in 2006. True to Gates’original intent, the Microsoft SDL provided the foundation for the information technology in-dustry by providing the first documented comprehensive and prescriptive lifecycle. Also in2006, McGraw published the first book on software security best practices [10].
As discussed in the rest of this knowledge area, organisations have built upon the foundationset forth by Microsoft and by Viega and McGraw [6, 5].
2 PRESCRIPTIVE SECURE SOFTWARE LIFECYCLE
PROCESSES
[3, 6, 9, 11, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,35, 36, 37]
Secure software lifecycle processes are proactive approaches to building security into a prod-uct, treating the ‘disease’ of poorly designed, insecure software at the source, rather than‘applying a band aid’ to stop the symptoms through a reactive penetrate and patch approach.These processes work software security deeply into the full product development processand incorporate people and technology to tackle and prevent software security issues. Thissection will provide information on three prominent secure software lifecycle processes andthen reflect on the commonalities between them in Table 1.
2.1 Secure Software Lifecycle Processes

Three exemplar prescriptive secure software lifecycle processes are summarised in this sec-tion. The processes are prescriptive in that they explicitly recommend software practices.The three processes were chosen because the practices of these processes are integratedand cover a broad spectrum of the lifecycle phases, from software requirements to release/deploymentand software maintenance. Two of these processes were identified in a systematic mappingstudy [25] on security approaches in software development lifecycles. As such, the practicesspan the prevention of security defects, the detection of security defects, and the mitigationof security defects once a product is in the field. The three were also chosen due to theirmaturity in terms of the number of years they have existed and in terms of their widespreadacceptance in the industry. As will be discussed in Section 2.2, no ’best’ secure softwarelifecycle process exists. Practitioners should consider incorporating practices from each ofthese processes into their own secure software process.

KA Secure Software Lifecycle | October 2019 Page 4

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

2.1.1 Microsoft Security Development Lifecycle (SDL)

As discussed in Section 1, Microsoft used an internal development process, the Security De-velopment Lifecycle (SDL), to improve the security of their products. Howard and Lipner [3]disseminated a snapshot of this process in 2006. Since that time, Microsoft has continuedto evolve their SDL and to provide up-to-date resources to the community [11], including anincreased focus on compliance requirements that are being imposed on the industry.
Currently [11], the Microsoft SDL contains 12 practices which are enumerated below. For eachof the practices, techniques for implementing the practice may be mentioned though the SDLdoes not prescribe the specific technique.

1. Provide Training. A range of professionals, such as developers, service engineers,program managers, product managers, and project managers, participate in the devel-opment of secure products while still addressing business needs and delivering uservalue. Software developers and architects must understand technical approaches forpreventing and detecting vulnerabilities. The entire development organisation shouldbe cognisant of the attacker’s perspective, goals, and techniques; and of the businessimplications of not building secure products.
Often, the formal education of these professionals does not include cyber security. Ad-ditionally, attack vectors, security tools, secure programming languages, and experi-ences are constantly evolving, so knowledge and course material must be refreshed.Ongoing cyber security training is essential for software organisations.

2. Define Security Requirements. Security requirements should be defined during the ini-tial design and planning phases. Factors that influence these requirements includethe specific functional requirements of the system, the legal and industry compliancerequirements, internal and external standards, previous security incidents, and knownthreats.
Techniques have been developed for systematically developing security requirements.For example, Security Quality Requirements Engineering (SQUARE) [26] is a nine-stepprocess that helps organisations build security into the early stages of the productionlifecycle. Abuse cases, as will be discussed in Section 2.1.2 bullet 5, are another meansof specifying security requirements. van Lamsweerde extended the Keep All ObjectivesSatisfied (KAOS) framework for goal-based requirements specification language to in-clude anti-models [27]. An anti-model is constructed by addressing malicious obstacles(called anti-goals) set up by attackers to threaten a system’s security goals. An obstaclenegates existing goals of the system. Secure i* [28] extends the i*-modeling frameworkwith modeling and analysis of security trade-offs and aligns security requirements withother requirements.
Security requirements must be continually updated to reflect changes in required func-tionality, standards, and the threat landscape.

3. Define Metrics and Compliance Reporting. Lord Kelvin is quoted as stating, ’If you cannot measure it, you can not improve it’. The management team should understand andbe held accountable for minimum acceptable levels of security using security metrics[13]. A subset of these metrics may be set as Key Performance Indicators (KPIs) formanagement reporting. Defect tracking should clearly label security defects and se-curity work items as such to allow for accurate prioritisation, risk management, track-ing, and reporting of security work. Additionally, products increasingly must comply

KA Secure Software Lifecycle | October 2019 Page 5

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

with regulatory standards, such as the Payment Card Industry Data Security Standard(PCI DSS)4, or the EU General Data Protection Regulation (GDPR)5, which may imposeadditional process steps and metrics for compliance, reporting, and audits.
4. Perform Threat Modelling. Through the use of threat modelling [14, 22], teams con-sider, document and discuss the security implications of designs in the context of theirplanned operational environment and in a structured fashion. Teams should considerthe motivations of their adversaries and the strengths and weaknesses of systems todefend against the associated threat scenarios. An approach is to consider the (1) themalicious and benevolent interactors with the system; (2) the design of the system andits components (i.e. processes and data stores), (3) the trust boundaries of the sys-tem; and (4) the data flow of the system within and across trust boundaries to/fromits interactors. Threats can be enumerated using a systematic approach of consider-ing each system component relative to the STRIDE (Spoofing, Tampering, Repudiation,Information Disclosure, Denial of Service, Elevation of Privilege) [9] threats:

(a) Spoofing identity. Spoofing threats allow an attacker to pose as another user orallow a rogue server to pose as a valid server.
(b) Tampering with data. Data tampering threats involves malicious modification ofdata.
(c) Repudiation. Repudiation threats are associated with users who deny performingan action without other parties having any way to prove otherwise.
(d) Information disclosure. Information disclosure threats involve the exposure ofinformation to individuals who are not supposed to have access to it.
(e) Denial of service. A Denial of Service (DoS) attack denies service to valid users bymaking the system unavailable or unusable.
(f) Elevation of privilege. An unprivileged user gains privileged access and therebyhas sufficient access to compromise or destroy the system.

Threat modelling aids the team in enumerating threats, so that the system design canbe fortified and security features can be selected. In addition to STRIDE, other modelsexist to formulate threat models, such as 12 methods6, including attack trees [29] whichare conceptual diagrams of threats on systems and possible attacks to reach thosethreats. A closely-related practice to threat modelling is Architectural Risk Analysis, aswill be discussed in Section 2.1.2 bullet 2.
Games have been created to aid teams in collaboratively (and competitively) conduct-ing threat modeling:
(a) Elevation of Privilege7
(b) Security Cards8
(c) Protection Poker [30]

4https://www.pcisecuritystandards.org/5https://eugdpr.org/6https://insights.sei.cmu.edu/sei blog/2018/12/threat-modeling-12-available-methods.html7https://www.usenix.org/conference/3gse14/summit-program/presentation/shostack8https://securitycards.cs.washington.edu/

KA Secure Software Lifecycle | October 2019 Page 6

https://www.cybok.org
https://www.pcisecuritystandards.org/
https://eugdpr.org/
https://insights.sei.cmu.edu/sei_blog/2018/12/threat-modeling-12-available-methods.html
https://www.usenix.org/conference/3gse14/summit-program/presentation/shostack
https://securitycards.cs.washington.edu/


The Cyber Security Body Of Knowledge
www.cybok.org

5. Establish Design Requirements. Design requirements guide the implementation of ’se-cure features’ (i.e., features that are well engineered with respect to security). Addi-tionally, the architecture and design must be resistant to known threats in the intendedoperational environment.
The design of secure features involves abiding by the timeless security principles setforth by Saltzer and Schroeder [16] in 1975 and restated by Viega and McGraw [6] in2002. The eight Saltzer and Schroeder principles are:

• Economy of mechanism. Keep the design of the system as simple and small aspossible.
• Fail-safe defaults. Base access decisions on permissions rather than exclusion;the default condition is lack of access and the protection scheme identifies con-ditions under which access is permitted. Design a security mechanism so that afailure will follow the same execution path as disallowing the operation.
• Complete mediation. Every access to every object must be checked for authorisa-tion.
• Open design. The design should not depend upon the ignorance of attackers butrather on the possession of keys or passwords.
• Separation of privilege. A protection mechanism that requires two keys to unlockis more robust than one that requires a single key when two or more decisionsmust be made before access should be granted.
• Least privilege. Every program and every user should operate using the least setof privileges necessary to complete the job.
• Least common mechanism. Minimise the amount of mechanisms common tomore than one user and depended on by all users.
• Psychological acceptability. The human interface should be designed for ease ofuse so that users routinely and automatically apply the mechanisms correctly andsecurely.

Two other important secure design principles include the following:
• Defense in depth. Provide multiple layers of security controls to provide redun-dancy in the event a security breach.
• Design for updating. The software security must be designed for change, such asfor security patches and security property changes.

Design requirements also involve the selection of security features, such as cryptogra-phy, authentication and logging to reduce the risks identified through threat modelling.Teams also take actions to reduce the attack surface of their system design. The attacksurface, a concept introduced by Howard [15] in 2003, can be thought of as the sum ofthe points where attackers can try to enter data to or extract data from a system [24, 23].
In 2014, the IEEE Center for Secure Design [17] enumerated the top ten security designflaws and provided guidelines on techniques for avoiding them. These guidelines areas follows:
(a) Earn or give, but never assume, trust.

KA Secure Software Lifecycle | October 2019 Page 7

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

(b) Use an authentication mechanism that cannot be bypassed or tampered with.
(c) Authorise after you authenticate.
(d) Strictly separate data and control instructions, and never process control instruc-tions received from untrusted sources.
(e) Define an approach that ensures all data are explicitly validated.
(f) Use cryptography correctly.
(g) Identify sensitive data and how they should be handled.
(h) Always consider the users.
(i) Understand how integrating external components changes your attack surface.
(j) Be flexible when considering future changes to objects and actors.

6. Define and Use Cryptography Standards. The use of cryptography is an important de-sign feature for a system to ensure security- and privacy-sensitive data is protectedfrom unintended disclosure or alteration when it is transmitted or stored. However, anincorrect choice in the use of cryptography can render the intended protection weakor ineffective. Experts should be consulted in the use of clear encryption standardsthat provide specifics on every element of the encryption implementation and on theuse of only properly vetted encryption libraries. Systems should be designed to allowthe encryption libraries to be easily replaced, if needed, in the event the library is bro-ken by an attacker, such as was done to the Data Encryption Standard (DES) through’Deep Crack’9, a brute force search of every possible key as designed by Paul Kocher,president of Cryptography Research.
7. Manage the Security Risk of Using Third-Party Components. The vast majority of soft-ware projects are built using proprietary and open-source third-party components. TheBlack Duck On-Demand audit services group [18] conducted open-source audits on over1,100 commercial applications and found open-source components in 95% of the appli-cations with an average 257 components per application. Each of these componentscan have vulnerabilities upon adoption or in the future. An organisation should have anaccurate inventory of third-party components [32], continuously use a tool to scan forvulnerabilities in its components, and have a plan to respond when new vulnerabilitiesare discovered. Freely available and proprietary tools can be used to identify projectcomponent dependencies and to check if there are any known, publicly disclosed, vul-nerabilities in these components.
8. Use Approved Tools. An organisation should publish a list of approved tools and theirassociated security checks and settings such as compiler/linker options and warnings.Engineers should use the latest version of these tools, such as compiler versions, andtake advantage of new security analysis functionality and protections. Often, the resul-tant software must be backward compatible with previous versions.
9. Perform Static Analysis Security Testing (SAST). SAST tools can be used for an auto-mated security code review to find instances of insecure coding patterns and to helpensure that secure coding policies are being followed. SAST can be integrated intothe commit and deployment pipeline as a check-in gate to identify vulnerabilities each
9https://w2.eff.org/Privacy/Crypto/Crypto misc/DESCracker/HTML/19980716 eff des faq.html

KA Secure Software Lifecycle | October 2019 Page 8

https://www.cybok.org
https://w2.eff.org/Privacy/Crypto/Crypto_misc/DESCracker/HTML/19980716_eff_des_faq.html


