
Secure Software Lifecycle
Knowledge Area
Version 1.0.2
Laurie Williams North Carolina State

University

EDITOR
Andrew Martin Oxford University

REVIEWERS
Rod Chapman Altran UK
Fabio Massacci University of Trento
Gary McGraw Synopsys
Nancy Mead Carnegie Mellon University
James Noble Victoria University Wellington
Riccardo Scandariato University of Gothenburg



The Cyber Security Body Of Knowledge
www.cybok.org

COPYRIGHT

© Crown Copyright, The National Cyber Security Centre 2021. This information is licensed
under the Open Government Licence v3.0. To view this licence, visit:
http://www.nationalarchives.gov.uk/doc/open-government-licence/

When you use this information under the Open Government Licence, you should include the
following attribution: CyBOK © Crown Copyright, The National Cyber Security Centre 2021,
licensed under the Open Government Licence: http://www.nationalarchives.gov.uk/doc/open-
government-licence/.

The CyBOK project would like to understand how the CyBOK is being used and its uptake.
The project would like organisations using, or intending to use, CyBOK for the purposes
of education, training, course development, professional development etc. to contact it at
contact@cybok.org to let the project know how they are using CyBOK.

Version 1.0.2 is a stable public release of the Secure Software Lifecycle Knowledge Area.

KA Secure Software Lifecycle | July 2021 Page 1

https://www.cybok.org
http://www.nationalarchives.gov.uk/doc/open-government-licence/
http://www.nationalarchives.gov.uk/doc/open-government-licence/
http://www.nationalarchives.gov.uk/doc/open-government-licence/
mailto:contact@cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

CHANGELOG

Version date Version number Changes made
July 2021 1.0.2 Amended “issue” to “version”; corrected typos
March 2021 1.0.1 Updated copyright statement; amended Section 4 from

“Four assessment approaches are described in this sec-
tion” to “Three assessment approaches are described in
this section”

October 2019 1.0

KA Secure Software Lifecycle | July 2021 Page 2

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

INTRODUCTION

The purpose of this Secure Software Lifecycle knowledge area is to provide an overview
of software development processes for implementing secure software from the design of
the software to the operational use of the software. This implementation may involve new
coding as well as the incorporation of third party libraries and components. The goal of this
overview is for use in academic courses in the area of software security; and to guide industry
professionals who would like to use a secure software lifecycle.

The Software Security CyBOK Knowledge Area [1] provides a structured overview of secure
software development and coding and the known categories of software implementation
vulnerabilities and of techniques that can be used to prevent or detect such vulnerabilities
or to mitigate their exploitation. By contrast, this Secure Software Lifecycle Knowledge Area
focuses on the components of a comprehensive software development process to prevent
and detect security defects and to respond in the event of an exploit.

This Knowledge Area will begin with a history of secure software lifecycle models. Section 2
provides examples of three prescriptive secure software lifecycle processes; the Microsoft
Secure Development Lifecycle, Touchpoints, and SAFECode. Section 3 discusses how these
processes can be adapted in six specific domains: agile/DevOps, mobile, cloud computing, in-
ternet of things, road vehicles, and ecommerce/payment card. Section 4 provides information
on three frameworks for assessing an organisation’s secure software lifecycle process.

CONTENT

1 MOTIVATION

[2, 3, 4, 5, 6, 7, 8, 9, 10]

Historically, and at times currently, organisations have focused their security strategies at the
network system level, such as with firewalls, and have taken a reactive approach to software
security, using an approach commonly referred to as ’penetrate and patch’. [5] With this
approach, security is assessed when the product is complete via penetration testing by
attempting known attacks; or vulnerabilities are discovered post release when organisations
are victims of an attack on deployed software. In either case, organisations then react by
finding and fixing the vulnerability via a security patch. The following shortcomings are likely
to be more prevalent with a predominantly reactive approach to cyber security:

• Breaches are costly. Based upon a study of 477 companies in 15 countries, in 2018 the
Poneman Institute [4] reported that a breach cost, on average, 7.9 million US dollars in
the United States and 5.3 million US dollars in the Middle East. Breaches were the least
expensive in India and Brazil, but these countries still spent an average of 1.8 million and
1.2 million US dollars per breach, respectively. Loss of reputation caused by a breach is
difficult to quantify.

• Attackers can find and exploit vulnerabilities without being noticed. Based upon a
study of 477 companies in 15 countries, in 2018 the Poneman Institute [4] reported that

KA Secure Software Lifecycle | July 2021 Page 3

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

the mean time to identify that a breach had occurred was 197 days, and the mean time
to find and fix a vulnerability once the breach was detected was an additional 69 days.

• Patches can introduce new vulnerabilities or other problems. Vulnerability patches are
considered urgent and can be rushed out, potentially introducing new problems to a
system. For example, Microsoft’s early patches for the Meltdown1 chip flaw introduced
an even more serious vulnerability in Windows 72. The new vulnerability allowed attackers
to read kernel memory much faster and to write their own memory, and could allow an
attacker to access every user-level computing process running on a machine.

• Patches often go unapplied by customers. Users and system administrators may be
reluctant to apply security patches. For example, the highly-publicised Heartbleed3

vulnerability in OpenSSL allows attackers to easily and quietly exploit vulnerable systems,
stealing passwords, cookies, private crypto-keys, and much more. The vulnerability was
reported in April 2014; but in January 2017 a scan revealed 200,000 Internet-accessible
devices remained unpatched [7]. Once a vulnerability is publicly reported, attackers
formulate a new mechanism to exploit the vulnerability with the knowledge that many
organisations will not adopt the fix.

In 1998, McGraw [5] advocated moving beyond the penetrate and patch approach based upon
his work on a DARPA-funded research effort investigating the application of software engi-
neering to the assessment of software vulnerabilities. He contended that proactive rigorous
software analysis should play an increasingly important role in assessing and preventing
vulnerabilities in applications based upon the well-known fact that security violations occur
because of errors in software design and coding. In 2002, Viega and McGraw published
the first book on developing secure programs, Building Secure Software [6], with a focus on
preventing the injection of vulnerabilities and reducing security risk through an integration of
security into a software development process.

In the early 2000s, attackers became more aggressive, and Microsoft was a focus of this
aggression with exposure of security weaknesses in their products, particularly the Internet
Information Services (IIS). Gartner, a leading research and advisory company who seldom
advises its clients to steer clear of specific software, advised companies to stop using IIS. In
response to customer concerns and mounting bad press, the then Microsoft CEO, Bill Gates,
sent the Trustworthy Computing memo [2] to all employees on January 15, 2002. The memo
was also widely circulated on the Internet. An excerpt of the memo defines Trustworthy
Computing:

‘Trustworthy Computing is the highest priority for all the work we are doing. We
must lead the industry to a whole new level of Trustworthiness in computing ...
Trustworthy Computing is computing that is as available, reliable and secure as
electricity, water services and telephony’.

The Trustworthy Computing memo caused a shift in the company. Two weeks later, Microsoft
announced the delay of the release of Windows .NET Server [8] to ensure a proper security
review (referred to as the Windows Security Push), as mandated by Microsoft’s Trustworthy
Computing initiative outlined in this memo. In 2003, Microsoft employees Howard and Le
Blanc [9] publicly published a second edition of a book on writing secure code to prevent

1https://meltdownattack.com/ Meltdown lets hackers get around a barrier between applications and computer
memory to steal sensitive data.

2https://www.cyberscoop.com/microsoft-meltdown-patches-windows-7-memory-management/
3http://heartbleed.com/

KA Secure Software Lifecycle | July 2021 Page 4

https://www.cybok.org
https://meltdownattack.com/
https://www.cyberscoop.com/microsoft-meltdown-patches-windows-7-memory-management/
http://heartbleed.com/


The Cyber Security Body Of Knowledge
www.cybok.org

vulnerabilities, to detect design flaws and implementation bugs, and to improve test code and
documentation. The first edition had been required reading for all members of the Windows
team during the Push.

During the ensuing years, Microsoft changed their development process to build secure
products through a comprehensive overhaul of their development process from early planning
through product end-of-life. Their products contained demonstrably fewer vulnerabilities [9].
After internal use of the process, Microsoft codified and contributed their 13-stage internal
development process, the Microsoft Security Development Lifecycle (SDL) to the community
through its book entitled The Security Development Lifecycle [3] in 2006. True to Gates’ original
intent, the Microsoft SDL provided the foundation for the information technology industry
by providing the first documented comprehensive and prescriptive lifecycle. Also in 2006,
McGraw published the first book on software security best practices [10].

As discussed in the rest of this knowledge area, organisations have built upon the foundation
set forth by Microsoft and by Viega and McGraw [6, 5].

2 PRESCRIPTIVE SECURE SOFTWARE LIFECYCLE
PROCESSES

[3, 6, 9, 11, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
35, 36, 37]

Secure software lifecycle processes are proactive approaches to building security into a
product, treating the ‘disease’ of poorly designed, insecure software at the source, rather than
‘applying a band aid’ to stop the symptoms through a reactive penetrate and patch approach.
These processes work software security deeply into the full product development process
and incorporate people and technology to tackle and prevent software security issues. This
section will provide information on three prominent secure software lifecycle processes and
then reflect on the commonalities between them in Table 1.

2.1 Secure Software Lifecycle Processes

Three exemplar prescriptive secure software lifecycle processes are summarised in this
section. The processes are prescriptive in that they explicitly recommend software prac-
tices. The three processes were chosen because the practices of these processes are inte-
grated and cover a broad spectrum of the lifecycle phases, from software requirements to
release/deployment and software maintenance. Two of these processes were identified in a
systematic mapping study [25] on security approaches in software development lifecycles. As
such, the practices span the prevention of security defects, the detection of security defects,
and the mitigation of security defects once a product is in the field. The three were also chosen
due to their maturity in terms of the number of years they have existed and in terms of their
widespread acceptance in the industry. As will be discussed in Section 2.2, no ’best’ secure
software lifecycle process exists. Practitioners should consider incorporating practices from
each of these processes into their own secure software process.

KA Secure Software Lifecycle | July 2021 Page 5

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

2.1.1 Microsoft Security Development Lifecycle (SDL)

As discussed in Section 1, Microsoft used an internal development process, the Security
Development Lifecycle (SDL), to improve the security of their products. Howard and Lipner [3]
disseminated a snapshot of this process in 2006. Since that time, Microsoft has continued
to evolve their SDL and to provide up-to-date resources to the community [11], including an
increased focus on compliance requirements that are being imposed on the industry.

Currently [11], the Microsoft SDL contains 12 practices which are enumerated below. For each
of the practices, techniques for implementing the practice may be mentioned though the SDL
does not prescribe the specific technique.

1. Provide Training. A range of professionals, such as developers, service engineers,
program managers, product managers, and project managers, participate in the devel-
opment of secure products while still addressing business needs and delivering user
value. Software developers and architects must understand technical approaches for
preventing and detecting vulnerabilities. The entire development organisation should
be cognisant of the attacker’s perspective, goals, and techniques; and of the business
implications of not building secure products.

Often, the formal education of these professionals does not include cyber security. Addi-
tionally, attack vectors, security tools, secure programming languages, and experiences
are constantly evolving, so knowledge and course material must be refreshed. Ongoing
cyber security training is essential for software organisations.

2. Define Security Requirements. Security requirements should be defined during the
initial design and planning phases. Factors that influence these requirements include
the specific functional requirements of the system, the legal and industry compliance
requirements, internal and external standards, previous security incidents, and known
threats.

Techniques have been developed for systematically developing security requirements.
For example, Security Quality Requirements Engineering (SQUARE) [26] is a nine-step
process that helps organisations build security into the early stages of the production
lifecycle. Abuse cases, as will be discussed in Section 2.1.2 bullet 5, are another means
of specifying security requirements. van Lamsweerde extended the Keep All Objectives
Satisfied (KAOS) framework for goal-based requirements specification language to
include anti-models [27]. An anti-model is constructed by addressing malicious obstacles
(called anti-goals) set up by attackers to threaten a system’s security goals. An obstacle
negates existing goals of the system. Secure i* [28] extends the i*-modeling framework
with modeling and analysis of security trade-offs and aligns security requirements with
other requirements.

Security requirements must be continually updated to reflect changes in required func-
tionality, standards, and the threat landscape.

3. Define Metrics and Compliance Reporting. Lord Kelvin is quoted as stating, ’If you can
not measure it, you can not improve it’. The management team should understand
and be held accountable for minimum acceptable levels of security using security
metrics [13]. A subset of these metrics may be set as Key Performance Indicators
(KPIs) for management reporting. Defect tracking should clearly label security defects
and security work items as such to allow for accurate prioritisation, risk management,
tracking, and reporting of security work. Additionally, products increasingly must comply

KA Secure Software Lifecycle | July 2021 Page 6

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

with regulatory standards, such as the Payment Card Industry Data Security Standard
(PCI DSS)4, or the EU General Data Protection Regulation (GDPR)5, which may impose
additional process steps and metrics for compliance, reporting, and audits.

4. Perform Threat Modelling. Through the use of threat modelling [14, 22], teams con-
sider, document and discuss the security implications of designs in the context of their
planned operational environment and in a structured fashion. Teams should consider
the motivations of their adversaries and the strengths and weaknesses of systems to
defend against the associated threat scenarios. An approach is to consider the (1) the
malicious and benevolent interactors with the system; (2) the design of the system
and its components (i.e. processes and data stores), (3) the trust boundaries of the
system; and (4) the data flow of the system within and across trust boundaries to/from
its interactors. Threats can be enumerated using a systematic approach of consider-
ing each system component relative to the STRIDE (Spoofing, Tampering, Repudiation,
Information Disclosure, Denial of Service, Elevation of Privilege) [9] threats:

(a) Spoofing identity. Spoofing threats allow an attacker to pose as another user or
allow a rogue server to pose as a valid server.

(b) Tampering with data. Data tampering threats involves malicious modification of
data.

(c) Repudiation. Repudiation threats are associated with users who deny performing
an action without other parties having any way to prove otherwise.

(d) Information disclosure. Information disclosure threats involve the exposure of
information to individuals who are not supposed to have access to it.

(e) Denial of Service. A Denial of Service (DoS) attack denies service to valid users by
making the system unavailable or unusable.

(f) Elevation of privilege. An unprivileged user gains privileged access and thereby
has sufficient access to compromise or destroy the system.

Threat modelling aids the team in enumerating threats, so that the system design can
be fortified and security features can be selected. In addition to STRIDE, other models
exist to formulate threat models, such as 12 methods6, including attack trees [29] which
are conceptual diagrams of threats on systems and possible attacks to reach those
threats. A closely-related practice to threat modelling is Architectural Risk Analysis, as
will be discussed in Section 2.1.2 bullet 2.

Games have been created to aid teams in collaboratively (and competitively) conducting
threat modeling:

(a) Elevation of Privilege7

(b) Security Cards8

(c) Protection Poker [30]
4https://www.pcisecuritystandards.org/
5https://eugdpr.org/
6https://insights.sei.cmu.edu/sei blog/2018/12/threat-modeling-12-available-methods.html
7https://www.usenix.org/conference/3gse14/summit-program/presentation/shostack
8https://securitycards.cs.washington.edu/

KA Secure Software Lifecycle | July 2021 Page 7

https://www.cybok.org
https://www.pcisecuritystandards.org/
https://eugdpr.org/
https://insights.sei.cmu.edu/sei_blog/2018/12/threat-modeling-12-available-methods.html
https://www.usenix.org/conference/3gse14/summit-program/presentation/shostack
https://securitycards.cs.washington.edu/


The Cyber Security Body Of Knowledge
www.cybok.org

5. Establish Design Requirements. Design requirements guide the implementation of
’secure features’ (i.e., features that are well engineered with respect to security). Addi-
tionally, the architecture and design must be resistant to known threats in the intended
operational environment.

The design of secure features involves abiding by the timeless security principles set
forth by Saltzer and Schroeder [16] in 1975 and restated by Viega and McGraw [6] in
2002. The eight Saltzer and Schroeder principles are:

• Economy of mechanism. Keep the design of the system as simple and small as
possible.

• Fail-safe defaults. Base access decisions on permissions rather than exclusion; the
default condition is lack of access and the protection scheme identifies conditions
under which access is permitted. Design a security mechanism so that a failure
will follow the same execution path as disallowing the operation.

• Complete mediation. Every access to every object must be checked for authorisa-
tion.

• Open design. The design should not depend upon the ignorance of attackers but
rather on the possession of keys or passwords.

• Separation of privilege. A protection mechanism that requires two keys to unlock
is more robust than one that requires a single key when two or more decisions
must be made before access should be granted.

• Least privilege. Every program and every user should operate using the least set
of privileges necessary to complete the job.

• Least common mechanism. Minimise the amount of mechanisms common to
more than one user and depended on by all users.

• Psychological acceptability. The human interface should be designed for ease of
use so that users routinely and automatically apply the mechanisms correctly and
securely.

Two other important secure design principles include the following:

• Defense in depth. Provide multiple layers of security controls to provide redundancy
in the event a security breach.

• Design for updating. The software security must be designed for change, such as
for security patches and security property changes.

Design requirements also involve the selection of security features, such as cryptography,
authentication and logging to reduce the risks identified through threat modelling. Teams
also take actions to reduce the attack surface of their system design. The attack surface,
a concept introduced by Howard [15] in 2003, can be thought of as the sum of the points
where attackers can try to enter data to or extract data from a system [24, 23].

In 2014, the IEEE Center for Secure Design [17] enumerated the top ten security design
flaws and provided guidelines on techniques for avoiding them. These guidelines are as
follows:

(a) Earn or give, but never assume, trust.

KA Secure Software Lifecycle | July 2021 Page 8

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

(b) Use an authentication mechanism that cannot be bypassed or tampered with.

(c) Authorise after you authenticate.

(d) Strictly separate data and control instructions, and never process control instruc-
tions received from untrusted sources.

(e) Define an approach that ensures all data are explicitly validated.

(f) Use cryptography correctly.

(g) Identify sensitive data and how they should be handled.

(h) Always consider the users.

(i) Understand how integrating external components changes your attack surface.

(j) Be flexible when considering future changes to objects and actors.

6. Define and Use Cryptography Standards. The use of cryptography is an important
design feature for a system to ensure security- and privacy-sensitive data is protected
from unintended disclosure or alteration when it is transmitted or stored. However, an
incorrect choice in the use of cryptography can render the intended protection weak or
ineffective. Experts should be consulted in the use of clear encryption standards that
provide specifics on every element of the encryption implementation and on the use
of only properly vetted encryption libraries. Systems should be designed to allow the
encryption libraries to be easily replaced, if needed, in the event the library is broken by
an attacker, such as was done to the Data Encryption Standard (DES) through ’Deep
Crack’9, a brute force search of every possible key as designed by Paul Kocher, president
of Cryptography Research.

7. Manage the Security Risk of Using Third-Party Components. The vast majority of
software projects are built using proprietary and open-source third-party components.
The Black Duck On-Demand audit services group [18] conducted open-source audits
on over 1,100 commercial applications and found open-source components in 95%
of the applications with an average 257 components per application. Each of these
components can have vulnerabilities upon adoption or in the future. An organisation
should have an accurate inventory of third-party components [32], continuously use
a tool to scan for vulnerabilities in its components, and have a plan to respond when
new vulnerabilities are discovered. Freely available and proprietary tools can be used to
identify project component dependencies and to check if there are any known, publicly
disclosed, vulnerabilities in these components.

8. Use Approved Tools. An organisation should publish a list of approved tools and their
associated security checks and settings such as compiler/linker options and warn-
ings. Engineers should use the latest version of these tools, such as compiler versions,
and take advantage of new security analysis functionality and protections. Often, the
resultant software must be backward compatible with previous versions.

9. Perform Static Analysis Security Testing (SAST). SAST tools can be used for an auto-
mated security code review to find instances of insecure coding patterns and to help
ensure that secure coding policies are being followed. SAST can be integrated into the
commit and deployment pipeline as a check-in gate to identify vulnerabilities each time
the software is built or packaged. For increased efficiency, SAST tools can integrate into

9https://w2.eff.org/Privacy/Crypto/Crypto misc/DESCracker/HTML/19980716 eff des faq.html

KA Secure Software Lifecycle | July 2021 Page 9

https://www.cybok.org
https://w2.eff.org/Privacy/Crypto/Crypto_misc/DESCracker/HTML/19980716_eff_des_faq.html


The Cyber Security Body Of Knowledge
www.cybok.org

the developer environment and be run by the developer during coding. Some SAST tools
spot certain implementation bugs, such as the existence of unsafe or other banned
functions and automatically replace with (or suggest) safer alternatives as the developer
is actively coding. See also the Software Security CyBOK Knowledge Area [1].

10. Perform Dynamic Analysis Security Testing (DAST). DAST performs run-time verifica-
tion of compiled or packaged software to check functionality that is only apparent when
all components are integrated and running. DAST often involves the use of a suite
of pre-built attacks and malformed strings that can detect memory corruption, user
privilege issues, injection attacks, and other critical security problems. DAST tools may
employ fuzzing, an automated technique of inputting known invalid and unexpected test
cases at an application, often in large volume. Similar to SAST, DAST can be run by the
developer and/or integrated into the build and deployment pipeline as a check-in gate.
DAST can be considered to be automated penetration testing. See also the Software
Security CyBOK Knowledge Area [1].

11. Perform Penetration Testing. Manual penetration testing is black box testing of a
running system to simulate the actions of an attacker. Penetration testing is often
performed by skilled security professionals, who can be internal to an organisation or
consultants, opportunistically simulating the actions of a hacker. The objective of a
penetration test is to uncover any form of vulnerability - from small implementation
bugs to major design flaws resulting from coding errors, system configuration faults,
design flaws or other operational deployment weaknesses. Tests should attempt both
unauthorised misuse of and access to target assets and violations of the assumptions.
A widely-referenced resource for structuring penetration tests is the OWASP Top 10
Most Critical Web Application Security Risks10. As such, penetration testing can find the
broadest variety of vulnerabilities, although usually less efficiently compared with SAST
and DAST [19]. Penetration testers can be referred to as white hat hackers or ethical
hackers. In the penetration and patch model, penetration testing was the only line of
security analysis prior to deploying a system.

12. Establish a Standard Incident Response Process. Despite a secure software lifecycle,
organisations must be prepared for inevitable attacks. Organisations should proactively
prepare an Incident Response Plan (IRP). The plan should include who to contact in
case of a security emergency, establish the protocol for efficient vulnerability mitigation,
for customer response and communication, and for the rapid deployment of a fix. The
IRP should include plans for code inherited from other groups within the organisation
and for third-party code. The IRP should be tested before it is needed. Lessons learned
through responses to actual attack should be factored back into the SDL.

10https://www.owasp.org/index.php/Category:OWASP Top Ten Project

KA Secure Software Lifecycle | July 2021 Page 10

https://www.cybok.org
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project


The Cyber Security Body Of Knowledge
www.cybok.org

2.1.2 Touchpoints

International software security consultant, Gary McGraw, provided seven Software Security
Touchpoints [10] by codifying extensive industrial experience with building secure products.
McGraw uses the term touchpoint to refer to software security best practices which can be
incorporated into a secure software lifecycle. McGraw differentiates vulnerabilities that are
implementation bugs and those that are design flaws [17]. Implementation bugs are localized
errors, such as buffer overflow and input validation errors, in a single piece of code, making
spotting and comprehension easier. Design flaws are systemic problems at the design level
of the code, such as error-handling and recovery systems that fail in an insecure fashion or
object-sharing systems that mistakenly include transitive trust issues [10]. Kuhn et al. [32]
analysed the 2008 - 2016 vulnerability data from the US National Vulnerability Database (NVD)11

and found that 67% of the vulnerabilities were implementation bugs. The seven touchpoints
help to prevent and detect both bugs and flaws.

These seven touchpoints are described below and are provided in order of effectiveness
based upon McGraw’s experience with the utility of each practice over many years, hence
prescriptive:

1. Code Review (Tools).

Code review is used to detect implementation bugs. Manual code review may be used,
but requires that the auditors are knowledgeable about security vulnerabilities before
they can rigorously examine the code. ’Code review with a tool’ (a.k.a. the use of static
analysis tools or SAST) has been shown to be effective and can be used by engineers
that do not have expert security knowledge. For further discussion on static analysis,
see Section 2.1.1 bullet 9.