The Cyber Security Body Of Knowledge
www.cybok.org

time the software is built or packaged. For increased efficiency, SAST tools can inte-grate into the developer environment and be run by the developer during coding. SomeSAST tools spot certain implementation bugs, such as the existence of unsafe or otherbanned functions and automatically replace with (or suggest) safer alternatives as thedeveloper is actively coding. See also the Software Security CyBOK Knowledge Area [1].
10. Perform Dynamic Analysis Security Testing (DAST). DAST performs run-time verifica-tion of compiled or packaged software to check functionality that is only apparent whenall components are integrated and running. DAST often involves the use of a suite ofpre-built attacks and malformed strings that can detect memory corruption, user priv-ilege issues, injection attacks, and other critical security problems. DAST tools mayemploy fuzzing, an automated technique of inputting known invalid and unexpectedtest cases at an application, often in large volume. Similar to SAST, DAST can be runby the developer and/or integrated into the build and deployment pipeline as a check-in gate. DAST can be considered to be automated penetration testing. See also theSoftware Security CyBOK Knowledge Area [1].
11. Perform Penetration Testing. Manual penetration testing is black box testing of a run-ning system to simulate the actions of an attacker. Penetration testing is often per-formed by skilled security professionals, who can be internal to an organisation orconsultants, opportunistically simulating the actions of a hacker. The objective of apenetration test is to uncover any form of vulnerability - from small implementationbugs to major design flaws resulting from coding errors, system configuration faults,design flaws or other operational deployment weaknesses. Tests should attempt bothunauthorised misuse of and access to target assets and violations of the assumptions.A widely-referenced resource for structuring penetration tests is the OWASP Top 10Most Critical Web Application Security Risks10. As such, penetration testing can findthe broadest variety of vulnerabilities, although usually less efficiently compared withSAST and DAST [19]. Penetration testers can be referred to as white hat hackers or eth-ical hackers. In the penetration and patch model, penetration testing was the only lineof security analysis prior to deploying a system.
12. Establish a Standard Incident Response Process. Despite a secure software lifecy-cle, organisations must be prepared for inevitable attacks. Organisations should proac-tively prepare an Incident Response Plan (IRP). The plan should include who to contactin case of a security emergency, establish the protocol for efficient vulnerability mitiga-tion, for customer response and communication, and for the rapid deployment of a fix.The IRP should include plans for code inherited from other groups within the organisa-tion and for third-party code. The IRP should be tested before it is needed. Lessonslearned through responses to actual attack should be factored back into the SDL.
10https://www.owasp.org/index.php/Category:OWASP Top Ten Project

KA Secure Software Lifecycle | October 2019 Page 9

https://www.cybok.org
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project


The Cyber Security Body Of Knowledge
www.cybok.org

2.1.2 Touchpoints

International software security consultant, Gary McGraw, provided seven Software SecurityTouchpoints [10] by codifying extensive industrial experience with building secure products.McGraw uses the term touchpoint to refer to software security best practices which can beincorporated into a secure software lifecycle. McGraw differentiates vulnerabilities that areimplementation bugs and those that are design flaws [17]. Implementation bugs are localizederrors, such as buffer overflow and input validation errors, in a single piece of code, mak-ing spotting and comprehension easier. Design flaws are systemic problems at the designlevel of the code, such as error-handling and recovery systems that fail in an insecure fash-ion or object-sharing systems that mistakenly include transitive trust issues [10]. Kuhn et al.[32] analysed the 2008 - 2016 vulnerability data from the US National Vulnerability Database(NVD)11 and found that 67% of the vulnerabilities were implementation bugs. The seven touch-points help to prevent and detect both bugs and flaws.
These seven touchpoints are described below and are provided in order of effectivenessbased upon McGraw’s experience with the utility of each practice over many years, henceprescriptive:

1. Code Review (Tools).
Code review is used to detect implementation bugs. Manual code review may be used,but requires that the auditors are knowledgeable about security vulnerabilities beforethey can rigorously examine the code. ’Code review with a tool’ (a.k.a. the use of staticanalysis tools or SAST) has been shown to be effective and can be used by engineersthat do not have expert security knowledge. For further discussion on static analysis,see Section 2.1.1 bullet 9.

2. Architectural Risk Analysis.
Architectural risk analysis, which can also be referred to as threat modelling (see Sec-tion 2.1.1 bullet 4), is used to prevent and detect design flaws. Designers and architectsprovide a high-level view of the target system and documentation for assumptions, andidentify possible attacks. Through architectural risk analysis, security analysts uncoverand rank architectural and design flaws so mitigation can begin. For example, risk analy-sis may identify a possible attack type, such as the ability for data to be intercepted andread. This identification would prompt the designers to look at all their code’s trafficsflows to see if interception was a worry, and whether adequate protection (i.e. encryp-tion) was in place. That review that the analysis prompted is what uncovers designflaws, such as sensitive data is transported in the clear.
No system can be perfectly secure, so risk analysis must be used to prioritise secu-rity efforts and to link system-level concerns to probability and impact measures thatmatter to the business building the software. Risk exposure is computed by multiply-ing the probability of occurrence of an adverse event by the cost associated with thatevent [33].
McGraw proposes three basic steps for architectural risk analysis:

• Attack resistance analysis. Attack resistance analysis uses a checklist/systematicapproach of considering each system component relative to known threats, as isdone in Microsoft threat modelling discussed in Section 2.1.1 bullet 4. Information
11http://nvd.nist.gov

KA Secure Software Lifecycle | October 2019 Page 10

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

about known attacks and attack patterns are used during the analysis, identifyingrisks in the architecture and understanding the viability of known attacks. Threatmodelling with the incorporation of STRIDE-based attacks, as discussed in Section2.1.1 bullet 4, is an example process for performing attack resistance analysis.
• Ambiguity analysis. Ambiguity analysis is used to capture the creative activity re-quired to discover new risks. Ambiguity analysis requires two or more experiencedanalysts who carry out separate analysis activities in parallel on the same system.Through unifying the understanding of multiple analysis, disagreements betweenthe analysts can uncover ambiguity, inconsistency and new flaws.
• Weakness analysis. Weakness analysis is focused on understanding risk relatedto security issues in other third-party components (see Section 2.1.1 bullet 7). Theidea is to understand the assumptions being made about third-party software andwhat will happen when those assumptions fail.

Risk identification, ranking, and mitigation is a continuous process through the softwarelifecycle, beginning with the requirement phase.
3. Penetration Testing.

Penetration testing can be guided by the outcome of architectural risk analysis (SeeSection 2.1.2 bullet 2). For further discussion on penetration testing, see Section 2.1.1,bullet 11.
4. Risk-based Security Testing.

Security testing must encompass two strategies: (1) testing of security functionalitywith standard functional testing techniques; and (2) risk-based testing based upon at-tack patterns and architectural risk analysis results (see Section 2.1.2 bullet 2), andabuse cases (see Section 2.1.2 bullet 5). For web applications, testing of security func-tionality can be guided by the OWASP Application Security Verfication Standard (ASVS)Project12 open standard for testing application technical security controls. ASVS alsoprovides developers with a list of requirements for secure development.
Guiding tests with knowledge of the software architecture and construction, commonattacks, and the attacker’s mindset is extremely important. Using the results of archi-tectural risk analysis, the tester can properly focus on areas of code where an attack islikely to succeed.
The difference between risk-based testing and penetration testing is the level of the ap-proach and the timing of the testing. Penetration testing is done when the software iscomplete and installed in an operational environment. Penetration tests are outside-in,black box tests. Risk-based security testing can begin before the software is completeand even pre-integration, including the use of white box unit tests and stubs. The twoare similar in that they both should be guided by risk analysis, abuse cases and func-tional security requirements.

5. Abuse Cases.
This touchpoint codifies ’thinking like an attacker’. Use cases describe the desiredsystem’s behaviour by benevolent actors. Abuse cases [20] describe the system’s be-haviour when under attack by a malicious actor. To develop abuse cases, an analyst

12https://www.owasp.org/index.php/Category:OWASP Application Security Verification Standard Project#tab=Home

KA Secure Software Lifecycle | October 2019 Page 11

https://www.cybok.org
https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project#tab=Home


The Cyber Security Body Of Knowledge
www.cybok.org

enumerates the types of malicious actors who would be motivated to attack the system.For each bad actor, the analyst creates one or more abuse case(s) for the functional-ity the bad actor desires from the system. The analyst then considers the interactionbetween the use cases and the abuse cases to fortify the system. Consider an auto-mobile example. An actor is the driver of the car, and this actor has a use case ’drivethe car’. A malicious actor is a car thief whose abuse case is ’steal the car’. This abusecase threatens the use case. To prevent the theft, a new use case ’lock the car’ can beadded to mitigate the abuse case and fortify the system.
Human error is responsible for a large number of breaches. System analysts shouldalso consider actions by benevolent users, such as being the victim of a phishing attack,that result in a security breach. These actions can be considered misuse cases [21] andshould be analysed similarly to abuse cases, considering what use case the misusecase threatens and the fortification to the system to mitigate the misuse case.
The attacks and mitigations identified by the abuse and misuse case analysis can beused as input into the security requirements (Section 2.1.1 bullet 2.); penetration testing(Section 2.1.1 bullet 11); and risk-based security testing (Section 2.1.2 bullet 4).

6. Security Requirements.
For further discussion on security requirements, see Section 2.1.1 bullet 2.

7. Security Operations.
Network security can integrate with software security to enhance the security posture.Inevitably, attacks will happen, regardless of the applications of the other touchpoints.Understanding attacker behaviour and the software that enabled a successful attack isan essential defensive technique. Knowledge gained by understanding attacks can befed back into the six other touchpoints.

The seven touchpoints are intended to be cycled through multiple times as the software prod-uct evolves. The touchpoints are also process agnostic, meaning that the practices can beincluded in any software development process.
2.1.3 SAFECode

The Software Assurance Forum for Excellence in Code (SAFECode)13 is a non-profit, global,industry-led organisation dedicated to increasing trust in information and communicationstechnology products and services through the advancement of effective software assurancemethods. The SAFECode mission is to promote best practices for developing and deliveringmore secure and reliable software, hardware and services. The SAFECode organisation pub-lishes the ’Fundamental practices for secure software development: Essential elements of asecure development lifecycle program’ [34] guideline to foster the industry-wide adoption offundamental secure development practices. The fundamental practices deal with assurance– the ability of the software to withstand attacks that attempt to exploit design or implemen-tation errors. The eight fundamental practices outlined in their guideline are described below:
1. Application Security Control Definition. SAFECode uses the term Application SecurityControls (ASC) to refer to security requirements (see Section 2.1.1 bullet 2). Similarly,NIST 800-53 [35] uses the phrase security control to refer to security functionality andsecurity assurance requirements.

13https://safecode.org/

KA Secure Software Lifecycle | October 2019 Page 12

https://www.cybok.org
https://safecode.org/


The Cyber Security Body Of Knowledge
www.cybok.org

The inputs to ASC include the following: secure design principles (see Section 2.1.3bullet 3); secure coding practices; legal and industry requirements with which the ap-plication needs to comply (such as HIPAA, PCI, GDPR, or SCADA); internal policies andstandards; incidents and other feedback; threats and risk. The development of ASCbegins before the design phase and continues throughout the lifecycle to provide clearand actionable controls and to be responsive to changing business requirements andthe ever-evolving threat environment.
2. Design. Software must incorporate security features to comply with internal securitypractices and external laws or regulations. Additionally, the software must resist knownthreats based upon the operational environment. (see Section 2.1.1 bullet 5.) Threatmodelling (see Section 2.1.1 bullet 4), architectural reviews, and design reviews canbe used to identify and address design flaws before their implementation into sourcecode.

The system design should incorporate an encryption strategy (see Section 2.1.1 bullet6) to protect sensitive data from unintended disclosure or alteration while the data areat rest or in transit.
The system design should use a standardised approach to identity and access man-agement to perform authentication and authorisation. The standardisation providesconsistency between components and clear guidance on how to verify the presence ofthe proper controls. Authenticating the identity of a principal (be it a human user, otherservice or logical component) and verifying the authorisation to perform an action arefoundational controls of the system. Several access control schemes have been devel-oped to support authorisation: mandatory, discretionary, role-based or attribute-based.Each of these has benefits and drawbacks and should be chosen based upon projectcharacteristics.
Log files provide the evidence needed in forensic analysis when a breach occurs to mit-igate repudiation threats. In a well-designed application, system and security log filesprovide the ability to understand an application’s behaviour and how it is used at anymoment, and to distinguish benevolent user behaviour from malicious user behaviour.Because logging affects the available system resources, the logging system shouldbe designed to capture the critical information while not capturing excess data. Poli-cies and controls need to be established around storing, tamper prevention and mon-itoring log files. OWASP provides valuable resources on designing and implementinglogging1415.

3. Secure Coding Practices. Unintended code-level vulnerabilities are introduced by pro-grammer mistakes. These types of mistakes can be prevented and detected throughthe use of coding standards; selecting the most appropriate (and safe) languages,frameworks and libraries, including the use of their associated security features (seeSection 2.1.1 bullet 8); using automated analysis tools (see Section 2.1.1 bullets 9 and10); and manually reviewing the code.
Organisations provide standards and guidelines for secure coding, for example:
(a) OWASP Secure Coding Practices, Quick Reference Guide 16

14https://cheatsheetseries.owasp.org/cheatsheets/Logging Cheat Sheet.html15https://www.owasp.org/images/e/e0/OWASP Logging Guide.pdf16https://www.owasp.org/images/0/08/OWASP SCP Quick Reference Guide v2.pdf

KA Secure Software Lifecycle | October 2019 Page 13

https://www.cybok.org
https://cheatsheetseries.owasp.org/cheatsheets/Logging_Cheat_Sheet.html
https://www.owasp.org/images/e/e0/OWASP_Logging_Guide.pdf
https://www.owasp.org/images/0/08/OWASP_SCP_Quick_Reference_Guide_v2.pdf


The Cyber Security Body Of Knowledge
www.cybok.org

(b) Oracle Secure Coding Guidelines for Java SE 17
(c) Software Engineering Institute (SEI) CERT Secure Coding Standards 18

Special care must also be given to handling unanticipated errors in a controlled andgraceful way through generic error handlers or exception handlers that log the events.If the generic handlers are invoked, the application should be considered to be in anunsafe state such that further execution is no longer considered trusted.
4. Manage Security Risk Inherent in the Use of Third-Party Components. See Section2.1.1 bullet 7.
5. Testing and Validation. See Section 2.1.1 bullets 9-11 and Section 2.1.2 bullets 1, 3 and4.
6. Manage Security Findings. The first five practices produce artifacts that contain orgenerate findings related to the security of the product (or lack thereof). The findingsin these artifacts should be tracked and actions should be taken to remediate vulnera-bilities, such as is laid out in the Common Criteria (see Section 4.3) flaw remediationprocedure [36]. Alternatively, the team may consciously accept the security risk whenthe risk is determined to be acceptable. Acceptance of risk must be tracked, includinga severity rating; a remediation plan, an expiration or a re-review deadline; and the areafor re-review/validation.

Clear definitions of severity are important to ensure that all participants have and com-municate with a consistent understanding of a security issue and its potential impact.A possible starting point is mapping to the severity levels, attributes, and thresholdsused by the Common Vulnerability Scoring System (CVSS)19 such as 10–8.5 is critical,8.4–7.0 is high, etc. The severity levels are used to prioritise mitigations based upontheir complexity of exploitation and impact on the properties of a system.
7. Vulnerability Response and Disclosure. Even with following a secure software lifecycle,no product can be ’perfectly secure’ because of the constantly changing threat land-scapes. Vulnerabilities will be exploited and the software will eventually be compro-mised. An organisation must develop a vulnerability response and disclosure processto help drive the resolution of externally discovered vulnerabilities and to keep all stake-holders informed of progress. ISO provides industry-proven standards20 for vulnera-bility disclosure and handling. To prevent vulnerabilities from re-occurring in new orupdated products, the team should perform a root cause analysis and feed the lessonslearned into the secure software lifecycle practices. For further discussion, see Sec-tions 2.1.1 bullet 12 and 2.1.2 bullet 7.
8. Planning the Implementation and Deployment of Secure Development. A healthy andmature secure development lifecycle includes the above seven practices but also anintegration of these practices into the business process and the entire organisation,including program management, stakeholder management, deployment planning, met-rics and indicators, and a plan for continuous improvement. The culture, expertise andskill level of the organisation needs to be considered when planning to deploy a se-cure software lifecycle. Based upon past history, the organisation may respond better

17https://www.oracle.com/technetwork/java/seccodeguide-139067.html18https://wiki.sei.cmu.edu/confluence/display/seccode/SEI+CERT+Coding+Standards19https://www.first.org/cvss/20https://www.iso.org/standard/45170.html and https://www.iso.org/standard/53231.html

KA Secure Software Lifecycle | October 2019 Page 14

https://www.cybok.org
https://www.oracle.com/technetwork/java/seccodeguide-139067.html
https://wiki.sei.cmu.edu/confluence/display/seccode/SEI+CERT+Coding+Standards
https://www.first.org/cvss/
https://www.iso.org/standard/45170.html
https://www.iso.org/standard/53231.html


The Cyber Security Body Of Knowledge
www.cybok.org

to a corporate mandate, to a bottom-up groundswell approach or to a series of pilotprograms. Training will be needed (see Section 2.1.1 bullet 1). The specification of theorganisation’s secure software lifecycle including the roles and responsibilities shouldbe documented. Plans for compliance and process health should be made (see Section4).
2.2 Comparing the Secure Software Lifecycle Models

In 2009, De Win et al. [37] compared CLASP, Microsoft’s originally-documented SDL [3], andTouchpoints (see Section 2.1.2)for the purpose of providing guidance on their commonalitiesand the specificity of the approach, and making suggestions for improvement. The authorsmapped the 153 possible activities of each lifecycle model into six software developmentphases: education and awareness; project inception; analysis and requirements; architec-tural and detailed design; implementation and testing; and release, deployment and support.The activities took the practices in Sections 2.1.1–2.1.3 into much finer granularity. The au-thors indicated whether each model includes each of the 153 activities and provides guidanceon the strengths and weaknesses of each model. The authors found no clear comprehensive’winner’ among the models, so practitioners could consider using guidelines for the desiredfine-grained practices from all the models.
Table 1 places the the practices of Sections 2.1.1–2.1.3 into the six software developmentphases used by De Win et al. [37]. Similar to prior work [37], the models demonstrate strengthsand weaknesses in terms of guidance for the six software development phases. No modelcan be considered perfect for all contexts. Security experts can customize a model for theirorganizations considering the spread of practices for the six software development phases.

KA Secure Software Lifecycle | October 2019 Page 15

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

Microsoft SDL Touchpoints SAFECode

Education and
awareness • Provide training

• Planning theimplementation anddeployment of securedevelopment

Project inception

• Define metrics andcompliance reporting
• Define and usecryptographystandards
• Use approved tools

• Planning theimplementation anddeployment of securedevelopment

Analysis and
requirements

• Define securityrequirements
• Perform threatmodelling

• Abuse cases
• Security requirements

• Application securitycontrol definition

Architectural and
detailed design

• Establish designrequirements • Architectural riskanalysis • Design

Implementation
and testing

• Perform static analysissecurity testing (SAST)
• Perform dynamicanalysis securitytesting (DAST)
• Perform penetrationtesting
• Define and usecryptographystandards
• Manage the risk ofusing third-partycomponents

• Code review (tools)
• Penetration testing
• Risk-based securitytesting

• Secure codingpractices
• Manage security riskinherent in the use ofthird-party components
• Testing and validation

Release,
deployment, and
support

• Establish a standardincident responseprocess • Security operations • Vulnerability responseand disclosure

Table 1: Comparing the Software Security Lifecycle Models

KA Secure Software Lifecycle | October 2019 Page 16

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

3 ADAPTATIONS OF THE SECURE SOFTWARE LIFECYCLE
[34, 38, 39, 40, 41, 42, 43, 44, 45, 46]

The secure software lifecycle models discussed in Section 2.1 can be integrated with anysoftware development model and are domain agnostic. In this section, information on sixadaptations to secure software lifecycle is provided.
3.1 Agile Software Development and DevOps

Agile and continuous software development methodologies are highly iterative, with newfunctionality being provided to customers frequently - potentially as quickly as multiple timesper day or as ’slowly’ as every two to four weeks.
Agile software development methodologies can be functional requirement-centric, with thefunctionality being expressed as user stories. SAFECode [38] provides practical softwaresecurity guidance to agile practitioners. This guidance includes a set of 36 recommendedsecurity-focused stories that can be handled similarly to the functionality-focused user sto-ries. These stories are based upon common security issues such as those listed in theOWASP Top 1021 Most Critical Web Application Security Risks. The stories are mapped toCommon Weakness Enumerations (CWEs)22 identifiers, as applicable. The security-focusedstories are worded in a format similar to functionality stories (i.e., As a [stakeholder], I wantto [new functionality] so that I can [goal]). For example, a security-focused story using thisformat is provided: As Quality Assurance, I want to verify that all users have access to the
specific resources they require which they are authorised to use, that is mapped to CWE-862and CWE-863. The security-focused stories are further broken down into manageable andconcrete tasks that are owned by team roles, including architects, developers, testers andsecurity experts, and are mapped to SAFECode Fundamental Practices [34]. Finally, 17 opera-tional security tasks were specified by SAFECode. These tasks are not directly tied to storiesbut are handled as continuous maintenance work (such as, Continuously verify coverage of
static code analysis tools) or as an item requiring special attention (such as, Configure bug
tracking to track security vulnerabilities).
With a DevOps approach to developing software, development and operations are tightly inte-grated to enable fast and continuous delivery of value to end users. Microsoft has publisheda DevOps secure software lifecycle model [39] that includes activities for operations engi-neers to provide fast and early feedback to the team to build security into DevOps processes.The Secure DevOps model contains eight practices, including eight of the 12 practices in theMicrosoft Security Development Lifecycle discussed in Section 2.1.1:

1. Provide Training. The training, as outlined in Section 2.1.1 bullet 1, must include theoperations engineers. The training should encompass attack vectors made availablethrough the deployment pipeline.
2. Define Requirements. See Section 2.1.1 bullet 2.
3. Define Metrics and Compliance Reporting. See Section 2.1.1 bullet 3.

21https://www.owasp.org/index.php/Category:OWASP Top Ten Project22https://cwe.mitre.org/; CWE is a community-developed list of common software security weaknesses. Itserves as a common language, a measuring stick for software security tools, and as a baseline for weaknessidentification, mitigation, and prevention efforts.

KA Secure Software Lifecycle | October 2019 Page 17

https://www.cybok.org
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://cwe.mitre.org/


The Cyber Security Body Of Knowledge
www.cybok.org

4. Use Software Composition Analysis (SCA) and Governance. When selecting both com-mercial and open-source third-party components, the team should understand the im-pact that a vulnerability in the component could have on the overall security of the sys-tem and consider performing a more thorough evaluation before using them. SoftwareComposition Analysis (SCA) tools, such as WhiteSource23 can assist with licensing ex-posure, provide an accurate inventory of components, and report any vulnerabilitieswith referenced components. See also Section 2.1.1 bullet 7.
5. Perform Threat Modelling. See Section 2.1.1 bullet 4. Threat modelling may be per-ceived as slowing down the rapid DevOps pace. However, products that are deployedrapidly under a DevOps deployment process should have a defined overall architecturewithin which the DevOps process makes changes and adds features. That architectureshould be threat modeled, and when the team needs to change the architecture thethreat model should also be updated. New features that do not have an architecturalimpact represent a null change to the threat model.
6. Use Tools and Automation. See Section 2.1.1 bullets 8, 9 and 10. The team shouldcarefully select tools that can be integrated into the engineer’s Integrated DevelopmentEnvironment (IDE) and workflow such that they cause minimal disruption. The goal ofusing these tools is to detect defects and vulnerabilities and not to overload engineerswith too many tools or alien processes outside of their everyday engineering experience.The tools used as part of a secure DevOps workflow should adhere to the followingprinciples:

(a) Tools must be integrated into the Continuous Integration/Continuous Delivery (CI/CD)pipeline.
(b) Tools must not require security expertise beyond what is imparted by the training.
(c) Tools must avoid a high false-positive rate of reporting issues.