2. Architectural Risk Analysis.

Architectural Risk Analysis, which can also be referred to as threat modelling (see Section
2.1.1 bullet 4), is used to prevent and detect design flaws. Designers and architects
provide a high-level view of the target system and documentation for assumptions, and
identify possible attacks. Through architectural risk analysis, security analysts uncover
and rank architectural and design flaws so mitigation can begin. For example, risk
analysis may identify a possible attack type, such as the ability for data to be intercepted
and read. This identification would prompt the designers to look at all their code’s
traffics flows to see if interception was a worry, and whether adequate protection (i.e.
encryption) was in place. That review that the analysis prompted is what uncovers
design flaws, such as sensitive data is transported in the clear.

No system can be perfectly secure, so risk analysis must be used to prioritise security
efforts and to link system-level concerns to probability and impact measures that matter
to the business building the software. Risk exposure is computed by multiplying the
probability of occurrence of an adverse event by the cost associated with that event [33].

McGraw proposes three basic steps for architectural risk analysis:

• Attack resistance analysis. Attack resistance analysis uses a checklist/systematic
approach of considering each system component relative to known threats, as is
done in Microsoft threat modelling discussed in Section 2.1.1 bullet 4. Information
about known attacks and attack patterns are used during the analysis, identifying

11http://nvd.nist.gov

KA Secure Software Lifecycle | July 2021 Page 11

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

risks in the architecture and understanding the viability of known attacks. Threat
modelling with the incorporation of STRIDE-based attacks, as discussed in Section
2.1.1 bullet 4, is an example process for performing attack resistance analysis.

• Ambiguity analysis. Ambiguity analysis is used to capture the creative activity
required to discover new risks. Ambiguity analysis requires two or more experienced
analysts who carry out separate analysis activities in parallel on the same system.
Through unifying the understanding of multiple analysis, disagreements between
the analysts can uncover ambiguity, inconsistency and new flaws.

• Weakness analysis. Weakness analysis is focused on understanding risk related
to security issues in other third-party components (see Section 2.1.1 bullet 7). The
idea is to understand the assumptions being made about third-party software and
what will happen when those assumptions fail.

Risk identification, ranking, and mitigation is a continuous process through the software
lifecycle, beginning with the requirement phase.

3. Penetration Testing.

Penetration testing can be guided by the outcome of architectural risk analysis (See
Section 2.1.2 bullet 2). For further discussion on penetration testing, see Section 2.1.1,
bullet 11.

4. Risk-based Security Testing.

Security testing must encompass two strategies: (1) testing of security functionality with
standard functional testing techniques; and (2) risk-based testing based upon attack
patterns and architectural risk analysis results (see Section 2.1.2 bullet 2), and abuse
cases (see Section 2.1.2 bullet 5). For web applications, testing of security functionality
can be guided by the OWASP Application Security Verfication Standard (ASVS) Project12

open standard for testing application technical security controls. ASVS also provides
developers with a list of requirements for secure development.

Guiding tests with knowledge of the software architecture and construction, common
attacks, and the attacker’s mindset is extremely important. Using the results of archi-
tectural risk analysis, the tester can properly focus on areas of code where an attack is
likely to succeed.

The difference between risk-based testing and penetration testing is the level of the
approach and the timing of the testing. Penetration testing is done when the software is
complete and installed in an operational environment. Penetration tests are outside-in,
black box tests. Risk-based security testing can begin before the software is complete
and even pre-integration, including the use of white box unit tests and stubs. The two are
similar in that they both should be guided by risk analysis, abuse cases and functional
security requirements.

5. Abuse Cases.

This touchpoint codifies ’thinking like an attacker’. Use cases describe the desired
system’s behaviour by benevolent actors. Abuse cases [20] describe the system’s
behaviour when under attack by a malicious actor. To develop abuse cases, an analyst
enumerates the types of malicious actors who would be motivated to attack the system.

12https://www.owasp.org/index.php/Category:OWASP Application Security Verification Standard Project#tab=Home

KA Secure Software Lifecycle | July 2021 Page 12

https://www.cybok.org
https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project#tab=Home


The Cyber Security Body Of Knowledge
www.cybok.org

For each bad actor, the analyst creates one or more abuse case(s) for the functionality the
bad actor desires from the system. The analyst then considers the interaction between
the use cases and the abuse cases to fortify the system. Consider an automobile
example. An actor is the driver of the car, and this actor has a use case ’drive the car’.
A malicious actor is a car thief whose abuse case is ’steal the car’. This abuse case
threatens the use case. To prevent the theft, a new use case ’lock the car’ can be added
to mitigate the abuse case and fortify the system.

Human error is responsible for a large number of breaches. System analysts should
also consider actions by benevolent users, such as being the victim of a phishing attack,
that result in a security breach. These actions can be considered misuse cases [21] and
should be analysed similarly to abuse cases, considering what use case the misuse
case threatens and the fortification to the system to mitigate the misuse case.

The attacks and mitigations identified by the abuse and misuse case analysis can be
used as input into the security requirements (Section 2.1.1 bullet 2.); penetration testing
(Section 2.1.1 bullet 11); and risk-based security testing (Section 2.1.2 bullet 4).

6. Security Requirements.

For further discussion on security requirements, see Section 2.1.1 bullet 2.

7. Security Operations.

Network security can integrate with software security to enhance the security posture.
Inevitably, attacks will happen, regardless of the applications of the other touchpoints.
Understanding attacker behaviour and the software that enabled a successful attack is
an essential defensive technique. Knowledge gained by understanding attacks can be
fed back into the six other touchpoints.

The seven touchpoints are intended to be cycled through multiple times as the software
product evolves. The touchpoints are also process agnostic, meaning that the practices can
be included in any software development process.

2.1.3 SAFECode

The Software Assurance Forum for Excellence in Code (SAFECode)13 is a non-profit, global,
industry-led organisation dedicated to increasing trust in information and communications
technology products and services through the advancement of effective software assurance
methods. The SAFECode mission is to promote best practices for developing and delivering
more secure and reliable software, hardware and services. The SAFECode organisation
publishes the ’Fundamental practices for secure software development: Essential elements of
a secure development lifecycle program’ [34] guideline to foster the industry-wide adoption of
fundamental secure development practices. The fundamental practices deal with assurance –
the ability of the software to withstand attacks that attempt to exploit design or implementation
errors. The eight fundamental practices outlined in their guideline are described below:

1. Application Security Control Definition. SAFECode uses the term Application Security
Controls (ASC) to refer to security requirements (see Section 2.1.1 bullet 2). Similarly,
NIST 800-53 [35] uses the phrase security control to refer to security functionality and
security assurance requirements.

13https://safecode.org/

KA Secure Software Lifecycle | July 2021 Page 13

https://www.cybok.org
https://safecode.org/


The Cyber Security Body Of Knowledge
www.cybok.org

The inputs to ASC include the following: secure design principles (see Section 2.1.3 bullet
3); secure coding practices; legal and industry requirements with which the application
needs to comply (such as HIPAA, PCI, GDPR, or SCADA); internal policies and standards;
incidents and other feedback; threats and risk. The development of ASC begins before
the design phase and continues throughout the lifecycle to provide clear and actionable
controls and to be responsive to changing business requirements and the ever-evolving
threat environment.

2. Design. Software must incorporate security features to comply with internal security
practices and external laws or regulations. Additionally, the software must resist known
threats based upon the operational environment. (see Section 2.1.1 bullet 5.) Threat
modelling (see Section 2.1.1 bullet 4), architectural reviews, and design reviews can be
used to identify and address design flaws before their implementation into source code.

The system design should incorporate an encryption strategy (see Section 2.1.1 bullet 6)
to protect sensitive data from unintended disclosure or alteration while the data are at
rest or in transit.

The system design should use a standardised approach to identity and access man-
agement to perform authentication and authorisation. The standardisation provides
consistency between components and clear guidance on how to verify the presence of
the proper controls. Authenticating the identity of a principal (be it a human user, other
service or logical component) and verifying the authorisation to perform an action are
foundational controls of the system. Several access control schemes have been devel-
oped to support authorisation: mandatory, discretionary, role-based or attribute-based.
Each of these has benefits and drawbacks and should be chosen based upon project
characteristics.

Log files provide the evidence needed in forensic analysis when a breach occurs to
mitigate repudiation threats. In a well-designed application, system and security log files
provide the ability to understand an application’s behaviour and how it is used at any
moment, and to distinguish benevolent user behaviour from malicious user behaviour.
Because logging affects the available system resources, the logging system should be
designed to capture the critical information while not capturing excess data. Policies and
controls need to be established around storing, tamper prevention and monitoring log
files. OWASP provides valuable resources on designing and implementing logging1415.

3. Secure Coding Practices. Unintended code-level vulnerabilities are introduced by pro-
grammer mistakes. These types of mistakes can be prevented and detected through the
use of coding standards; selecting the most appropriate (and safe) languages, frame-
works and libraries, including the use of their associated security features (see Section
2.1.1 bullet 8); using automated analysis tools (see Section 2.1.1 bullets 9 and 10); and
manually reviewing the code.

Organisations provide standards and guidelines for secure coding, for example:

(a) OWASP Secure Coding Practices, Quick Reference Guide 16

(b) Oracle Secure Coding Guidelines for Java SE 17

14https://cheatsheetseries.owasp.org/cheatsheets/Logging Cheat Sheet.html
15https://www.owasp.org/images/e/e0/OWASP Logging Guide.pdf
16https://www.owasp.org/images/0/08/OWASP SCP Quick Reference Guide v2.pdf
17https://www.oracle.com/technetwork/java/seccodeguide-139067.html

KA Secure Software Lifecycle | July 2021 Page 14

https://www.cybok.org
https://cheatsheetseries.owasp.org/cheatsheets/Logging_Cheat_Sheet.html
https://www.owasp.org/images/e/e0/OWASP_Logging_Guide.pdf
https://www.owasp.org/images/0/08/OWASP_SCP_Quick_Reference_Guide_v2.pdf
https://www.oracle.com/technetwork/java/seccodeguide-139067.html


The Cyber Security Body Of Knowledge
www.cybok.org

(c) Software Engineering Institute (SEI) CERT Secure Coding Standards 18

Special care must also be given to handling unanticipated errors in a controlled and
graceful way through generic error handlers or exception handlers that log the events.
If the generic handlers are invoked, the application should be considered to be in an
unsafe state such that further execution is no longer considered trusted.

4. Manage Security Risk Inherent in the Use of Third-Party Components. See Section
2.1.1 bullet 7.

5. Testing and Validation. See Section 2.1.1 bullets 9-11 and Section 2.1.2 bullets 1, 3 and
4.

6. Manage Security Findings. The first five practices produce artifacts that contain or
generate findings related to the security of the product (or lack thereof). The findings in
these artifacts should be tracked and actions should be taken to remediate vulnerabilities,
such as is laid out in the Common Criteria (see Section 4.3) flaw remediation procedure
[36]. Alternatively, the team may consciously accept the security risk when the risk is
determined to be acceptable. Acceptance of risk must be tracked, including a severity
rating; a remediation plan, an expiration or a re-review deadline; and the area for re-
review/validation.

Clear definitions of severity are important to ensure that all participants have and com-
municate with a consistent understanding of a security issue and its potential impact.
A possible starting point is mapping to the severity levels, attributes, and thresholds
used by the Common Vulnerability Scoring System (CVSS)19 such as 10–8.5 is critical,
8.4–7.0 is high, etc. The severity levels are used to prioritise mitigations based upon
their complexity of exploitation and impact on the properties of a system.

7. Vulnerability Response and Disclosure. Even with following a secure software lifecycle,
no product can be ’perfectly secure’ because of the constantly changing threat land-
scapes. Vulnerabilities will be exploited and the software will eventually be compromised.
An organisation must develop a vulnerability response and disclosure process to help
drive the resolution of externally discovered vulnerabilities and to keep all stakeholders
informed of progress. ISO provides industry-proven standards20 for vulnerability dis-
closure and handling. To prevent vulnerabilities from re-occurring in new or updated
products, the team should perform a root cause analysis and feed the lessons learned
into the secure software lifecycle practices. For further discussion, see Sections 2.1.1
bullet 12 and 2.1.2 bullet 7.