7. Keep Credentials Safe. Scanning for credentials and other sensitive content in sourcefiles is necessary during pre-commit to reduce the risk of propagating the sensitive in-formation through the CI/CD process, such as through Infrastructure as Code or otherdeployment scripts. Tools, such as CredScan24, can identify credential leaks, such asthose in source code and configuration files. Some commonly found types of creden-tials include default passwords, hard-coded passwords, SQL connection strings andCertificates with private keys.
8. Use Continuous Learning andMonitoring. Rapidly-deployed systems often monitor thehealth of applications, infrastructure and networks through instrumentation to ensurethe systems are behaving ’normally’. This monitoring can also help uncover securityand performance issues which are departures from normal behaviour. Monitoring isalso an essential part of supporting a defense-in-depth strategy and can reduce anorganisation’s Mean Time To Identify (MTTI) and Mean Time To Contain (MTTC) anattack.

23https://www.whitesourcesoftware.com/24https://secdevtools.azurewebsites.net/helpcredscan.html

KA Secure Software Lifecycle | October 2019 Page 18

https://www.cybok.org
https://www.whitesourcesoftware.com/
https://secdevtools.azurewebsites.net/helpcredscan.html


The Cyber Security Body Of Knowledge
www.cybok.org

3.2 Mobile
Security concerns for mobile apps differ from traditional desktop software in some importantways, including local data storage, inter-app communication, proper usage of cryptographicAPIs and secure network communication. The OWASP Mobile Security Project [40] is a re-source for developers and security teams to build and maintain secure mobile applications;see also the Web & Mobile Security CyBOK Knowledge Area [47].
Four resources are provided to aid in the secure software lifecycle of mobile applications:

1. OWASP Mobile Application Security Verification Standard (MASVS) Security Require-
ments and Verification. The MASVS defines a mobile app security model and listsgeneric security requirements for mobile apps. The MASVS can be used by architects,developers, testers, security professionals, and consumers to define and understandthe qualities of a secure mobile app.

2. Mobile Security Testing Guide (MSTG). The guide25 is a comprehensive manual formobile application security testing and reverse engineering for iOS and Android mobilesecurity testers. The guide provides the following content:
(a) A general mobile application testing guide that contains a mobile app security test-ing methodology and general vulnerability analysis techniques as they apply tomobile app security. The guide also contains additional technical test cases thatare operating system independent, such as authentication and session manage-ment, network communications, and cryptography.
(b) Operating system-dependent testing guides for mobile security testing on the An-droid and iOS platforms, including security basics; security test cases; reverse en-gineering techniques and prevention; and tampering techniques and prevention.
(c) Detailed test cases that map to the requirements in the MASVS.

3. Mobile App Security Checklist. The checklist26 is used for security assessments andcontains links to the MSTG test case for each requirement.
4. Mobile Threat Model. The threat model [41] provides a checklist of items that shouldbe documented, reviewed and discussed when developing a mobile application. Fiveareas are considered in the threat model:

(a) Mobile Application Architecture. The mobile application architecture describesdevice-specific features used by the application, wireless transmission protocols,data transmission medium, interaction with hardware components and other ap-plications. The attack surface can be assessed through a mapping to the architec-ture.
(b) Mobile Data. This section of the threat model defines the data the applicationstores, transmits and receives. The data flow diagrams should be reviewed todetermine exactly how data are handled and managed by the application.
(c) Threat Agent Identification. The threat agents are enumerated, including humansand automated programs.

25https://www.owasp.org/index.php/OWASP Mobile Security Testing Guide26https://github.com/OWASP/owasp-mstg/tree/master/Checklists

KA Secure Software Lifecycle | October 2019 Page 19

https://www.cybok.org
https://www.owasp.org/index.php/OWASP_Mobile_Security_Testing_Guide
https://github.com/OWASP/owasp-mstg/tree/master/Checklists


The Cyber Security Body Of Knowledge
www.cybok.org

(d) Methods of Attack. The most common attacks utilised by threat agents are de-fined so that controls can be developed to mitigate attacks.
(e) Controls. The controls to mitigate attacks are defined.

3.3 Cloud Computing
The emergence of cloud computing bring unique security risks and challenges. In conjunc-tion with the Cloud Security Alliance (CSA)27, SAFECode has provided a ’Practices for SecureDevelopment of Cloud Applications’ [42] guideline as a supplement to the ’Fundamental Prac-tices for Secure Software Development’ guideline [34] discussed in Section 2.1.3 - see alsothe Distributed Systems Security CyBOK Knowledge Area [48]. The Cloud guideline providesadditional secure development recommendations to address six threats unique to cloud com-puting and to identify specific security design and implementation practices in the contextof these threats. These threats and associated practices are provided:

1. Threat: Multitenancy. Multitenancy allows multiple consumers or tenants to maintaina presence in a cloud service provider’s environment, but in a manner where the com-putations, processes, and data (both at rest and in transit) of one tenant are isolatedfrom and inaccessible to another tenant. Practices:
(a) Model the application’s interfaces in threat models. Ensure that the multitenancythreats, such as information disclosure and privilege elevation are modeled foreach of these interfaces, and ensure that these threats are mitigated in the appli-cation code and/or configuration settings.
(b) Use a ’separate schema’ database design and tables for each tenant when buildingmultitenant applications rather than relying on a ’TenantID’ column in each table.
(c) When developing applications that leverage a cloud service provider’s Platform asa Service (PaaS) services, ensure common services are designed and deployed ina way that ensures that the tenant segregation is maintained.

2. Tokenisation of Sensitive Data. An organisation may not wish to generate and storeintellectual property in a cloud environment not under its control. Tokenisation is amethod of removing sensitive data from systems where they do not need to exist ordisassociating the data from the context or the identity that makes them sensitive. Thesensitive data are replaced with a token for those data. The token is later used to rejointhe sensitive data with other data in the cloud system. The sensitive data are encryptedand secured within an organisation’s central system which can be protected with multi-ple layers of protection and appropriate redundancy for disaster recovery and businesscontinuity. Practices:
(a) When designing a cloud application, determine if the application needs to processsensitive data and if so, identify any organisational, government, or industry regu-lations that pertain to that type of sensitive data and assess their impact on theapplication design.
(b) Consider implementing tokenisation to reduce or eliminate the amount of sensitivedata that need to be processed and or stored in cloud environments.

27https://cloudsecurityalliance.org/

KA Secure Software Lifecycle | October 2019 Page 20

https://www.cybok.org
https://cloudsecurityalliance.org/


The Cyber Security Body Of Knowledge
www.cybok.org

(c) Consider data masking, an approach that can be used in pre-production test anddebug systems in which a representative data set is used, but does not need tohave access to actual sensitive data. This approach allows the test and debugsystems to be exempt from sensitive data protection requirements.
3. Trusted Compute Pools. Trusted Compute Pools are either physical or logical group-ings of compute resources/systems in a data centre that share a security posture.These systems provide measured verification of the boot and runtime infrastructurefor measured launch and trust verification. The measurements are stored in a trustedlocation on the system (referred to as a Trusted Platform Module (TPM)) and verifica-tion occurs when an agent, service or application requests the trust quote from theTPM. Practices:

(a) Ensure the platform for developing cloud applications provides trust measurementcapabilities and the APIs and services necessary for your applications to both re-quest and verify the measurements of the infrastructure they are running on.
(b) Verify the trust measurements as either part of the initialisation of your applicationor as a separate function prior to launching the application.
(c) Audit the trust of the environments your applications run on using attestation ser-vices or native attestation features from your infrastructure provider.

4. Data Encryption and Key Management. Encryption is the most pervasive means ofprotecting sensitive data both at rest and in transit. When encryption is used, bothproviders and tenants must ensure that the associated cryptographic key materials areproperly generated, managed and stored. Practices:
(a) When developing an application for the cloud, determine if cryptographic and keymanagement capabilities need to be directly implemented in the application orif the application can leverage cryptographic and key management capabilitiesprovided by the PaaS environment.
(b) Make sure that appropriate key management capabilities are integrated into theapplication to ensure continued access to data encryption keys, particularly asthe data move across cloud boundaries, such as enterprise to cloud or public toprivate cloud.

5. Authentication and Identity Management. As an authentication consumer, the appli-cation may need to authenticate itself to the PaaS to access interfaces and servicesprovided by the PaaS. As an authentication provider, the application may need to au-thenticate the users of the application itself. Practices:
(a) Cloud application developers should implement the authentication methods andcredentials required for accessing PaaS interfaces and services.
(b) Cloud application developers need to implement appropriate authentication meth-ods for their environments (private, hybrid or public).
(c) When developing cloud applications to be used by enterprise users, developersshould consider supporting Single Sign On (SSO) solutions.

6. Shared-Domain Issues. Several cloud providers offer domains that developers can useto store user content, or for staging and testing their cloud applications. As such, these

KA Secure Software Lifecycle | October 2019 Page 21

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

domains, which may be used by multiple vendors, are considered ’shared domains’when running client-side script (such as JavaScript) and from reading data. Practices:
(a) Ensure that your cloud applications are using custom domains whenever the cloudprovider’s architecture allows you to do so.
(b) Review your source code for any references to shared domains.

The European Union Agency for Cybersecurity (ENISA) [44] conducted an in-depth and inde-pendent analysis of the information security benefits and key security risks of cloud comput-ing. The analysis reports that the massive concentrations of resources and data in the cloudpresent a more attractive target to attackers, but cloud-based defences can be more robust,scalable and cost-effective.
3.4 Internet of Things (IoT)

The Internet of Things (IoT) is utilised in almost every aspect of our daily life, including theextension into industrial sectors and applications (i.e. Industrial IOT (IIoT)). IoT and IIoT con-stitute an area of rapid growth that presents unique security challenges. [From this pointforth we include IIoT when we use IoT.] Some of these are considered in the Cyber-PhysicalSystems Security CyBOK Knowledge Area [49], but we consider specifically software lifecy-cle issues here. Devices must be securely provisioned, connectivity between these devicesand the cloud must be secure, and data in storage and in transit must be protected. How-ever, the devices are small, cheap, resource-constrained. Building security into each devicemay not be considered to be cost effective by its manufacturer, depending upon the valueof the device and the importance of the data it collects. An IoT-based solution often has alarge number of geographically-distributed devices. As a result of these technical challenges,trust concerns exist with the IoT, most of which currently have no resolution and are in needof research. However, the US National Institute of Standards and Technology (NIST) [43]recommends four practices for the development of secure IoT-based systems.
1. Use of Radio-Frequency Identification (RFID) tags. Sensors and their data may betampered with, deleted, dropped, or transmitted insecurely. Counterfeit ’things’ existin the marketplace. Unique identifiers can mitigate this problem by attaching Radio-Frequency Identification (RFID) tags to devices. Readers activate a tag, causing thedevice to broadcast radio waves within a bandwidth reserved for RFID usage by gov-ernments internationally. The radio waves transmit identifiers or codes that referenceunique information associated with the device.
2. Not using or allowing the use of default passwords or credentials. IoT devices are oftennot developed to require users and administrators to change default passwords duringsystem set up. Additionally, devices often lack intuitive user interfaces for changingcredentials. Recommended practices are to require passwords to be changed or todesign in intuitive interfaces. Alternatively, manufacturers can randomise passwordsper device rather than having a small number of default passwords.
3. Use of the Manufacturer Usage Description (MUD) specification. The ManufacturerUsage Description (MUD)28 specification allows manufacturers to specify authorisedand expected user traffic patterns to reduce the threat surface of an IoT device by re-stricting communications to/from the device to sources and destinations intended bythe manufacturer.

28https://tools.ietf.org/id/draft-ietf-opsawg-mud-22.html

KA Secure Software Lifecycle | October 2019 Page 22

https://www.cybok.org
https://tools.ietf.org/id/draft-ietf-opsawg-mud-22.html


The Cyber Security Body Of Knowledge
www.cybok.org

4. Development of a Secure Upgrade Process. In non-IoT systems, updates are usuallydelivered via a secure process in which the computer can authenticate the source push-ing the patches and feature and configuration updates. IoT manufacturers have, gen-erally, not established such a secure upgrade process, which enables attackers to con-duct a man-in-the-middle push of their own malicious updates to the devices. The IoTFirmware Update Architecture 29 provides guidance on implementing a secure firmwareupdate architecture including hard rules defining how device manufacturers should op-erate.
Additionally, the UK Department for Digital, Culture, Media, and Sport have provided the Code
of Practice for consumer IoT security30. Included in the code of practice are 13 guidelinesfor improving the security of consumer IoT products and associated services. Two of theguidelines overlap with NIST bullets 2 and 4 above. The full list of guidelines include the fol-lowing: (1) No default passwords; (2) Implement a vulnerability disclosure policy; (3) Keepsoftware updated; (4) Securely store credentials and security-sensitive data; (5) Communi-cate securely (i.e. use encryption for sensitive data); (6) Minimise exposed attack surfaces;(7) Ensure software integrity (e.g. use of a secure boot); (8) Ensure that personal data is pro-tected (i.e. in accordance with GDPR); (9) Make systems resilient to outages; (10) Monitorsystem telemetry data; (11) Make it easy for consumers to delete personal data; (12) Makeinstallation and maintenance of devices easy; and (13) Validate input data. Finally, Microsofthas provided an Internet of Things security architecture.31

3.5 Road Vehicles
A hacker that compromises a connected road vehicle‘s braking or steering system couldcause a passenger or driver to lose their lives. Attacks such as these have been demon-strated, beginning with the takeover of a Ford Escape and a Toyota Prius by white-hat hack-ers Charlie Miller and Chris Valasek in 201332. Connected commercial vehicles are part ofthe critical infrastructure in complex global supply chains. In 2018, the number of reportedattacks on connected vehicles shot up six times more than the number just three years ear-lier [45], due to both the increase in connected vehicles and their increased attractiveness asa target of attackers [46]. Broader issues with Cyber-Physical Systems are addressed in theCyber-Physical Systems Security CyBOK Knowledge Area [49].
The US National Highway Traffic Safety Administration (HTSA) defines road vehicle cybersecurity as the protection of automotive electronic systems, communication networks, con-trol algorithms, software, users and underlying data from malicious attacks, damage, unau-thorised access or manipulation33. The HTSA provides four guidelines for the automotiveindustry for consideration in their secure software development lifecycle:

1. The team should follow a secure product development process based on a systems-engineering approach with the goal of designing systems free of unreasonable safetyrisks including those from potential cyber security threats and vulnerabilities.
2. The automotive industry should have a documented process for responding to inci-dents, vulnerabilities and exploits. This process should cover impact assessment, con-

29https://tools.ietf.org/id/draft-moran-suit-architecture-02.html30https://www.gov.uk/government/publications/code-of-practice-for-consumer-iot-security/
code-of-practice-for-consumer-iot-security31https://docs.microsoft.com/en-us/azure/iot-fundamentals/iot-security-architecture32https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/33https://www.nhtsa.gov/crash-avoidance/automotive-cybersecurity#automotive-cybersecurity-overview

KA Secure Software Lifecycle | October 2019 Page 23

https://www.cybok.org
https://tools.ietf.org/id/draft-moran-suit-architecture-02.html
https://www.gov.uk/government/publications/code-of-practice-for-consumer-iot-security/code-of-practice-for-consumer-iot-security
https://www.gov.uk/government/publications/code-of-practice-for-consumer-iot-security/code-of-practice-for-consumer-iot-security
https://docs.microsoft.com/en-us/azure/iot-fundamentals/iot-security-architecture
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
https://www.nhtsa.gov/crash-avoidance/automotive-cybersecurity#automotive-cybersecurity-overview


The Cyber Security Body Of Knowledge
www.cybok.org

tainment, recovery and remediation actions, the associated testing, and should includethe creation of roles and responsibilities for doing so. The industry should also estab-lish metrics to periodically assess the effectiveness of their response process.
3. The automotive industry should document the details related to their cyber security pro-cess, including the results of risk assessment, penetration testing and organisationsdecisions related to cyber security. Essential documents, such as cyber security re-quirements, should follow a robust version control protocol.
4. These security requirements should be incorporated into the product’s security require-ments, as laid out in Section 2.1.1 bullet 2, Section 2.1.2 bullet 6, and Section 2.1.3 bullet1.:

(a) Limit developer/debugging access to production devices, such as through an opendebugging port or through a serial console.
(b) Keys (e.g., cryptographic) and passwords which can provide an unauthorised, el-evated level of access to vehicle computing platforms should be protected fromdisclosure. Keys should not provide access to multiple vehicles.
(c) Diagnostic features should be limited to a specific mode of vehicle operation whichaccomplishes the intended purpose of the associated feature. For example, a diag-nostic operation which may disable a vehicle’s individual brakes could be restrictedto operating only at low speeds or not disabling all the brakes at the same time.
(d) Encryption should be considered as a useful tool in preventing the unauthorisedrecovery and analysis of firmware.
(e) Limit the ability to modify firmware and/or employ signing techniques to make itmore challenging for malware to be installed on vehicles.
(f) The use of network servers on vehicle ECUs should be limited to essential function-ality, and services over these ports should be protected to prevent use by unautho-rised parties.
(g) Logical and physical isolation techniques should be used to separate processors,vehicle networks, and external connections as appropriate to limit and control path-ways from external threat vectors to cyber-physical features of vehicles.
(h) Sending safety signals as messages on common data buses should be avoided,but when used should employ a message authentication scheme to limit the pos-sibility of message spoofing.
(i) An immutable log of events sufficient to enable forensic analysis should be main-tained and periodically scrutinised by qualified maintenance personnel to detecttrends of cyber-attack.
(j) Encryption methods should be employed in any IP-based operational communi-cation between external servers and the vehicle, and should not accept invalidcertificates.

(k) Plan for and design-in features that could allow for changes in network routingrules to be quickly propagated and applied to one, a subset or all vehicles
The International Organization for Standardization (ISO)34 and the Society for Automative

34https://www.iso.org/standard/70918.html

KA Secure Software Lifecycle | October 2019 Page 24

https://www.cybok.org
https://www.iso.org/standard/70918.html


The Cyber Security Body Of Knowledge
www.cybok.org

Engineering (SAE) International 35 are jointly developing an international Standard, ISO 21434
Road vehicles - cyber security engineering36. The standard will specify minimum requirementson security engineering processes and activities, and will define criteria for assessment. Ex-plicitly, the goal is to provide a structured process to ensure cyber security is designed inupfront and integrated throughout the lifecycle process for both hardware and software.
The adoption of a secure software lifecycle in the automotive industry may be driven by leg-islation, such as through the US SPY Car Act37 or China and Germany’s Intelligent and Con-nected Vehicles (ICVs) initiative38.
3.6 ECommerce/Payment Card Industry

The ability to steal large quantities of money makes the Payment Card Industry (PCI) an es-pecially attractive target for attackers. In response, the PCI created the Security StandardsCouncil, a global forum for the ongoing development, enhancement, storage, dissemination,and implementation of security standards for account data protection. The Security Stan-dards Council established the Data Security Standard (PCI DSS), which must be upheld byany organisations that handle payment cards, including debit and credit cards. PCI DSS con-tains 12 requirements39 that are a set of security controls that businesses are required toimplement to protect credit card data. These specific requirements are incorporated into theproduct’s security requirements, as laid out in Section 2.1.1 bullet 2, Section 2.1.2 bullet 6, andSection 2.1.3 bullet 1. The 12 requirements are as follows:
1. Install and maintain a firewall configuration to protect cardholder data.
2. Do not use vendor-supplied defaults for system passwords and other security parame-ters.
3. Protect stored cardholder data.
4. Encrypt transmission of cardholder data across open, public networks.
5. Use and regularly update antivirus software.
6. Develop and maintain secure systems and applications, including detecting and miti-gating vulnerabilities and applying mitigating controls.
7. Restrict access to cardholder data by business need-to-know.
8. Assign a unique ID to each person with computer access.
9. Restrict physical access to cardholder data.

10. Track and monitor all access to network resources and cardholder data.
11. Regularly test security systems and processes.
12. Maintain a policy that addresses information security.
35www.sae.org36https://www.iso.org/standard/70918.html37https://www.congress.gov/bill/115th-congress/senate-bill/68038http://icv.sustainabletransport.org/39https://searchsecurity.techtarget.com/definition/PCI-DSS-12-requirements

KA Secure Software Lifecycle | October 2019 Page 25

https://www.cybok.org
www.sae.org
https://www.iso.org/standard/70918.html
https://www.congress.gov/bill/115th-congress/senate-bill/680
http://icv.sustainabletransport.org/
https://searchsecurity.techtarget.com/definition/PCI-DSS-12-requirements


The Cyber Security Body Of Knowledge
www.cybok.org

4 ASSESSING THE SECURE SOFTWARE LIFECYCLE
[50, 51]

Organisations may wish to or be required to assess the maturity of their secure developmentlifecycle. Four assessment approaches are described in this section.
4.1 SAMM

The Software Assurance Maturity Model (SAMM)40 is an open framework to help organisa-tions formulate and implement a strategy for software security that is tailored to the specificrisks facing the organisation. Resources are provided for the SAMM to enable an organisa-tion to do the following:
1. Define and measure security-related activities within an organisation.
2. Evaluate their existing software security practices.
3. Build a balanced software security program in well-defined iterations.
4. Demonstrate improvements in a security assurance program.

Because each organisation utilises its own secure software process (i.e., its own unique com-bination of the practices laid out in Sections 2 and 3), the SAMM provides a framework todescribe software security initiatives in a common way. The SAMM designers enumeratedactivities executed by organisations in support of their software security efforts. Some ex-ample activities include: build and maintain abuse case models per project; specify securityrequirements based upon known risks; and identify the software attack surface. These activ-ities are categorised into one of 12 security practices. The 12 security practices are furthergrouped into one of four business functions. The business functions and security practicesare as follows:
1. Business Function: Governance

(a) Strategy and metrics
(b) Policy and compliance
(c) Education and guidance

2. Business Function: Construction
(a) Threat assessment
(b) Security requirements
(c) Secure architecture

3. Business Function: Verification
(a) Design review
(b) Code review
(c) Security testing

4. Business Function: Deployment
40https://www.opensamm.org/ and https://www.owasp.org/images/6/6f/SAMM Core V1-5 FINAL.pdf

KA Secure Software Lifecycle | October 2019 Page 26

https://www.cybok.org
https://www.opensamm.org/
https://www.owasp.org/images/6/6f/SAMM_Core_V1-5_FINAL.pdf


The Cyber Security Body Of Knowledge
www.cybok.org

(a) Vulnerability management
(b) Environment hardening
(c) Operational enablement

The SAMM assessments are conducted through self-assessments or by a consultant cho-sen by the organisation. Spreadsheets are provide by SAMM for scoring the assessment,providing information for the organisation on their current maturity level:
• 0: Implicit starting point representing the activities in the Practice being unfulfilled.
• 1: Initial understanding and ad hoc provision of the Security Practice.
• 2: Increase efficiency and/or effectiveness of the Security Practice.
• 3: Comprehensive mastery of the Security Practice at scale.