8. Planning the Implementation and Deployment of Secure Development. A healthy and
mature secure development lifecycle includes the above seven practices but also an
integration of these practices into the business process and the entire organisation,
including program management, stakeholder management, deployment planning, met-
rics and indicators, and a plan for continuous improvement. The culture, expertise
and skill level of the organisation needs to be considered when planning to deploy a
secure software lifecycle. Based upon past history, the organisation may respond better
to a corporate mandate, to a bottom-up groundswell approach or to a series of pilot
programs. Training will be needed (see Section 2.1.1 bullet 1). The specification of the
organisation’s secure software lifecycle including the roles and responsibilities should

18https://wiki.sei.cmu.edu/confluence/display/seccode/SEI+CERT+Coding+Standards
19https://www.first.org/cvss/
20https://www.iso.org/standard/45170.html and https://www.iso.org/standard/53231.html

KA Secure Software Lifecycle | July 2021 Page 15

https://www.cybok.org
https://wiki.sei.cmu.edu/confluence/display/seccode/SEI+CERT+Coding+Standards
https://www.first.org/cvss/
https://www.iso.org/standard/45170.html
https://www.iso.org/standard/53231.html


The Cyber Security Body Of Knowledge
www.cybok.org

be documented. Plans for compliance and process health should be made (see Section
4).

2.2 Comparing the Secure Software Lifecycle Models

In 2009, De Win et al. [37] compared CLASP, Microsoft’s originally-documented SDL [3], and
Touchpoints (see Section 2.1.2)for the purpose of providing guidance on their commonalities
and the specificity of the approach, and making suggestions for improvement. The authors
mapped the 153 possible activities of each lifecycle model into six software development
phases: education and awareness; project inception; analysis and requirements; architectural
and detailed design; implementation and testing; and release, deployment and support. The
activities took the practices in Sections 2.1.1–2.1.3 into much finer granularity. The authors
indicated whether each model includes each of the 153 activities and provides guidance on
the strengths and weaknesses of each model. The authors found no clear comprehensive
’winner’ among the models, so practitioners could consider using guidelines for the desired
fine-grained practices from all the models.

Table 1 places the the practices of Sections 2.1.1–2.1.3 into the six software development
phases used by De Win et al. [37]. Similar to prior work [37], the models demonstrate strengths
and weaknesses in terms of guidance for the six software development phases. No model
can be considered perfect for all contexts. Security experts can customize a model for their
organizations considering the spread of practices for the six software development phases.

KA Secure Software Lifecycle | July 2021 Page 16

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

Microsoft SDL Touchpoints SAFECode

Education and
awareness • Provide training

• Planning the
implementation and
deployment of secure
development

Project inception

• Define metrics and
compliance reporting

• Define and use
cryptography
standards

• Use approved tools

• Planning the
implementation and
deployment of secure
development

Analysis and
requirements

• Define security
requirements

• Perform threat
modelling

• Abuse cases

• Security requirements
• Application security

control definition

Architectural and
detailed design

• Establish design
requirements

• Architectural Risk
Analysis • Design

Implementation
and testing

• Perform static analysis
security testing (SAST)

• Perform dynamic
analysis security
testing (DAST)

• Perform penetration
testing

• Define and use
cryptography
standards

• Manage the risk of
using third-party
components

• Code review (tools)

• Penetration testing

• Risk-based security
testing

• Secure coding
practices

• Manage security risk
inherent in the use of
third-party components

• Testing and validation

Release,
deployment, and
support

• Establish a standard
incident response
process

• Security operations • Vulnerability response
and disclosure

Table 1: Comparing the Software Security Lifecycle Models

KA Secure Software Lifecycle | July 2021 Page 17

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

3 ADAPTATIONS OF THE SECURE SOFTWARE LIFECYCLE

[34, 38, 39, 40, 41, 42, 43, 44, 45, 46]

The secure software lifecycle models discussed in Section 2.1 can be integrated with any
software development model and are domain agnostic. In this section, information on six
adaptations to secure software lifecycle is provided.

3.1 Agile Software Development and DevOps

Agile and continuous software development methodologies are highly iterative, with new
functionality being provided to customers frequently - potentially as quickly as multiple times
per day or as ’slowly’ as every two to four weeks.

Agile software development methodologies can be functional requirement-centric, with the
functionality being expressed as user stories. SAFECode [38] provides practical software
security guidance to agile practitioners. This guidance includes a set of 36 recommended
security-focused stories that can be handled similarly to the functionality-focused user stories.
These stories are based upon common security issues such as those listed in the OWASP
Top 1021 Most Critical Web Application Security Risks. The stories are mapped to Common
Weakness Enumerations (CWEs)22 identifiers, as applicable. The security-focused stories
are worded in a format similar to functionality stories (i.e., As a [stakeholder], I want to [new
functionality] so that I can [goal]). For example, a security-focused story using this format
is provided: As Quality Assurance, I want to verify that all users have access to the specific
resources they require which they are authorised to use, that is mapped to CWE-862 and CWE-
863. The security-focused stories are further broken down into manageable and concrete
tasks that are owned by team roles, including architects, developers, testers and security
experts, and are mapped to SAFECode Fundamental Practices [34]. Finally, 17 operational
security tasks were specified by SAFECode. These tasks are not directly tied to stories but
are handled as continuous maintenance work (such as, Continuously verify coverage of static
code analysis tools) or as an item requiring special attention (such as, Configure bug tracking
to track security vulnerabilities).

With a DevOps approach to developing software, development and operations are tightly inte-
grated to enable fast and continuous delivery of value to end users. Microsoft has published a
DevOps secure software lifecycle model [39] that includes activities for operations engineers
to provide fast and early feedback to the team to build security into DevOps processes. The
Secure DevOps model contains eight practices, including eight of the 12 practices in the
Microsoft Security Development Lifecycle discussed in Section 2.1.1:

1. Provide Training. The training, as outlined in Section 2.1.1 bullet 1, must include the
operations engineers. The training should encompass attack vectors made available
through the deployment pipeline.

2. Define Requirements. See Section 2.1.1 bullet 2.

3. Define Metrics and Compliance Reporting. See Section 2.1.1 bullet 3.
21https://www.owasp.org/index.php/Category:OWASP Top Ten Project
22https://cwe.mitre.org/; CWE is a community-developed list of common software security weaknesses. It

serves as a common language, a measuring stick for software security tools, and as a baseline for weakness
identification, mitigation, and prevention efforts.

KA Secure Software Lifecycle | July 2021 Page 18

https://www.cybok.org
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://cwe.mitre.org/


The Cyber Security Body Of Knowledge
www.cybok.org

4. Use Software Composition Analysis (SCA) and Governance. When selecting both com-
mercial and open-source third-party components, the team should understand the impact
that a vulnerability in the component could have on the overall security of the system
and consider performing a more thorough evaluation before using them. Software
Composition Analysis (SCA) tools, such as WhiteSource23 can assist with licensing
exposure, provide an accurate inventory of components, and report any vulnerabilities
with referenced components. See also Section 2.1.1 bullet 7.

5. PerformThreatModelling. See Section 2.1.1 bullet 4. Threat modelling may be perceived
as slowing down the rapid DevOps pace. However, products that are deployed rapidly
under a DevOps deployment process should have a defined overall architecture within
which the DevOps process makes changes and adds features. That architecture should
be threat modeled, and when the team needs to change the architecture the threat model
should also be updated. New features that do not have an architectural impact represent
a null change to the threat model.

6. Use Tools and Automation. See Section 2.1.1 bullets 8, 9 and 10. The team should
carefully select tools that can be integrated into the engineer’s Integrated Development
Environment (IDE) and workflow such that they cause minimal disruption. The goal of
using these tools is to detect defects and vulnerabilities and not to overload engineers
with too many tools or alien processes outside of their everyday engineering experience.
The tools used as part of a secure DevOps workflow should adhere to the following
principles:

(a) Tools must be integrated into the Continuous Integration/Continuous Delivery
(CI/CD) pipeline.

(b) Tools must not require security expertise beyond what is imparted by the training.

(c) Tools must avoid a high false-positive rate of reporting issues.

7. Keep Credentials Safe. Scanning for credentials and other sensitive content in source
files is necessary during pre-commit to reduce the risk of propagating the sensitive
information through the CI/CD process, such as through Infrastructure as Code or
other deployment scripts. Tools, such as CredScan24, can identify credential leaks,
such as those in source code and configuration files. Some commonly found types of
credentials include default passwords, hard-coded passwords, SQL connection strings
and Certificates with private keys.

8. Use Continuous Learning and Monitoring. Rapidly-deployed systems often monitor the
health of applications, infrastructure and networks through instrumentation to ensure
the systems are behaving ’normally’. This monitoring can also help uncover security
and performance issues which are departures from normal behaviour. Monitoring is
also an essential part of supporting a defense-in-depth strategy and can reduce an
organisation’s Mean Time To Identify (MTTI) and Mean Time To Contain (MTTC) an
attack.

23https://www.whitesourcesoftware.com/
24https://secdevtools.azurewebsites.net/helpcredscan.html

KA Secure Software Lifecycle | July 2021 Page 19

https://www.cybok.org
https://www.whitesourcesoftware.com/
https://secdevtools.azurewebsites.net/helpcredscan.html


The Cyber Security Body Of Knowledge
www.cybok.org

3.2 Mobile

Security concerns for mobile apps differ from traditional desktop software in some important
ways, including local data storage, inter-app communication, proper usage of cryptographic
APIs and secure network communication. The OWASP Mobile Security Project [40] is a
resource for developers and security teams to build and maintain secure mobile applications;
see also the Web & Mobile Security CyBOK Knowledge Area [47].

Four resources are provided to aid in the secure software lifecycle of mobile applications:

1. OWASP Mobile Application Security Verification Standard (MASVS) Security Require-
ments and Verification. The MASVS defines a mobile app security model and lists
generic security requirements for mobile apps. The MASVS can be used by architects,
developers, testers, security professionals, and consumers to define and understand
the qualities of a secure mobile app.

2. Mobile Security Testing Guide (MSTG). The guide25 is a comprehensive manual for
mobile application security testing and reverse engineering for iOS and Android mobile
security testers. The guide provides the following content:

(a) A general mobile application testing guide that contains a mobile app security test-
ing methodology and general vulnerability analysis techniques as they apply to
mobile app security. The guide also contains additional technical test cases that are
operating system independent, such as authentication and session management,
network communications, and cryptography.

(b) Operating system-dependent testing guides for mobile security testing on the An-
droid and iOS platforms, including security basics; security test cases; reverse
engineering techniques and prevention; and tampering techniques and prevention.

(c) Detailed test cases that map to the requirements in the MASVS.

3. Mobile App Security Checklist. The checklist26 is used for security assessments and
contains links to the MSTG test case for each requirement.

4. Mobile Threat Model. The threat model [41] provides a checklist of items that should
be documented, reviewed and discussed when developing a mobile application. Five
areas are considered in the threat model:

(a) Mobile Application Architecture. The mobile application architecture describes
device-specific features used by the application, wireless transmission protocols,
data transmission medium, interaction with hardware components and other appli-
cations. The attack surface can be assessed through a mapping to the architecture.

(b) Mobile Data. This section of the threat model defines the data the application
stores, transmits and receives. The data flow diagrams should be reviewed to
determine exactly how data are handled and managed by the application.

(c) Threat Agent Identification. The threat agents are enumerated, including humans
and automated programs.

(d) Methods of Attack. The most common attacks utilised by threat agents are defined
so that controls can be developed to mitigate attacks.

25https://www.owasp.org/index.php/OWASP Mobile Security Testing Guide
26https://github.com/OWASP/owasp-mstg/tree/master/Checklists

KA Secure Software Lifecycle | July 2021 Page 20

https://www.cybok.org
https://www.owasp.org/index.php/OWASP_Mobile_Security_Testing_Guide
https://github.com/OWASP/owasp-mstg/tree/master/Checklists


The Cyber Security Body Of Knowledge
www.cybok.org

(e) Controls. The controls to mitigate attacks are defined.