Assessments may be conducted periodically to measure improvements in an organisation’ssecurity assurance program.
4.2 BSIMM

Gary McGraw, Sammy Migues, and Brian Chess desired to create a descriptive model of thestate-of-the-practice in secure software development lifecycle. As a result, they forked anearly version of SAMM (see Section 4.1) to create the original structure of the Building Secu-rity In Maturity Model (BSIMM) [50, 51] in 2009. Since that time, the BSIMM has been usedto structure a multi-year empirical study of the current state of software security initiativesin industry.
Because each organisation utilises its own secure software process (i.e., its own unique com-bination of the practices laid out in Sections 2 and 3), the BSIMM provides a framework todescribe software security initiatives in a common way. Based upon their observations, theBSIMM designers enumerated 113 activities executed by organisations in support of theirsoftware security efforts. Some example activities include: build and publish security fea-tures; use automated tools along with a manual review; and integrate black-box security toolsinto the quality assurance process. Each activity is associated with a maturity level and iscategorised into one of 12 practices. The 12 practices are further grouped into one of fourdomains. The domains and practices are as follows:

1. Domain: Governance
(a) Strategy and metrics
(b) Compliance and policy
(c) Training

2. Domain: Intelligence
(a) Attack models
(b) Security features and design
(c) Standards and requirements

3. Domain: Secure software development lifecycle touchpoints
(a) Architecture analysis

KA Secure Software Lifecycle | October 2019 Page 27

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

(b) Code review
(c) Security testing

4. Domain: Deployment
(a) Penetration testing
(b) Software environment
(c) Configuration management and vulnerability management

BSIMM assessments are conducted through in-person interviews by software security pro-fessionals at Cigital (now Synopsys) with security leaders in a firm. Via the interviews, thefirm obtains a scorecard on which of the 113 software security activities the firm uses. Afterthe firm completes the interviews, they are provided information comparing themselves withthe other organisations that have been assessed. BSIMM assessments have been conductedsince 2008. Annually, the overall results of the assessments from all firms are published, re-sulting in the BSIMM1 through BSIMM9 reports. Since the BSIMM study began in 2008, 167firms have participated in BSIMM assessment, sometimes multiple times, comprising 389distinct measurements. To ensure the continued relevance of the data reported, the BSIMM9report excluded measurements older than 42 months and reported on 320 distinct measure-ments collected from 120 firms.
4.3 The Common Criteria

The purpose of this Common Criteria (CC)41 is to provide a vehicle for international recog-nition of a secure information technology (IT) product (where the SAMM and BSIMM wereassessments of a development process). The objective of the CC is for IT products that haveearned a CC certificate from an authorised Certification/Validation Body (CB) to be procuredor used with no need for further evaluation. The Common Criteria seek to provide groundsfor confidence in the reliability of the judgments on which the original certificate was basedby requiring that a CB issuing Common Criteria certificates should meet high and consistentstandards. A developer of a new product range may provide guidelines for the secure devel-opment and configuration of that product. This guideline can be submitted as a ProtectionProfile (the pattern for similar products that follow on). Any other developer can add to orchange this guideline. Products that earn certification in this product range use the protec-tion profile as the delta against which they build.
Based upon the assessment of the CB, a product receives an Evaluation Assurance Level(EAL). A product or system must meet specific assurance requirements to achieve a particu-lar EAL. Requirements involve design documentation, analysis and functional or penetrationtesting. The highest level provides the highest guarantee that the system’s principal securityfeatures are reliably applied. The EAL indicates to what extent the product or system wastested:

• EAL 1: Functionally tested. Applies when security threats are not viewed as serious.The evaluation provides evidence that the system functions in a manner consistentwith its documentation and that it provides useful protection against identified threats.
• EAL2: Structurally tested. Applies when stakeholders require low-to-moderate independently-assured security but the complete development record is not readily available, such as

41https://www.commoncriteriaportal.org/ccra/index.cfm

KA Secure Software Lifecycle | October 2019 Page 28

https://www.cybok.org
https://www.commoncriteriaportal.org/ccra/index.cfm


The Cyber Security Body Of Knowledge
www.cybok.org

with securing a legacy system.
• EAL 3: Methodically tested and checked. Applies when stakeholders require a moder-ate level of independently-assured security and a thorough investigation of the systemand its development, without substantial re-engineering.
• EAL 4: Methodically designed, tested and reviewed. Applies when stakeholders re-quire moderate-to-high independently-assured security in commodity products and areprepared to incur additional security-specific engineering costs.
• EAL 5: Semi-formally designed and tested. Applies when stakeholders require high,independently-assured security in a planned development and require a rigorous de-velopment approach that does not incur unreasonable costs from specialist securityengineering techniques.
• EAL 6: Semi-formally verified design and tested. Applies when developing systems inhigh-risk situations where the value of the protected assets justifies additional costs.
• EAL 7: Formally verified design and tested. Applies when developing systems in ex-tremely high-risk situations and when the high value of the assets justifies the highercosts.

The CC provides a set of security functional and security assurance requirements. Theserequirements, as appropriate, are incorporated into the product’s security requirements, aslaid out in Section 2.1.1 bullet 2, Section 2.1.2 bullet 6, and Section 2.1.3 bullet 1.
5 ADOPTING A SECURE SOFTWARE LIFECYCLE

[50, 51, 52]
This knowledge area has provided a myriad of possible practices an organisation can includein its secure software lifecycle. Some of these practices, such as those discussed in Section2, potentially apply to any product. Other practices are domain specific, such as those dis-cussed in Section 3.
Organisations adopting new practices often like to learn from and adopt practices that areused by organisations similar to themselves [52]. When choosing which security practicesto include in a secure software lifecycle, organisations can consider looking at the latestBSIMM [50, 51] results which provide updated information on the adoption of practices in theindustry.
DISCUSSION

[53]
This chapter has provided an overview of of three prominent and prescriptive secure softwarelifecycle processes and six adaptations of these processes that can be applied in a specifieddomain. However, the cybersecurity landscape in terms of threats, vulnerabilities, tools, andpractices is ever evolving. For example, a practice has has not be been mentioned in any ofthese nine processes is the use of a bug bounty program for the identification and resolutionof vulnerabilities. With a bug bounty program, organisations compensate individuals and/orresearchers for finding and reporting vulnerabilities. These individuals are external to the

KA Secure Software Lifecycle | October 2019 Page 29

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

organisation producing the software and may work independently or through a bug bountyorganisation, such as HackerOne42.
While the majority of this knowledge area focuses on technical practices, the successfuladoption of these practices involves organisational and cultural changes in an organisa-tion. The organisation, starting from executive leadership, must support the extra training,resources, and steps needed to use a secure development lifecycle. Additionally, every de-veloper must uphold his or her responsibility to take part in such a process.
A team and an organisation need to choose the appropriate software security practices todevelop a customised secure software lifecycle based upon team and technology character-istics and upon the security risk of the product.
While this chapter has provided practices for developing secure products, information inse-curity is often due to economic disincentives [53] which drives software organizations tochoose the rapid deployment and release of functionality over the production of secure prod-ucts. As a result, increasingly governments and industry groups are imposing cyber securitystandards on organisations as a matter of legal compliance or as a condition for being con-sidered as a vendor. Compliance requirements may lead to faster adoption of a secure de-velopment lifecycle. However, this compliance-driven adoption may divert efforts away fromthe real security issues by driving an over-focus on compliance requirements rather than onthe pragmatic prevention and detection of the most risky security concerns.
CROSS-REFERENCE OF TOPICS VS REFERENCE MATERIAL

How
ard

SDL
[3]

Vie
ga-

201
1[6

]
How

ard
WS

C[9
]

SAF
ECo

deF
und

am
ent

al[3
4]

1 Motivation c1 c1 c12 Prescriptive Secure Software Lifecycle Processes2.1 Secure Software Lifecycle Processes c2 c2 c2 c22.2 Comparing the Secure Software Lifecycle Models3 Adaptations of the Secure Software Lifecycle3.1 Agile Software Development and DevOps c33.2 Mobile3.3 Cloud Computing3.4 Internet of Things (IoT)3.5 Road Vehicles3.6 ECommerce/Payment Card Industry4 Assessing the Secure Software Lifecycle5 Adopting a Secure Software Lifecycle
42https://www.hackerone.com

KA Secure Software Lifecycle | October 2019 Page 30

https://www.cybok.org
https://www.hackerone.com


The Cyber Security Body Of Knowledge
www.cybok.org

FURTHER READING

Building Secure Software: How to Avoid Security Problems the Right Way
[6]
This book introduces the term software security as an engineering discipline for building se-curity into a product. This book provides essential lessons and expert techniques for secu-rity professionals who understand the role of software in security problems and for softwaredevelopers who want to build secure code. The book also discusses risk assessment, devel-oping security tests, and plugging security holes before software is shipped.
Writing Secure Code, Second Edition. [9]

The first edition of this book was internally published in Microsoft and was required readingfor all members of the Windows team during the Windows Security Push. The second edi-tion was made publicly available in the 2003 book and provides secure coding techniques toprevent vulnerabilities, to detect design flaws and implementation bugs, and to improve testcode and documentation.
Software Security: Building Security In [10]

This book discusses seven software securing best practices, called touchpoints. It also pro-vides information on software security fundamentals and contexts for a software securityprogram in an enterprise.
The Security Development Lifecycle (Original Book) [3]

This seminal book provides the foundation for the other processes laid out in this knowledgearea, and was customised over the years by other organisations, such as Cisco 43. The booklays out 13 stages for integrating practices into a software development lifecycle such thatthe product is more secure. This book is out of print, but is avaialble as a free download44.
The Security Development Lifecycle (Current Microsoft Resources) [11]

The Microsoft SDL are practices that are used internally to build secure products and services,and address security compliance requirements by introducing security practices throughoutevery phase of the development process. This webpage is a continuously-updated versionof the seminal book [3] based on Microsoft’s growing experience with new scenarios suchas the cloud, the Internet of Things (IoT) and Artificial Intelligence (AI).
43https://www.cisco.com/c/en/us/about/trust-center/technology-built-in-security.html#∼stickynav=244https://blogs.msdn.microsoft.com/microsoft press/2016/04/19/free-ebook-the-security-development-lifecycle/

KA Secure Software Lifecycle | October 2019 Page 31

https://www.cybok.org
https://www.cisco.com/c/en/us/about/trust-center/technology-built-in-security.html#~stickynav=2
https://blogs.msdn.microsoft.com/microsoft_press/2016/04/19/free-ebook-the-security-development-lifecycle/


The Cyber Security Body Of Knowledge
www.cybok.org

Software Security Engineering: A Guide for Project Managers [26]
This book is a management guide for selecting from among sound software developmentpractices that have been shown to increase the security and dependability of a software prod-uct, both during development and subsequently during its operation. Additionally, this bookdiscusses governance and the need for a dynamic risk management approach for identifyingpriorities throughout the product lifecycle.
Cyber Security Engineering: APractical Approach for Systems andSoftware
Assurance [54]
This book provides a tutorial on the best practices for building software systems that ex-hibit superior operational security, and for considering security throughout your full systemdevelopment and acquisition lifecycles. This book provides seven core principles of soft-ware assurance, and shows how to apply them coherently and systematically. This book ad-dresses important topics, including the use of standards, engineering security requirementsfor acquiring COTS software, applying DevOps, analysing malware to anticipate future vulner-abilities, and planning ongoing improvements.
SAFECode’s Fundamental Practices for Secure Software Development: Es-
sential Elements of a Secure Development Lifecycle Program, Third Edition
[34]
Eight practices for secure development are provided based upon the experiences of membercompanies of the SAFECode organisation.
OWASP’s Secure Software Development Lifecycle Project (S-SDLC) [12]

Based upon a committee of industry participants, the Secure-Software Development Life-cycle Project (S-SDLC) defines a standard Secure Software Development Life Cycle and pro-vides resources to help developers know what should be considered or best practices at eachphase of a development lifecycle (e.g., Design Phase/Coding Phase/Maintain Phase/etc.)The committee of industry participants are members of the Open Web Application SecurityProject (OWASP)45, an international not-for-profit organisation focused on improving the se-curity of web application software. The earliest secure software lifecycle contributions fromOWASP were referred to as the Comprehensive, Lightweight Application Security Process(CLASP).
45https://www.owasp.org/

KA Secure Software Lifecycle | October 2019 Page 32

https://www.cybok.org
https://www.owasp.org/


The Cyber Security Body Of Knowledge
www.cybok.org

Security controls
Government and standards organizations have provided security controls to be integrated ina secure software or systems lifecyle:

1. The Trustworthy Software Foundation 46 provides the the Trustworthy Software Frame-work (TSFr) 47 a collection of good practice, existing guidance and relevant standardsacross the five main facets of trustworthiness: Safety; Reliability; Availability; Resilience;and Security. The purpose of the TSFr is to provide a minimum set of controls such that,when applied, all software (irrespective of implementation constraints) can be speci-fied, realised and used in a trustworthy manner.
2. The US National Institute of Standards and Technology (NIST) has authored the Sys-tems Security Engineering Cyber Resiliency Considerations for the Engineering [55]framework (NIST SP 800-160). This Framework provides resources on cybersecurityKnowledge, Skills and Abilitiess (KSAs), and tasks for a number of work roles for achiev-ing the identified cyber resiliency outcomes based on a systems engineering perspec-tive on system life cycle processes.
3. The Software Engineering Institute (SEI) has collaborated with professional organisa-tions, industry partners and institutions of higher learning to develop freely-availablecurricula and educational materials. Included in these materials are resources for asoftware assurance program48 to train professionals to build security and correct func-tionality into software and systems.
4. The UK National Cyber Security Centre (NCSC)49 provide resources for secure softwaredevelopment:

(a) Application development50: recommendations for the secure development, pro-curement, and deployment of generic and platform-specific applications.
(b) Secure development and deployment guidance51: more recommendations for thesecure development, procurement, and deployment of generic and platform-specificapplications.
(c) The leaky pipe of secure coding52: a discussion of how security can be wovenmore seamlessly into the development process, particularly by developers whoare not security experts.