3.3 Cloud Computing

The emergence of cloud computing bring unique security risks and challenges. In conjunction
with the Cloud Security Alliance (CSA)27, SAFECode has provided a ’Practices for Secure
Development of Cloud Applications’ [42] guideline as a supplement to the ’Fundamental
Practices for Secure Software Development’ guideline [34] discussed in Section 2.1.3 - see
also the Distributed Systems Security CyBOK Knowledge Area [48]. The Cloud guideline
provides additional secure development recommendations to address six threats unique to
cloud computing and to identify specific security design and implementation practices in the
context of these threats. These threats and associated practices are provided:

1. Threat: Multitenancy. Multitenancy allows multiple consumers or tenants to maintain
a presence in a cloud service provider’s environment, but in a manner where the compu-
tations, processes, and data (both at rest and in transit) of one tenant are isolated from
and inaccessible to another tenant. Practices:

(a) Model the application’s interfaces in threat models. Ensure that the multitenancy
threats, such as information disclosure and privilege elevation are modeled for each
of these interfaces, and ensure that these threats are mitigated in the application
code and/or configuration settings.

(b) Use a ’separate schema’ database design and tables for each tenant when building
multitenant applications rather than relying on a ’TenantID’ column in each table.

(c) When developing applications that leverage a cloud service provider’s Platform as
a Service (PaaS) services, ensure common services are designed and deployed in
a way that ensures that the tenant segregation is maintained.

2. Tokenisation of Sensitive Data. An organisation may not wish to generate and store
intellectual property in a cloud environment not under its control. Tokenisation is a
method of removing sensitive data from systems where they do not need to exist or
disassociating the data from the context or the identity that makes them sensitive.
The sensitive data are replaced with a token for those data. The token is later used to
rejoin the sensitive data with other data in the cloud system. The sensitive data are
encrypted and secured within an organisation’s central system which can be protected
with multiple layers of protection and appropriate redundancy for disaster recovery and
business continuity. Practices:

(a) When designing a cloud application, determine if the application needs to process
sensitive data and if so, identify any organisational, government, or industry regu-
lations that pertain to that type of sensitive data and assess their impact on the
application design.

(b) Consider implementing tokenisation to reduce or eliminate the amount of sensitive
data that need to be processed and or stored in cloud environments.

(c) Consider data masking, an approach that can be used in pre-production test and
debug systems in which a representative data set is used, but does not need to

27https://cloudsecurityalliance.org/

KA Secure Software Lifecycle | July 2021 Page 21

https://www.cybok.org
https://cloudsecurityalliance.org/


The Cyber Security Body Of Knowledge
www.cybok.org

have access to actual sensitive data. This approach allows the test and debug
systems to be exempt from sensitive data protection requirements.

3. Trusted Compute Pools. Trusted Compute Pools are either physical or logical groupings
of compute resources/systems in a data centre that share a security posture. These
systems provide measured verification of the boot and runtime infrastructure for mea-
sured launch and trust verification. The measurements are stored in a trusted location
on the system (referred to as a Trusted Platform Module (TPM)) and verification occurs
when an agent, service or application requests the trust quote from the TPM. Practices:

(a) Ensure the platform for developing cloud applications provides trust measurement
capabilities and the APIs and services necessary for your applications to both
request and verify the measurements of the infrastructure they are running on.

(b) Verify the trust measurements as either part of the initialisation of your application
or as a separate function prior to launching the application.

(c) Audit the trust of the environments your applications run on using attestation
services or native attestation features from your infrastructure provider.

4. Data Encryption and Key Management. Encryption is the most pervasive means of
protecting sensitive data both at rest and in transit. When encryption is used, both
providers and tenants must ensure that the associated cryptographic key materials are
properly generated, managed and stored. Practices:

(a) When developing an application for the cloud, determine if cryptographic and key
management capabilities need to be directly implemented in the application or
if the application can leverage cryptographic and key management capabilities
provided by the PaaS environment.

(b) Make sure that appropriate key management capabilities are integrated into the
application to ensure continued access to data encryption keys, particularly as the
data move across cloud boundaries, such as enterprise to cloud or public to private
cloud.

5. Authentication and Identity Management. As an authentication consumer, the appli-
cation may need to authenticate itself to the PaaS to access interfaces and services
provided by the PaaS. As an authentication provider, the application may need to authen-
ticate the users of the application itself. Practices:

(a) Cloud application developers should implement the authentication methods and
credentials required for accessing PaaS interfaces and services.

(b) Cloud application developers need to implement appropriate authentication meth-
ods for their environments (private, hybrid or public).

(c) When developing cloud applications to be used by enterprise users, developers
should consider supporting Single Sign On (SSO) solutions.

6. Shared-Domain Issues. Several cloud providers offer domains that developers can use
to store user content, or for staging and testing their cloud applications. As such, these
domains, which may be used by multiple vendors, are considered ’shared domains’ when
running client-side script (such as JavaScript) and from reading data. Practices:

(a) Ensure that your cloud applications are using custom domains whenever the cloud
provider’s architecture allows you to do so.

KA Secure Software Lifecycle | July 2021 Page 22

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

(b) Review your source code for any references to shared domains.

The European Union Agency for Cybersecurity (ENISA) [44] conducted an in-depth and indepen-
dent analysis of the information security benefits and key security risks of cloud computing.
The analysis reports that the massive concentrations of resources and data in the cloud
present a more attractive target to attackers, but cloud-based defences can be more robust,
scalable and cost-effective.

3.4 Internet of Things (IoT)

The Internet of Things (IoT) is utilised in almost every aspect of our daily life, including the
extension into industrial sectors and applications (i.e. Industrial IOT (IIoT)). IoT and IIoT
constitute an area of rapid growth that presents unique security challenges. [From this point
forth we include IIoT when we use IoT.] Some of these are considered in the Cyber-Physical
Systems Security CyBOK Knowledge Area [49], but we consider specifically software lifecycle
issues here. Devices must be securely provisioned, connectivity between these devices and
the cloud must be secure, and data in storage and in transit must be protected. However, the
devices are small, cheap, resource-constrained. Building security into each device may not be
considered to be cost effective by its manufacturer, depending upon the value of the device
and the importance of the data it collects. An IoT-based solution often has a large number of
geographically-distributed devices. As a result of these technical challenges, trust concerns
exist with the IoT, most of which currently have no resolution and are in need of research.
However, the US National Institute of Standards and Technology (NIST) [43] recommends
four practices for the development of secure IoT-based systems.

1. Use of Radio-Frequency Identification (RFID) tags. Sensors and their data may be tam-
pered with, deleted, dropped, or transmitted insecurely. Counterfeit ’things’ exist in the
marketplace. Unique identifiers can mitigate this problem by attaching Radio-Frequency
Identification (RFID) tags to devices. Readers activate a tag, causing the device to
broadcast radio waves within a bandwidth reserved for RFID usage by governments
internationally. The radio waves transmit identifiers or codes that reference unique
information associated with the device.

2. Not using or allowing the use of default passwords or credentials. IoT devices are often
not developed to require users and administrators to change default passwords during
system set up. Additionally, devices often lack intuitive user interfaces for changing
credentials. Recommended practices are to require passwords to be changed or to
design in intuitive interfaces. Alternatively, manufacturers can randomise passwords
per device rather than having a small number of default passwords.

3. Use of the Manufacturer Usage Description (MUD) specification. The Manufacturer
Usage Description (MUD)28 specification allows manufacturers to specify authorised
and expected user traffic patterns to reduce the threat surface of an IoT device by
restricting communications to/from the device to sources and destinations intended by
the manufacturer.

4. Development of a Secure Upgrade Process. In non-IoT systems, updates are usually
delivered via a secure process in which the computer can authenticate the source
pushing the patches and feature and configuration updates. IoT manufacturers have,
generally, not established such a secure upgrade process, which enables attackers

28https://tools.ietf.org/id/draft-ietf-opsawg-mud-22.html

KA Secure Software Lifecycle | July 2021 Page 23

https://www.cybok.org
https://tools.ietf.org/id/draft-ietf-opsawg-mud-22.html


The Cyber Security Body Of Knowledge
www.cybok.org

to conduct a man-in-the-middle push of their own malicious updates to the devices.
The IoT Firmware Update Architecture 29 provides guidance on implementing a secure
firmware update architecture including hard rules defining how device manufacturers
should operate.

Additionally, the UK Department for Digital, Culture, Media, and Sport have provided the Code
of Practice for consumer IoT security30. Included in the code of practice are 13 guidelines
for improving the security of consumer IoT products and associated services. Two of the
guidelines overlap with NIST bullets 2 and 4 above. The full list of guidelines include the
following: (1) No default passwords; (2) Implement a vulnerability disclosure policy; (3) Keep
software updated; (4) Securely store credentials and security-sensitive data; (5) Communicate
securely (i.e. use encryption for sensitive data); (6) Minimise exposed attack surfaces; (7)
Ensure software integrity (e.g. use of a secure boot); (8) Ensure that personal data is protected
(i.e. in accordance with GDPR); (9) Make systems resilient to outages; (10) Monitor system
telemetry data; (11) Make it easy for consumers to delete personal data; (12) Make installation
and maintenance of devices easy; and (13) Validate input data. Finally, Microsoft has provided
an Internet of Things security architecture.31

3.5 Road Vehicles

A hacker that compromises a connected road vehicle‘s braking or steering system could
cause a passenger or driver to lose their lives. Attacks such as these have been demonstrated,
beginning with the takeover of a Ford Escape and a Toyota Prius by white-hat hackers Charlie
Miller and Chris Valasek in 201332. Connected commercial vehicles are part of the critical
infrastructure in complex global supply chains. In 2018, the number of reported attacks on
connected vehicles shot up six times more than the number just three years earlier [45], due
to both the increase in connected vehicles and their increased attractiveness as a target
of attackers [46]. Broader issues with Cyber-Physical Systems are addressed in the Cyber-
Physical Systems Security CyBOK Knowledge Area [49].

The US National Highway Traffic Safety Administration (HTSA) defines road vehicle cyber
security as the protection of automotive electronic systems, communication networks, control
algorithms, software, users and underlying data from malicious attacks, damage, unauthorised
access or manipulation33. The HTSA provides four guidelines for the automotive industry for
consideration in their secure software development lifecycle:

1. The team should follow a secure product development process based on a systems-
engineering approach with the goal of designing systems free of unreasonable safety
risks including those from potential cyber security threats and vulnerabilities.

2. The automotive industry should have a documented process for responding to incidents,
vulnerabilities and exploits. This process should cover impact assessment, containment,
recovery and remediation actions, the associated testing, and should include the creation
of roles and responsibilities for doing so. The industry should also establish metrics to
periodically assess the effectiveness of their response process.

29https://tools.ietf.org/id/draft-moran-suit-architecture-02.html
30https://www.gov.uk/government/publications/code-of-practice-for-consumer-iot-security/

code-of-practice-for-consumer-iot-security
31https://docs.microsoft.com/en-us/azure/iot-fundamentals/iot-security-architecture
32https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
33https://www.nhtsa.gov/crash-avoidance/automotive-cybersecurity#automotive-cybersecurity-overview

KA Secure Software Lifecycle | July 2021 Page 24

https://www.cybok.org
https://tools.ietf.org/id/draft-moran-suit-architecture-02.html
https://www.gov.uk/government/publications/code-of-practice-for-consumer-iot-security/code-of-practice-for-consumer-iot-security
https://www.gov.uk/government/publications/code-of-practice-for-consumer-iot-security/code-of-practice-for-consumer-iot-security
https://docs.microsoft.com/en-us/azure/iot-fundamentals/iot-security-architecture
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
https://www.nhtsa.gov/crash-avoidance/automotive-cybersecurity#automotive-cybersecurity-overview


The Cyber Security Body Of Knowledge
www.cybok.org

3. The automotive industry should document the details related to their cyber security
process, including the results of risk assessment, penetration testing and organisa-
tions decisions related to cyber security. Essential documents, such as cyber security
requirements, should follow a robust version control protocol.

4. These security requirements should be incorporated into the product’s security require-
ments, as laid out in Section 2.1.1 bullet 2, Section 2.1.2 bullet 6, and Section 2.1.3 bullet
1.:

(a) Limit developer/debugging access to production devices, such as through an open
debugging port or through a serial console.

(b) Keys (e.g., cryptographic) and passwords which can provide an unauthorised,
elevated level of access to vehicle computing platforms should be protected from
disclosure. Keys should not provide access to multiple vehicles.

(c) Diagnostic features should be limited to a specific mode of vehicle operation which
accomplishes the intended purpose of the associated feature. For example, a
diagnostic operation which may disable a vehicle’s individual brakes could be
restricted to operating only at low speeds or not disabling all the brakes at the same
time.

(d) Encryption should be considered as a useful tool in preventing the unauthorised
recovery and analysis of firmware.

(e) Limit the ability to modify firmware and/or employ signing techniques to make it
more challenging for malware to be installed on vehicles.

(f) The use of network servers on vehicle ECUs should be limited to essential func-
tionality, and services over these ports should be protected to prevent use by
unauthorised parties.

(g) Logical and physical isolation techniques should be used to separate processors,
vehicle networks, and external connections as appropriate to limit and control
pathways from external threat vectors to cyber-physical features of vehicles.

(h) Sending safety signals as messages on common data buses should be avoided, but
when used should employ a message authentication scheme to limit the possibility
of message spoofing.

(i) An immutable log of events sufficient to enable forensic analysis should be main-
tained and periodically scrutinised by qualified maintenance personnel to detect
trends of cyber-attack.

(j) Encryption methods should be employed in any IP-based operational communi-
cation between external servers and the vehicle, and should not accept invalid
certificates.

(k) Plan for and design-in features that could allow for changes in network routing
rules to be quickly propagated and applied to one, a subset or all vehicles

The International Organization for Standardization (ISO)34 and the Society for Automotive
Engineering (SAE) International 35 are jointly developing an international Standard, ISO 21434

34https://www.iso.org/standard/70918.html
35www.sae.org

KA Secure Software Lifecycle | July 2021 Page 25

https://www.cybok.org
https://www.iso.org/standard/70918.html
www.sae.org


The Cyber Security Body Of Knowledge
www.cybok.org

Road vehicles - cyber security engineering36. The standard will specify minimum requirements
on security engineering processes and activities, and will define criteria for assessment.
Explicitly, the goal is to provide a structured process to ensure cyber security is designed in
upfront and integrated throughout the lifecycle process for both hardware and software.

The adoption of a secure software lifecycle in the automotive industry may be driven by
legislation, such as through the US SPY Car Act37 or China and Germany’s Intelligent and
Connected Vehicles (ICVs) initiative38.

3.6 ECommerce/Payment Card Industry

The ability to steal large quantities of money makes the Payment Card Industry (PCI) an
especially attractive target for attackers. In response, the PCI created the Security Standards
Council, a global forum for the ongoing development, enhancement, storage, dissemination,
and implementation of security standards for account data protection. The Security Standards
Council established the Data Security Standard (PCI DSS), which must be upheld by any
organisations that handle payment cards, including debit and credit cards. PCI DSS contains
12 requirements39 that are a set of security controls that businesses are required to implement
to protect credit card data. These specific requirements are incorporated into the product’s
security requirements, as laid out in Section 2.1.1 bullet 2, Section 2.1.2 bullet 6, and Section
2.1.3 bullet 1. The 12 requirements are as follows:

1. Install and maintain a firewall configuration to protect cardholder data.

2. Do not use vendor-supplied defaults for system passwords and other security parame-
ters.

3. Protect stored cardholder data.

4. Encrypt transmission of cardholder data across open, public networks.

5. Use and regularly update antivirus software.

6. Develop and maintain secure systems and applications, including detecting and mitigat-
ing vulnerabilities and applying mitigating controls.

7. Restrict access to cardholder data by business need-to-know.

8. Assign a unique ID to each person with computer access.

9. Restrict physical access to cardholder data.

10. Track and monitor all access to network resources and cardholder data.

11. Regularly test security systems and processes.

12. Maintain a policy that addresses information security.
36https://www.iso.org/standard/70918.html
37https://www.congress.gov/bill/115th-congress/senate-bill/680
38http://icv.sustainabletransport.org/
39https://searchsecurity.techtarget.com/definition/PCI-DSS-12-requirements

KA Secure Software Lifecycle | July 2021 Page 26

https://www.cybok.org
https://www.iso.org/standard/70918.html
https://www.congress.gov/bill/115th-congress/senate-bill/680
http://icv.sustainabletransport.org/
https://searchsecurity.techtarget.com/definition/PCI-DSS-12-requirements


The Cyber Security Body Of Knowledge
www.cybok.org

4 ASSESSING THE SECURE SOFTWARE LIFECYCLE

[50, 51]

Organisations may wish to or be required to assess the maturity of their secure development
lifecycle. Three assessment approaches are described in this section.

4.1 SAMM

The Software Assurance Maturity Model (SAMM)40 is an open framework to help organisations
formulate and implement a strategy for software security that is tailored to the specific risks
facing the organisation. Resources are provided for the SAMM to enable an organisation to
do the following:

1. Define and measure security-related activities within an organisation.

2. Evaluate their existing software security practices.

3. Build a balanced software security program in well-defined iterations.

4. Demonstrate improvements in a security assurance program.

Because each organisation utilises its own secure software process (i.e., its own unique
combination of the practices laid out in Sections 2 and 3), the SAMM provides a framework to
describe software security initiatives in a common way. The SAMM designers enumerated
activities executed by organisations in support of their software security efforts. Some
example activities include: build and maintain abuse case models per project; specify security
requirements based upon known risks; and identify the software attack surface. These
activities are categorised into one of 12 security practices. The 12 security practices are
further grouped into one of four business functions. The business functions and security
practices are as follows:

1. Business Function: Governance

(a) Strategy and metrics

(b) Policy and compliance

(c) Education and guidance

2. Business Function: Construction

(a) Threat assessment

(b) Security requirements

(c) Secure architecture

3. Business Function: Verification

(a) Design review

(b) Code review

(c) Security testing
40https://www.opensamm.org/ and https://www.owasp.org/images/6/6f/SAMM Core V1-5 FINAL.pdf

KA Secure Software Lifecycle | July 2021 Page 27

https://www.cybok.org
https://www.opensamm.org/
https://www.owasp.org/images/6/6f/SAMM_Core_V1-5_FINAL.pdf


The Cyber Security Body Of Knowledge
www.cybok.org

4. Business Function: Deployment

(a) Vulnerability management

(b) Environment hardening

(c) Operational enablement

The SAMM assessments are conducted through self-assessments or by a consultant chosen
by the organisation. Spreadsheets are provide by SAMM for scoring the assessment, providing
information for the organisation on their current maturity level:

• 0: Implicit starting point representing the activities in the Practice being unfulfilled.

• 1: Initial understanding and ad hoc provision of the Security Practice.

• 2: Increase efficiency and/or effectiveness of the Security Practice.

• 3: Comprehensive mastery of the Security Practice at scale.

Assessments may be conducted periodically to measure improvements in an organisation’s
security assurance program.

4.2 BSIMM

Gary McGraw, Sammy Migues, and Brian Chess desired to create a descriptive model of the
state-of-the-practice in secure software development lifecycle. As a result, they forked an
early version of SAMM (see Section 4.1) to create the original structure of the Building Security
In Maturity Model (BSIMM) [50, 51] in 2009. Since that time, the BSIMM has been used to
structure a multi-year empirical study of the current state of software security initiatives in
industry.

Because each organisation utilises its own secure software process (i.e., its own unique
combination of the practices laid out in Sections 2 and 3), the BSIMM provides a framework
to describe software security initiatives in a common way. Based upon their observations,
the BSIMM designers enumerated 113 activities executed by organisations in support of
their software security efforts. Some example activities include: build and publish security
features; use automated tools along with a manual review; and integrate black-box security
tools into the quality assurance process. Each activity is associated with a maturity level and
is categorised into one of 12 practices. The 12 practices are further grouped into one of four
domains. The domains and practices are as follows:

1. Domain: Governance

(a) Strategy and metrics

(b) Compliance and policy

(c) Training

2. Domain: Intelligence

(a) Attack models

(b) Security features and design

(c) Standards and requirements

KA Secure Software Lifecycle | July 2021 Page 28

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

3. Domain: Secure software development lifecycle touchpoints

(a) Architecture analysis

(b) Code review

(c) Security testing

4. Domain: Deployment

(a) Penetration testing

(b) Software environment

(c) Configuration management and vulnerability management

BSIMM assessments are conducted through in-person interviews by software security profes-
sionals at Cigital (now Synopsys) with security leaders in a firm. Via the interviews, the firm
obtains a scorecard on which of the 113 software security activities the firm uses. After the
firm completes the interviews, they are provided information comparing themselves with the
other organisations that have been assessed. BSIMM assessments have been conducted
since 2008. Annually, the overall results of the assessments from all firms are published,
resulting in the BSIMM1 through BSIMM9 reports. Since the BSIMM study began in 2008,
167 firms have participated in BSIMM assessment, sometimes multiple times, comprising
389 distinct measurements. To ensure the continued relevance of the data reported, the
BSIMM9 report excluded measurements older than 42 months and reported on 320 distinct
measurements collected from 120 firms.

4.3 The Common Criteria

The purpose of this Common Criteria (CC)41 is to provide a vehicle for international recog-
nition of a secure information technology (IT) product (where the SAMM and BSIMM were
assessments of a development process). The objective of the CC is for IT products that
have earned a CC certificate from an authorised Certification/Validation Body (CB) to be
procured or used with no need for further evaluation. The Common Criteria seek to provide
grounds for confidence in the reliability of the judgments on which the original certificate
was based by requiring that a CB issuing Common Criteria certificates should meet high and
consistent standards. A developer of a new product range may provide guidelines for the
secure development and configuration of that product. This guideline can be submitted as a
Protection Profile (the pattern for similar products that follow on). Any other developer can
add to or change this guideline. Products that earn certification in this product range use the
protection profile as the delta against which they build.

Based upon the assessment of the CB, a product receives an Evaluation Assurance Level
(EAL). A product or system must meet specific assurance requirements to achieve a particular
EAL. Requirements involve design documentation, analysis and functional or penetration
testing. The highest level provides the highest guarantee that the system’s principal security
features are reliably applied. The EAL indicates to what extent the product or system was
tested:

• EAL 1: Functionally tested. Applies when security threats are not viewed as serious.
The evaluation provides evidence that the system functions in a manner consistent with

41https://www.commoncriteriaportal.org/ccra/index.cfm

KA Secure Software Lifecycle | July 2021 Page 29

https://www.cybok.org
https://www.commoncriteriaportal.org/ccra/index.cfm


The Cyber Security Body Of Knowledge
www.cybok.org

its documentation and that it provides useful protection against identified threats.

• EAL2: Structurally tested. Applies when stakeholders require low-to-moderate independently-
assured security but the complete development record is not readily available, such as
with securing a legacy system.

• EAL 3: Methodically tested and checked. Applies when stakeholders require a moderate
level of independently-assured security and a thorough investigation of the system and
its development, without substantial re-engineering.

• EAL 4: Methodically designed, tested and reviewed. Applies when stakeholders re-
quire moderate-to-high independently-assured security in commodity products and are
prepared to incur additional security-specific engineering costs.

• EAL 5: Semi-formally designed and tested. Applies when stakeholders require high,
independently-assured security in a planned development and require a rigorous de-
velopment approach that does not incur unreasonable costs from specialist security
engineering techniques.

• EAL 6: Semi-formally verified design and tested. Applies when developing systems in
high-risk situations where the value of the protected assets justifies additional costs.

• EAL 7: Formally verified design and tested. Applies when developing systems in ex-
tremely high-risk situations and when the high value of the assets justifies the higher
costs.

The CC provides a set of security functional and security assurance requirements. These
requirements, as appropriate, are incorporated into the product’s security requirements, as
laid out in Section 2.1.1 bullet 2, Section 2.1.2 bullet 6, and Section 2.1.3 bullet 1.

5 ADOPTING A SECURE SOFTWARE LIFECYCLE

[50, 51, 52]

This knowledge area has provided a myriad of possible practices an organisation can include
in its secure software lifecycle. Some of these practices, such as those discussed in Section 2,
potentially apply to any product. Other practices are domain specific, such as those discussed
in Section 3.

Organisations adopting new practices often like to learn from and adopt practices that are
used by organisations similar to themselves [52]. When choosing which security practices to
include in a secure software lifecycle, organisations can consider looking at the latest BSIMM
[50, 51] results which provide updated information on the adoption of practices in the industry.