46https://tsfdn.org47https://tsfdn.org/ts-framework/48https://www.sei.cmu.edu/education-outreach/curricula/software-assurance/index.cfm49https://www.ncsc.gov.uk/50https://www.ncsc.gov.uk/collection/application-development51https://www.ncsc.gov.uk/collection/developers-collection52https://www.ncsc.gov.uk/blog-post/leaky-pipe-secure-coding

KA Secure Software Lifecycle | October 2019 Page 33

https://www.cybok.org
https://tsfdn.org
https://tsfdn.org/ts-framework/
https://www.sei.cmu.edu/education-outreach/curricula/software-assurance/index.cfm
https://www.ncsc.gov.uk/
https://www.ncsc.gov.uk/collection/application-development
https://www.ncsc.gov.uk/collection/developers-collection
https://www.ncsc.gov.uk/blog-post/leaky-pipe-secure-coding


The Cyber Security Body Of Knowledge
www.cybok.org

Training materials
Training materials are freely-available on the Internet. Some sites include the following:

1. The Trustworthy Software Foundation provides a resource library 53 of awareness mate-rials and guidance targeted for those who teach trustworthy software principles, thosewho seek to learn about Trustworthy Software and those who want to ensure that thesoftware they use is trustworthy. The resources available include a mixture of docu-ments, videos, animations and case studies.
2. The US National Institute of Standards and Technology (NIST) has created the NICECyber security Workforce Framework [56]. This Framework provides resources on cybersecurity Knowledge, Skills and Abilitiess (KSAs), and tasks for a number of work roles.
3. The Software Engineering Institute (SEI) has collaborated with professional organisa-tions, industry partners and institutions of higher learning to develop freely-availablecurricula and educational materials. Included in these materials are resources for asoftware assurance program54 to train professionals to build security and correct func-tionality into software and systems.
4. SAFECode offers free software security training courses delivered via on-demand web-casts55.

REFERENCES
[1] F. Piessens, The Cyber Security Body of Knowledge. University of Bristol, 2019, ch.Software Security, version 1.0. [Online]. Available: https://www.cybok.org/[2] “Bill gates: Trustworthy computing,” https://www.wired.com/2002/01/bill-gates-trustworthy-computing/, 2002.[3] M. Howard and S. Lipner, The Security Development Lifecycle. Redmond, WA, USA:Microsoft Press, 2006.[4] Poneman Institute, “2018 cost of a data breach study: Global overview,”July 2018, online. [Online]. Available: https://securityintelligence.com/series/ponemon-institute-cost-of-a-data-breach-2018/[5] G. McGraw, “Testing for security during development: why we should scrap penetrate-and-patch,” IEEE Aerospace and Electronic Systems Magazine, vol. 13, no. 4, pp. 13–15,April 1998.[6] J. Viega and G. McGraw, Building Secure Software: How to Avoid Security Problems the

Right Way. Addison-Wesley Professional, 2002.[7] T. Greene, “That Heartbleed problem may be more pervasive than you think,” January2017, online. [Online]. Available: https://www.networkworld.com/article/3162232/security/that-hearbleed-problem-may-be-more-pervasive-than-you-think.html[8] eWeek editors, “Microsoft trustworthy computing timeline,” Octo-ber 2005, online. [Online]. Available: https://www.eweek.com/security/microsoft-trustworthy-computing-timeline[9] M. Howard and D. E. Leblanc, Writing Secure Code, 2nd ed. Redmond, WA, USA: Mi-crosoft Press, 2003.[10] G. McGraw, Software Security: Building Security In. Addison-Wesley Professional, 2006.
53https://tsfdn.org/resource-library/54https://www.sei.cmu.edu/education-outreach/curricula/software-assurance/index.cfm55https://safecode.org/training/

KA Secure Software Lifecycle | October 2019 Page 34

https://www.cybok.org
https://www.cybok.org/
https://www.wired.com/2002/01/bill-gates-trustworthy-computing/
https://www.wired.com/2002/01/bill-gates-trustworthy-computing/
https://securityintelligence.com/series/ponemon-institute-cost-of-a-data-breach-2018/
https://securityintelligence.com/series/ponemon-institute-cost-of-a-data-breach-2018/
https://www.networkworld.com/article/3162232/security/that-hearbleed-problem-may-be-more-pervasive-than-you-think.html
https://www.networkworld.com/article/3162232/security/that-hearbleed-problem-may-be-more-pervasive-than-you-think.html
https://www.eweek.com/security/microsoft-trustworthy-computing-timeline
https://www.eweek.com/security/microsoft-trustworthy-computing-timeline
https://tsfdn.org/resource-library/
https://www.sei.cmu.edu/education-outreach/curricula/software-assurance/index.cfm
https://safecode.org/training/


The Cyber Security Body Of Knowledge
www.cybok.org

[11] Microsoft, “The security development lifecycle,” https://www.microsoft.com/en-us/securityengineering/sdl/, 2019.[12] “Owasp secure software development lifecycle project,” https://www.owasp.org/index.php/OWASP Secure Software Development Lifecycle Project, 2018.[13] P. Morrison, D. Moye, R. Pandita, and L. Williams, “Mapping the field of softwarelife cycle security metrics,” Information and Software Technology, vol. 102, pp. 146– 159, 2018. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S095058491830096X[14] A. Shostack, Threat Modeling: Designing for Security, 1st ed. Wiley Publishing, 2014.[15] M. Howard, “Fending off future attacks by reducing attack surface,” MSDN Maga-
zine, February 4, 2003. [Online]. Available: https://msdn.microsoft.com/en-us/library/ms972812.aspx[16] J. H. Saltzer and M. D. Schroeder, “The protection of information in computer systems,”
Proceedings of the IEEE, vol. 63, no. 9, pp. 1278–1308, 1975. [Online]. Available:https://doi.org/10.1109/PROC.1975.9939[17] I. Arce, K. Clark-Fisher, N. Daswani, J. DelGrosso, D. Dhillon, C. Kern, T. Kohno,C. Landwehr, G. McGraw, B. Schoenfield et al., “Avoiding the top 10 software securitydesign flaws,” IEEE Computer Society Center for Secure Design (CSD), Tech. Rep., 2014.[18] Synopsys, “2018 open source security and risk analysis,” Synopsys Center forOpen Source Research and Innovation, Tech. Rep., 2018. [Online]. Available: https://www.blackducksoftware.com/open-source-security-risk-analysis-2018[19] A. Austin, C. Holmgreen, and L. Williams, “A comparison of the efficiencyand effectiveness of vulnerability discovery techniques,” Information and Soft-
ware Technology, vol. 55, no. 7, pp. 1279 – 1288, 2013. [Online]. Available:http://www.sciencedirect.com/science/article/pii/S0950584912002339[20] P. Hope, G. McGraw, and A. I. Anton, “Misuse and abuse cases: getting past the positive,”
IEEE Security and Privacy, vol. 2, no. 3, pp. 90–92, May 2004.[21] G. Sindre and A. L. Opdahl, “Eliciting security requirements by misuse cases,” in Proceed-
ings 37th International Conference on Technology of Object-Oriented Languages and Sys-
tems. TOOLS-Pacific 2000, Nov 2000, pp. 120–131.[22] K. Tuma, G. Calikli, and R. Scandariato, “Threat analysis of software systems: A system-atic literature review,” Journal of Systems and Software, vol. 144, 06 2018.[23] P. K. Manadhata and J. M. Wing, “An attack surface metric,” IEEE Trans. Softw. Eng.,vol. 37, no. 3, pp. 371–386, May 2011. [Online]. Available: http://dx.doi.org/10.1109/TSE.2010.60[24] C. Theisen, N. Munaiah, M. Al-Zyoud, J. C. Carver, A. Meneely, and L. Williams,“Attack surface definitions: A systematic literature review,” Information and Software
Technology, vol. 104, pp. 94 – 103, 2018. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0950584918301514[25] N. M. Mohammed, M. Niazi, M. Alshayeb, and S. Mahmood, “Exploring softwaresecurity approaches in software development lifecycle: A systematic mapping study,”
Comput. Stand. Interfaces, vol. 50, no. C, pp. 107–115, Feb. 2017. [Online]. Available:https://doi.org/10.1016/j.csi.2016.10.001[26] J. H. Allen, S. Barnum, R. J. Ellison, G. McGraw, and N. R. Mead, Software Security En-
gineering: A Guide for Project Managers (The SEI Series in Software Engineering), 1st ed.Addison-Wesley Professional, 2008.[27] A. van Lamsweerde, “Elaborating security requirements by construction of intentionalanti-models,” in Proceedings of the 26th International Conference on Software
Engineering, ser. ICSE ’04. Washington, DC, USA: IEEE Computer Society, 2004,

KA Secure Software Lifecycle | October 2019 Page 35

https://www.cybok.org
https://www.microsoft.com/en-us/securityengineering/sdl/
https://www.microsoft.com/en-us/securityengineering/sdl/
https://www.owasp.org/index.php/OWASP_Secure_Software_Development_Lifecycle_Project
https://www.owasp.org/index.php/OWASP_Secure_Software_Development_Lifecycle_Project
http://www.sciencedirect.com/science/article/pii/S095058491830096X
http://www.sciencedirect.com/science/article/pii/S095058491830096X
https://msdn.microsoft.com/en-us/library/ms972812.aspx
https://msdn.microsoft.com/en-us/library/ms972812.aspx
https://doi.org/10.1109/PROC.1975.9939
https://www.blackducksoftware.com/open-source-security-risk-analysis-2018
https://www.blackducksoftware.com/open-source-security-risk-analysis-2018
http://www.sciencedirect.com/science/article/pii/S0950584912002339
http://dx.doi.org/10.1109/TSE.2010.60
http://dx.doi.org/10.1109/TSE.2010.60
http://www.sciencedirect.com/science/article/pii/S0950584918301514
http://www.sciencedirect.com/science/article/pii/S0950584918301514
https://doi.org/10.1016/j.csi.2016.10.001