KA Secure Software Lifecycle | July 2021 Page 30

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

DISCUSSION

[53]

This chapter has provided an overview of of three prominent and prescriptive secure software
lifecycle processes and six adaptations of these processes that can be applied in a specified
domain. However, the cybersecurity landscape in terms of threats, vulnerabilities, tools, and
practices is ever evolving. For example, a practice has has not be been mentioned in any of
these nine processes is the use of a bug bounty program for the identification and resolution
of vulnerabilities. With a bug bounty program, organisations compensate individuals and/or
researchers for finding and reporting vulnerabilities. These individuals are external to the
organisation producing the software and may work independently or through a bug bounty
organisation, such as HackerOne42.

While the majority of this knowledge area focuses on technical practices, the successful
adoption of these practices involves organisational and cultural changes in an organisation.
The organisation, starting from executive leadership, must support the extra training, resources,
and steps needed to use a secure development lifecycle. Additionally, every developer must
uphold his or her responsibility to take part in such a process.

A team and an organisation need to choose the appropriate software security practices to de-
velop a customised secure software lifecycle based upon team and technology characteristics
and upon the security risk of the product.

While this chapter has provided practices for developing secure products, information in-
security is often due to economic disincentives [53] which drives software organizations
to choose the rapid deployment and release of functionality over the production of secure
products. As a result, increasingly governments and industry groups are imposing cyber
security standards on organisations as a matter of legal compliance or as a condition for
being considered as a vendor. Compliance requirements may lead to faster adoption of a
secure development lifecycle. However, this compliance-driven adoption may divert efforts
away from the real security issues by driving an over-focus on compliance requirements rather
than on the pragmatic prevention and detection of the most risky security concerns.

42https://www.hackerone.com

KA Secure Software Lifecycle | July 2021 Page 31

https://www.cybok.org
https://www.hackerone.com


The Cyber Security Body Of Knowledge
www.cybok.org

CROSS-REFERENCE OF TOPICS VS REFERENCE MATERIAL

[3
]

[6
]

[9
]

[3
4]

1 Motivation c1 c1 c1
2 Prescriptive Secure Software Lifecycle Processes
2.1 Secure Software Lifecycle Processes c2 c2 c2 c2
2.2 Comparing the Secure Software Lifecycle Models
3 Adaptations of the Secure Software Lifecycle
3.1 Agile Software Development and DevOps c3
3.2 Mobile
3.3 Cloud Computing
3.4 Internet of Things (IoT)
3.5 Road Vehicles
3.6 ECommerce/Payment Card Industry
4 Assessing the Secure Software Lifecycle
5 Adopting a Secure Software Lifecycle

FURTHER READING

Building Secure Software: How to Avoid Security Problems the Right Way
[6]

This book introduces the term software security as an engineering discipline for building
security into a product. This book provides essential lessons and expert techniques for
security professionals who understand the role of software in security problems and for
software developers who want to build secure code. The book also discusses risk assessment,
developing security tests, and plugging security holes before software is shipped.

Writing Secure Code, Second Edition. [9]

The first edition of this book was internally published in Microsoft and was required reading for
all members of the Windows team during the Windows Security Push. The second edition was
made publicly available in the 2003 book and provides secure coding techniques to prevent
vulnerabilities, to detect design flaws and implementation bugs, and to improve test code and
documentation.

KA Secure Software Lifecycle | July 2021 Page 32

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

Software Security: Building Security In [10]

This book discusses seven software securing best practices, called touchpoints. It also
provides information on software security fundamentals and contexts for a software security
program in an enterprise.

The Security Development Lifecycle (Original Book) [3]

This seminal book provides the foundation for the other processes laid out in this knowledge
area, and was customised over the years by other organisations, such as Cisco 43. The book
lays out 13 stages for integrating practices into a software development lifecycle such that
the product is more secure. This book is out of print, but is avaialble as a free download44.

The Security Development Lifecycle (Current Microsoft Resources) [11]

The Microsoft SDL are practices that are used internally to build secure products and services,
and address security compliance requirements by introducing security practices throughout
every phase of the development process. This webpage is a continuously-updated version of
the seminal book [3] based on Microsoft’s growing experience with new scenarios such as
the cloud, the Internet of Things (IoT) and Artificial Intelligence (AI).

Software Security Engineering: A Guide for Project Managers [26]

This book is a management guide for selecting from among sound software development
practices that have been shown to increase the security and dependability of a software
product, both during development and subsequently during its operation. Additionally, this
book discusses governance and the need for a dynamic risk management approach for
identifying priorities throughout the product lifecycle.

Cyber Security Engineering: A Practical Approach for Systems and Software
Assurance [54]

This book provides a tutorial on the best practices for building software systems that exhibit
superior operational security, and for considering security throughout your full system de-
velopment and acquisition lifecycles. This book provides seven core principles of software
assurance, and shows how to apply them coherently and systematically. This book addresses
important topics, including the use of standards, engineering security requirements for acquir-
ing COTS software, applying DevOps, analysing malware to anticipate future vulnerabilities,
and planning ongoing improvements.

43https://www.cisco.com/c/en/us/about/trust-center/technology-built-in-security.html#∼stickynav=2
44https://blogs.msdn.microsoft.com/microsoft press/2016/04/19/free-ebook-the-security-development-lifecycle/

KA Secure Software Lifecycle | July 2021 Page 33

https://www.cybok.org
https://www.cisco.com/c/en/us/about/trust-center/technology-built-in-security.html#~stickynav=2
https://blogs.msdn.microsoft.com/microsoft_press/2016/04/19/free-ebook-the-security-development-lifecycle/


The Cyber Security Body Of Knowledge
www.cybok.org

SAFECode’s Fundamental Practices for Secure Software Development: Es-
sential Elements of a Secure Development Lifecycle Program, Third Edition
[34]

Eight practices for secure development are provided based upon the experiences of member
companies of the SAFECode organisation.

OWASP’s Secure Software Development Lifecycle Project (S-SDLC) [12]

Based upon a committee of industry participants, the Secure-Software Development Lifecycle
Project (S-SDLC) defines a standard Secure Software Development Life Cycle and provides
resources to help developers know what should be considered or best practices at each
phase of a development lifecycle (e.g., Design Phase/Coding Phase/Maintain Phase/etc.) The
committee of industry participants are members of the Open Web Application Security Project
(OWASP)45, an international not-for-profit organisation focused on improving the security of
web application software. The earliest secure software lifecycle contributions from OWASP
were referred to as the Comprehensive, Lightweight Application Security Process (CLASP).

Security controls

Government and standards organizations have provided security controls to be integrated in
a secure software or systems lifecyle:

1. The Trustworthy Software Foundation 46 provides the the Trustworthy Software Frame-
work (TSFr) 47 a collection of good practice, existing guidance and relevant standards
across the five main facets of trustworthiness: Safety; Reliability; Availability; Resilience;
and Security. The purpose of the TSFr is to provide a minimum set of controls such that,
when applied, all software (irrespective of implementation constraints) can be specified,
realised and used in a trustworthy manner.

2. The US National Institute of Standards and Technology (NIST) has authored the Systems
Security Engineering Cyber Resiliency Considerations for the Engineering [55] framework
(NIST SP 800-160). This Framework provides resources on cybersecurity Knowledge,
Skills and Abilitiess (KSAs), and tasks for a number of work roles for achieving the
identified cyber resiliency outcomes based on a systems engineering perspective on
system life cycle processes.

3. The Software Engineering Institute (SEI) has collaborated with professional organisa-
tions, industry partners and institutions of higher learning to develop freely-available
curricula and educational materials. Included in these materials are resources for a
software assurance program48 to train professionals to build security and correct func-
tionality into software and systems.

4. The UK National Cyber Security Centre (NCSC)49 provide resources for secure software
development:

45https://www.owasp.org/
46https://tsfdn.org
47https://tsfdn.org/ts-framework/
48https://www.sei.cmu.edu/education-outreach/curricula/software-assurance/index.cfm
49https://www.ncsc.gov.uk/

KA Secure Software Lifecycle | July 2021 Page 34

https://www.cybok.org
https://www.owasp.org/
https://tsfdn.org
https://tsfdn.org/ts-framework/
https://www.sei.cmu.edu/education-outreach/curricula/software-assurance/index.cfm
https://www.ncsc.gov.uk/


The Cyber Security Body Of Knowledge
www.cybok.org

(a) Application development50: recommendations for the secure development, pro-
curement, and deployment of generic and platform-specific applications.

(b) Secure development and deployment guidance51: more recommendations for the
secure development, procurement, and deployment of generic and platform-specific
applications.

(c) The leaky pipe of secure coding52: a discussion of how security can be woven more
seamlessly into the development process, particularly by developers who are not
security experts.

Training materials

Training materials are freely-available on the Internet. Some sites include the following:

1. The Trustworthy Software Foundation provides a resource library 53 of awareness ma-
terials and guidance targeted for those who teach trustworthy software principles,
those who seek to learn about Trustworthy Software and those who want to ensure
that the software they use is trustworthy. The resources available include a mixture of
documents, videos, animations and case studies.

2. The US National Institute of Standards and Technology (NIST) has created the NICE
Cyber security Workforce Framework [56]. This Framework provides resources on cyber
security Knowledge, Skills and Abilitiess (KSAs), and tasks for a number of work roles.

3. The Software Engineering Institute (SEI) has collaborated with professional organisa-
tions, industry partners and institutions of higher learning to develop freely-available
curricula and educational materials. Included in these materials are resources for a
software assurance program54 to train professionals to build security and correct func-
tionality into software and systems.

4. SAFECode offers free software security training courses delivered via on-demand web-
casts55.

50https://www.ncsc.gov.uk/collection/application-development
51https://www.ncsc.gov.uk/collection/developers-collection
52https://www.ncsc.gov.uk/blog-post/leaky-pipe-secure-coding
53https://tsfdn.org/resource-library/
54https://www.sei.cmu.edu/education-outreach/curricula/software-assurance/index.cfm
55https://safecode.org/training/

KA Secure Software Lifecycle | July 2021 Page 35

https://www.cybok.org
https://www.ncsc.gov.uk/collection/application-development
https://www.ncsc.gov.uk/collection/developers-collection
https://www.ncsc.gov.uk/blog-post/leaky-pipe-secure-coding
https://tsfdn.org/resource-library/
https://www.sei.cmu.edu/education-outreach/curricula/software-assurance/index.cfm
https://safecode.org/training/


The Cyber Security Body Of Knowledge
www.cybok.org

REFERENCES

[1] F. Piessens, The Cyber Security Body of Knowledge. University of Bristol, 2021, ch.
Software Security, version 1.0.1. [Online]. Available: https://www.cybok.org/

[2] “Bill gates: Trustworthy computing,” https://www.wired.com/2002/01/
bill-gates-trustworthy-computing/, 2002.

[3] M. Howard and S. Lipner, The Security Development Lifecycle. Redmond, WA, USA:
Microsoft Press, 2006.

[4] Poneman Institute, “2018 cost of a data breach study: Global overview,”
July 2018, online. [Online]. Available: https://securityintelligence.com/series/
ponemon-institute-cost-of-a-data-breach-2018/

[5] G. McGraw, “Testing for security during development: why we should scrap penetrate-
and-patch,” IEEE Aerospace and Electronic Systems Magazine, vol. 13, no. 4, pp. 13–15,
April 1998.

[6] J. Viega and G. McGraw, Building Secure Software: How to Avoid Security Problems the
Right Way. Addison-Wesley Professional, 2002.

[7] T. Greene, “That Heartbleed problem may be more pervasive than you think,” January 2017,
online. [Online]. Available: https://www.networkworld.com/article/3162232/security/
that-hearbleed-problem-may-be-more-pervasive-than-you-think.html

[8] eWeek editors, “Microsoft trustworthy computing timeline,” October 2005, online. [Online].
Available: https://www.eweek.com/security/microsoft-trustworthy-computing-timeline

[9] M. Howard and D. E. Leblanc, Writing Secure Code, 2nd ed. Redmond, WA, USA: Microsoft
Press, 2003.