The Cyber Security Body Of Knowledge
www.cybok.org

pp. 148–157. [Online]. Available: http://dl.acm.org.prox.lib.ncsu.edu/citation.cfm?id=998675.999421[28] G. Elahi and E. Yu, “A goal oriented approach for modeling and analyzing securitytrade-offs,” in Proceedings of the 26th International Conference on Conceptual Modeling,ser. ER’07. Berlin, Heidelberg: Springer-Verlag, 2007, pp. 375–390. [Online]. Available:http://dl.acm.org.prox.lib.ncsu.edu/citation.cfm?id=1784489.1784524[29] V. Saini, Q. Duan, and V. Paruchuri, “Threat modeling using attack trees,” J.
Comput. Sci. Coll., vol. 23, no. 4, pp. 124–131, Apr. 2008. [Online]. Available:http://dl.acm.org.prox.lib.ncsu.edu/citation.cfm?id=1352079.1352100[30] L. Williams, A. Meneely, and G. Shipley, “Protection poker: The new software security”game”;,” IEEE Security Privacy, vol. 8, no. 3, pp. 14–20, May 2010.[31] G. McGraw, “The new killer app for security: Software inventory,” Computer, vol. 51, no. 2,pp. 60–62, February 2018.[32] R. Kuhn, M. Raunak, and R. Kacker, “What proportion of vulnerabilities canbe attributed to ordinary coding errors?: Poster,” in Proceedings of the 5th
Annual Symposium and Bootcamp on Hot Topics in the Science of Security, ser.HoTSoS ’18. New York, NY, USA: ACM, 2018, pp. 30:1–30:1. [Online]. Available:http://doi.acm.org/10.1145/3190619.3191686[33] NIST Computer Security, “Guide for conducting risk assessments,” National Instituteof Standards and Technology, Tech. Rep. Special Publication 800-30 Revision 1, 2012.[Online]. Available: https://csrc.nist.gov/publications/detail/sp/800-30/rev-1/final[34] SAFECode, “Fundamental practices for secure software development: Es-sential elements of a secure development lifecycle program,” SAFE-Code, Tech. Rep. Third Edition, March 2018. [Online]. Avail-able: https://safecode.org/wp-content/uploads/2018/03/SAFECode FundamentalPractices for Secure Software Development March 2018.pdf[35] Joint Task Force Transformation Initiative, “Security and privacy controls for federal in-formation systems and organizations,” National Institute of Standards and Technology,Tech. Rep. Special Publication 800-53, Revision 4, 2014.[36] Federal Office for Information Security, “Guidelines for developer documentationaccording to common criteria version 3.1,” Federal Office for Information Security, Tech.Rep. Version 1.0, 2007. [Online]. Available: https://www.commoncriteriaportal.org/files/ccfiles/CommonCriteriaDevelopersGuide 1 0.pdf[37] B. D. Win, R. Scandariato, K. Buyens, J. Grégoire, and W. Joosen, “On the securesoftware development process: Clasp, sdl and touchpoints compared,” Information and
Software Technology, vol. 51, no. 7, pp. 1152 – 1171, 2009, detailed data analysis ofpractices available online. [Online]. Available: lirias.kuleuven.be/1655460[38] SAFECode, “Practical security stories and security tasks for agile developmentenvironments,” SAFECode, Tech. Rep., July 2012. [Online]. Available: http://safecode.org/wp-content/uploads/2018/01/SAFECode Agile Dev Security0712.pdf[39] Microsoft, “Secure devops,” https://www.microsoft.com/en-us/securityengineering/devsecops, 2019.[40] “Owasp mobile security project,” https://www.owasp.org/index.php/OWASP MobileSecurity Project, 2017.[41] T. Eston, “OWASP mobile security project - mobile threat model,” 2013. [On-line]. Available: https://www.owasp.org/index.php/Projects/OWASP Mobile SecurityProject - Mobile Threat Model[42] B. Sullivan, S. Tabet, E. Bonver, J. Furlong, S. Orrin, and P. Uhley, “Practices for securedevelopment of cloud applications,” SAFECode, Tech. Rep., December 2013. [Online].

KA Secure Software Lifecycle | October 2019 Page 36

https://www.cybok.org
http://dl.acm.org.prox.lib.ncsu.edu/citation.cfm?id=998675.999421
http://dl.acm.org.prox.lib.ncsu.edu/citation.cfm?id=998675.999421
http://dl.acm.org.prox.lib.ncsu.edu/citation.cfm?id=1784489.1784524
http://dl.acm.org.prox.lib.ncsu.edu/citation.cfm?id=1352079.1352100
http://doi.acm.org/10.1145/3190619.3191686
https://csrc.nist.gov/publications/detail/sp/800-30/rev-1/final
https://safecode.org/wp-content/uploads/2018/03/SAFECode_Fundamental_Practices_for_Secure_Software_Development_March_2018.pdf
https://safecode.org/wp-content/uploads/2018/03/SAFECode_Fundamental_Practices_for_Secure_Software_Development_March_2018.pdf
https://www.commoncriteriaportal.org/files/ccfiles/CommonCriteriaDevelopersGuide_1_0.pdf
https://www.commoncriteriaportal.org/files/ccfiles/CommonCriteriaDevelopersGuide_1_0.pdf
lirias.kuleuven.be/1655460
http://safecode.org/wp-content/uploads/2018/01/SAFECode_Agile_Dev_Security0712.pdf
http://safecode.org/wp-content/uploads/2018/01/SAFECode_Agile_Dev_Security0712.pdf
https://www.microsoft.com/en-us/securityengineering/devsecops
https://www.microsoft.com/en-us/securityengineering/devsecops
https://www.owasp.org/index.php/OWASP_Mobile_Security_Project
https://www.owasp.org/index.php/OWASP_Mobile_Security_Project
https://www.owasp.org/index.php/Projects/OWASP_Mobile_Security_Project_-_Mobile_Threat_Model
https://www.owasp.org/index.php/Projects/OWASP_Mobile_Security_Project_-_Mobile_Threat_Model


The Cyber Security Body Of Knowledge
www.cybok.org

Available: https://safecode.org/publication/SAFECode CSA Cloud Final1213.pdf[43] J. Voas, R. Kuhn, P. Laplante, and S. Applebaum, “Inernet of things (iot) trustconcerns,” National Institute of Standards and Technology, Tech. Rep. Draft, 2018.[Online]. Available: https://csrc.nist.gov/publications/detail/white-paper/2018/10/17/iot-trust-concerns/draft[44] ENISA, “Cloud computing: Benefits, risks and recommendations for informationsecurity,” ENISA, Tech. Rep., 2009. [Online]. Available: https://www.enisa.europa.eu/publications/cloud-computing-risk-assessment/at download/fullReport[45] Y. Vardi, “Where automotive cybersecurity is headed in 2019,”2019. [Online]. Available: https://thenextweb.com/contributors/2019/02/10/where-automotive-cybersecurity-is-headed-in-2019/[46] G. McGraw, “From mainframes to connected cars: How software drives the automotiveindustry,” Security Ledger, vol. August 15, August 2018.[47] S. Fahl, The Cyber Security Body of Knowledge. University of Bristol, 2019, ch. Web &Mobile Security, version 1.0. [Online]. Available: https://www.cybok.org/[48] N. Suri, The Cyber Security Body of Knowledge. University of Bristol, 2019, ch.Distributed Systems Security, version 1.0. [Online]. Available: https://www.cybok.org/[49] A. Cardenas, The Cyber Security Body of Knowledge. University of Bristol, 2019, ch.Cyber-Physical Systems Security, version 1.0. [Online]. Available: https://www.cybok.org/[50] G. McGraw, S. Migues, and J. West, “Building security in maturity model,” https://www.bsimm.com/, 2009.[51] L. Williams, G. McGraw, and S. Migues, “Engineering security vulnerability prevention,detection, and response,” IEEE Software, vol. 35, no. 5, pp. 76–80, Sep. 2018.[52] G. A. Moore, Crossing the Chasm: Marketing and Selling Disruptive Products to Main-
stream Customers. Harper Collins, 2002.[53] R. Anderson, “Why information security is hard - an economic perspective,” in Seven-
teenth Annual Computer Security Applications Conference, Dec 2001, pp. 358–365.[54] N. R. Mead and C. Woody, Cyber Security Engineering: A Practical Approach for Systems
and Software Assurance, 1st ed. Addison-Wesley Professional, 2016.[55] R. Ross, V. Pillitteri, R. Graubart, D. Bodeau, and R. McQuaid, “Developing cyber resilientsystems: a systems security engineering approach,” National Institute of Standardsand Technology, Tech. Rep. Draft (FPD) SP 800-160 Volume 2, 2019. [Online]. Available:https://csrc.nist.gov/publications/detail/sp/800-160/vol-2/draft[56] W. Newhouse, S. Keith, B. Scribner, and G. Witte, “National Initiative for Cy-bersecurity Education (NICE) cybersecurity workforce framework,” National In-stitute of Standards and Technology, Tech. Rep. Special Publication 800-181, 2017. [Online]. Available: https://www.nist.gov/itl/applied-cybersecurity/nice/resources/nice-cybersecurity-workforce-framework

KA Secure Software Lifecycle | October 2019 Page 37

https://www.cybok.org
https://safecode.org/publication/SAFECode_CSA_Cloud_Final1213.pdf
https://csrc.nist.gov/publications/detail/white-paper/2018/10/17/iot-trust-concerns/draft
https://csrc.nist.gov/publications/detail/white-paper/2018/10/17/iot-trust-concerns/draft
https://www.enisa.europa.eu/publications/cloud-computing-risk-assessment/at_download/fullReport
https://www.enisa.europa.eu/publications/cloud-computing-risk-assessment/at_download/fullReport
https://thenextweb.com/contributors/2019/02/10/where-automotive-cybersecurity-is-headed-in-2019/
https://thenextweb.com/contributors/2019/02/10/where-automotive-cybersecurity-is-headed-in-2019/
https://www.cybok.org/
https://www.cybok.org/
https://www.cybok.org/
https://www.cybok.org/
https://www.bsimm.com/
https://www.bsimm.com/
https://csrc.nist.gov/publications/detail/sp/800-160/vol-2/draft
https://www.nist.gov/itl/applied-cybersecurity/nice/resources/nice-cybersecurity-workforce-framework
https://www.nist.gov/itl/applied-cybersecurity/nice/resources/nice-cybersecurity-workforce-framework


The Cyber Security Body Of Knowledge
www.cybok.org

ACRONYMS
AI Artificial Intelligence.
API Application Programming Interface.
ASC Application Security Controls.
ASVS Application Security Verfication Standard.
BSIMM Building Security In Maturity Model.
CB Certification/Validation Body.
CC Common Criteria.
CEO Chief Executive Officer.
CI/CD Continuous Integration/Continuous Delivery.
CLASP Comprehensive, Lightweight Application Security Process.
COTS Common Off The Shelf.
CSA Cloud Security Alliance.
CVSS Common Vulnerability Scoring System.
CWE Common Weakness Enumeration.
DAST Dynamic Analysis Security Testing.
DES Data Encryption Standard.
DoS Denial of Service.
EAL Evaluation Assurance Level.
ECU Electrical Control Unit.
ENISA European Union Agency for Cybersecurity.
GDPR General Data Protection Regulation.
HIPAA Health Insurance Portability and Accountability Act.
HTSA Highway Traffic Safety Administration.
ICV Intelligent and Connected Vehicle.
IDE Integrated Development Environment.
IIoT Industrial IOT.
IIS Internet Information Services.
IoT Internet of Things.
IRP Incident Response Plan.

KA Secure Software Lifecycle | October 2019 Page 38

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

ISO International Organization for Standardization.
KAOS Keep All Objectives Satisfied.
KPI Key Performance Indicator.
KSA Knowledge, Skills and Abilities.
MASVS OWASP Mobile Application Security Verification Standard.
MSTG Mobile Security Testing Guide.
MTTC Mean Time To Contain.
MTTI Mean Time To Identify.
MUD Manufacturer Usage Description.
NCSC National Cyber Security Centre.
NICE National Institute for Cybersecurity Education.
NIST National Institute of Standards and Technology.
NVD National Vulnerability Database.
OWASP Open Web Application Security Project.
PaaS Platform as a Service.
PCI Payment Card Industry.
PCI DSS Payment Card Industry Data Security Standard.
RFID Radio-Frequency Identification.
S-SDLC Secure-Software Development Lifecycle Project.
SAE Society for Automative Engineering.
SAMM Software Assurance Maturity Model.
SAST Static Analysis Security Testing.
SCA Software Composition Analysis.
SCADA Supervisory Control and Data Acquisition.
SDL Security Development Lifecycle.
SEI Software Engineering Institute.
SQL Structured Query Language.
SQUARE Security Quality Requirements Engineering.
SSO Single Sign On.
TPM Trusted Platform Module.

KA Secure Software Lifecycle | October 2019 Page 39

https://www.cybok.org

	1 Motivation
	2 Prescriptive Secure Software Lifecycle Processes
	2.1 Secure Software Lifecycle Processes
	2.1.1 Microsoft Security Development Lifecycle (SDL)
	2.1.2 Touchpoints
	2.1.3 SAFECode

	2.2 Comparing the Secure Software Lifecycle Models

	3 Adaptations of the Secure Software Lifecycle
	3.1 Agile Software Development and DevOps
	3.2 Mobile
	3.3 Cloud Computing
	3.4 Internet of Things (IoT)
	3.5 Road Vehicles
	3.6 ECommerce/Payment Card Industry

	4 Assessing the Secure Software Lifecycle
	4.1 SAMM
	4.2 BSIMM
	4.3 The Common Criteria

	5 Adopting a Secure Software Lifecycle