[10] G. McGraw, Software Security: Building Security In. Addison-Wesley Professional, 2006.
[11] Microsoft, “The security development lifecycle,” https://www.microsoft.com/en-us/

securityengineering/sdl/, 2019.
[12] “Owasp secure software development lifecycle project,” https://www.owasp.org/index.

php/OWASP Secure Software Development Lifecycle Project, 2018.
[13] P. Morrison, D. Moye, R. Pandita, and L. Williams, “Mapping the field of software

life cycle security metrics,” Information and Software Technology, vol. 102, pp. 146
– 159, 2018. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S095058491830096X

[14] A. Shostack, Threat Modeling: Designing for Security, 1st ed. Wiley Publishing, 2014.
[15] M. Howard, “Fending off future attacks by reducing attack surface,” MSDN Magazine,

February 4, 2003. [Online]. Available: https://msdn.microsoft.com/en-us/library/
ms972812.aspx

[16] J. H. Saltzer and M. D. Schroeder, “The protection of information in computer systems,”
Proceedings of the IEEE, vol. 63, no. 9, pp. 1278–1308, 1975. [Online]. Available:
https://doi.org/10.1109/PROC.1975.9939

[17] I. Arce, K. Clark-Fisher, N. Daswani, J. DelGrosso, D. Dhillon, C. Kern, T. Kohno, C. Landwehr,
G. McGraw, B. Schoenfield et al., “Avoiding the top 10 software security design flaws,”
IEEE Computer Society Center for Secure Design (CSD), Tech. Rep., 2014.

[18] Synopsys, “2018 open source security and risk analysis,” Synopsys Center for
Open Source Research and Innovation, Tech. Rep., 2018. [Online]. Available: https:
//www.blackducksoftware.com/open-source-security-risk-analysis-2018

[19] A. Austin, C. Holmgreen, and L. Williams, “A comparison of the efficiency and effectiveness
of vulnerability discovery techniques,” Information and Software Technology, vol. 55,
no. 7, pp. 1279 – 1288, 2013. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0950584912002339

KA Secure Software Lifecycle | July 2021 Page 36

https://www.cybok.org
https://www.cybok.org/
https://www.wired.com/2002/01/bill-gates-trustworthy-computing/
https://www.wired.com/2002/01/bill-gates-trustworthy-computing/
https://securityintelligence.com/series/ponemon-institute-cost-of-a-data-breach-2018/
https://securityintelligence.com/series/ponemon-institute-cost-of-a-data-breach-2018/
https://www.networkworld.com/article/3162232/security/that-hearbleed-problem-may-be-more-pervasive-than-you-think.html
https://www.networkworld.com/article/3162232/security/that-hearbleed-problem-may-be-more-pervasive-than-you-think.html
https://www.eweek.com/security/microsoft-trustworthy-computing-timeline
https://www.microsoft.com/en-us/securityengineering/sdl/
https://www.microsoft.com/en-us/securityengineering/sdl/
https://www.owasp.org/index.php/OWASP_Secure_Software_Development_Lifecycle_Project
https://www.owasp.org/index.php/OWASP_Secure_Software_Development_Lifecycle_Project
http://www.sciencedirect.com/science/article/pii/S095058491830096X
http://www.sciencedirect.com/science/article/pii/S095058491830096X
https://msdn.microsoft.com/en-us/library/ms972812.aspx
https://msdn.microsoft.com/en-us/library/ms972812.aspx
https://doi.org/10.1109/PROC.1975.9939
https://www.blackducksoftware.com/open-source-security-risk-analysis-2018
https://www.blackducksoftware.com/open-source-security-risk-analysis-2018
http://www.sciencedirect.com/science/article/pii/S0950584912002339
http://www.sciencedirect.com/science/article/pii/S0950584912002339


The Cyber Security Body Of Knowledge
www.cybok.org

[20] P. Hope, G. McGraw, and A. I. Anton, “Misuse and abuse cases: getting past the positive,”
IEEE Security and Privacy, vol. 2, no. 3, pp. 90–92, May 2004.

[21] G. Sindre and A. L. Opdahl, “Eliciting security requirements by misuse cases,” in Pro-
ceedings 37th International Conference on Technology of Object-Oriented Languages and
Systems. TOOLS-Pacific 2000, Nov 2000, pp. 120–131.

[22] K. Tuma, G. Calikli, and R. Scandariato, “Threat analysis of software systems: A systematic
literature review,” Journal of Systems and Software, vol. 144, 06 2018.

[23] P. K. Manadhata and J. M. Wing, “An attack surface metric,” IEEE Trans. Softw. Eng., vol. 37,
no. 3, pp. 371–386, May 2011. [Online]. Available: http://dx.doi.org/10.1109/TSE.2010.60

[24] C. Theisen, N. Munaiah, M. Al-Zyoud, J. C. Carver, A. Meneely, and L. Williams, “Attack
surface definitions: A systematic literature review,” Information and Software Technology,
vol. 104, pp. 94 – 103, 2018. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0950584918301514

[25] N. M. Mohammed, M. Niazi, M. Alshayeb, and S. Mahmood, “Exploring software
security approaches in software development lifecycle: A systematic mapping study,”
Comput. Stand. Interfaces, vol. 50, no. C, pp. 107–115, Feb. 2017. [Online]. Available:
https://doi.org/10.1016/j.csi.2016.10.001

[26] J. H. Allen, S. Barnum, R. J. Ellison, G. McGraw, and N. R. Mead, Software Security En-
gineering: A Guide for Project Managers (The SEI Series in Software Engineering), 1st ed.
Addison-Wesley Professional, 2008.

[27] A. van Lamsweerde, “Elaborating security requirements by construction of intentional anti-
models,” in Proceedings of the 26th International Conference on Software Engineering,
ser. ICSE ’04. Washington, DC, USA: IEEE Computer Society, 2004, pp. 148–157. [Online].
Available: http://dl.acm.org.prox.lib.ncsu.edu/citation.cfm?id=998675.999421

[28] G. Elahi and E. Yu, “A goal oriented approach for modeling and analyzing security
trade-offs,” in Proceedings of the 26th International Conference on Conceptual Modeling,
ser. ER’07. Berlin, Heidelberg: Springer-Verlag, 2007, pp. 375–390. [Online]. Available:
http://dl.acm.org.prox.lib.ncsu.edu/citation.cfm?id=1784489.1784524

[29] V. Saini, Q. Duan, and V. Paruchuri, “Threat modeling using attack trees,” J.
Comput. Sci. Coll., vol. 23, no. 4, pp. 124–131, Apr. 2008. [Online]. Available:
http://dl.acm.org.prox.lib.ncsu.edu/citation.cfm?id=1352079.1352100

[30] L. Williams, A. Meneely, and G. Shipley, “Protection poker: The new software security
”game”;,” IEEE Security Privacy, vol. 8, no. 3, pp. 14–20, May 2010.

[31] G. McGraw, “The new killer app for security: Software inventory,” Computer, vol. 51, no. 2,
pp. 60–62, February 2018.

[32] R. Kuhn, M. Raunak, and R. Kacker, “What proportion of vulnerabilities can
be attributed to ordinary coding errors?: Poster,” in Proceedings of the 5th
Annual Symposium and Bootcamp on Hot Topics in the Science of Security, ser.
HoTSoS ’18. New York, NY, USA: ACM, 2018, pp. 30:1–30:1. [Online]. Available:
http://doi.acm.org/10.1145/3190619.3191686

[33] NIST Computer Security, “Guide for conducting risk assessments,” National Institute
of Standards and Technology, Tech. Rep. Special Publication 800-30 Revision 1, 2012.
[Online]. Available: https://csrc.nist.gov/publications/detail/sp/800-30/rev-1/final

[34] SAFECode, “Fundamental practices for secure software development: Essential elements
of a secure development lifecycle program,” SAFECode, Tech. Rep. Third Edition, March
2018. [Online]. Available: https://safecode.org/wp-content/uploads/2018/03/SAFECode
Fundamental Practices for Secure Software Development March 2018.pdf

[35] Joint Task Force Transformation Initiative, “Security and privacy controls for federal
information systems and organizations,” National Institute of Standards and Technology,

KA Secure Software Lifecycle | July 2021 Page 37

https://www.cybok.org
http://dx.doi.org/10.1109/TSE.2010.60
http://www.sciencedirect.com/science/article/pii/S0950584918301514
http://www.sciencedirect.com/science/article/pii/S0950584918301514
https://doi.org/10.1016/j.csi.2016.10.001
http://dl.acm.org.prox.lib.ncsu.edu/citation.cfm?id=998675.999421
http://dl.acm.org.prox.lib.ncsu.edu/citation.cfm?id=1784489.1784524
http://dl.acm.org.prox.lib.ncsu.edu/citation.cfm?id=1352079.1352100
http://doi.acm.org/10.1145/3190619.3191686
https://csrc.nist.gov/publications/detail/sp/800-30/rev-1/final
https://safecode.org/wp-content/uploads/2018/03/SAFECode_Fundamental_Practices_for_Secure_Software_Development_March_2018.pdf
https://safecode.org/wp-content/uploads/2018/03/SAFECode_Fundamental_Practices_for_Secure_Software_Development_March_2018.pdf


The Cyber Security Body Of Knowledge
www.cybok.org

Tech. Rep. Special Publication 800-53, Revision 4, 2014.
[36] Federal Office for Information Security, “Guidelines for developer documentation

according to common criteria version 3.1,” Federal Office for Information Security, Tech.
Rep. Version 1.0, 2007. [Online]. Available: https://www.commoncriteriaportal.org/files/
ccfiles/CommonCriteriaDevelopersGuide 1 0.pdf

[37] B. D. Win, R. Scandariato, K. Buyens, J. Grégoire, and W. Joosen, “On the secure software
development process: Clasp, sdl and touchpoints compared,” Information and Software
Technology, vol. 51, no. 7, pp. 1152 – 1171, 2009, detailed data analysis of practices
available online. [Online]. Available: lirias.kuleuven.be/1655460

[38] SAFECode, “Practical security stories and security tasks for agile development
environments,” SAFECode, Tech. Rep., July 2012. [Online]. Available: http://safecode.org/
wp-content/uploads/2018/01/SAFECode Agile Dev Security0712.pdf

[39] Microsoft, “Secure devops,” https://www.microsoft.com/en-us/securityengineering/
devsecops, 2019.

[40] “Owasp mobile security project,” https://www.owasp.org/index.php/OWASP Mobile
Security Project, 2017.

[41] T. Eston, “OWASP mobile security project - mobile threat model,” 2013. [Online].
Available: https://www.owasp.org/index.php/Projects/OWASP Mobile Security Project
- Mobile Threat Model

[42] B. Sullivan, S. Tabet, E. Bonver, J. Furlong, S. Orrin, and P. Uhley, “Practices for secure
development of cloud applications,” SAFECode, Tech. Rep., December 2013. [Online].
Available: https://safecode.org/publication/SAFECode CSA Cloud Final1213.pdf

[43] J. Voas, R. Kuhn, P. Laplante, and S. Applebaum, “Inernet of things (iot) trust
concerns,” National Institute of Standards and Technology, Tech. Rep. Draft, 2018.
[Online]. Available: https://csrc.nist.gov/publications/detail/white-paper/2018/10/17/
iot-trust-concerns/draft

[44] ENISA, “Cloud computing: Benefits, risks and recommendations for information security,”
ENISA, Tech. Rep., 2009. [Online]. Available: https://www.enisa.europa.eu/publications/
cloud-computing-risk-assessment/at download/fullReport

[45] Y. Vardi, “Where automotive cybersecurity is headed in 2019,”
2019. [Online]. Available: https://thenextweb.com/contributors/2019/02/10/
where-automotive-cybersecurity-is-headed-in-2019/

[46] G. McGraw, “From mainframes to connected cars: How software drives the automotive
industry,” Security Ledger, vol. August 15, August 2018.

[47] S. Fahl, The Cyber Security Body of Knowledge. University of Bristol, 2021, ch. Web &
Mobile Security, version 1.0.1. [Online]. Available: https://www.cybok.org/

[48] N. Suri, The Cyber Security Body of Knowledge. University of Bristol, 2021, ch.
Distributed Systems Security, version 1.0.1. [Online]. Available: https://www.cybok.org/

[49] A. Cardenas, The Cyber Security Body of Knowledge. University of Bristol, 2021, ch. Cyber-
Physical Systems Security, version 1.0.1. [Online]. Available: https://www.cybok.org/

[50] G. McGraw, S. Migues, and J. West, “Building security in maturity model,” https://www.
bsimm.com/, 2009.

[51] L. Williams, G. McGraw, and S. Migues, “Engineering security vulnerability prevention,
detection, and response,” IEEE Software, vol. 35, no. 5, pp. 76–80, Sep. 2018.

[52] G. A. Moore, Crossing the Chasm: Marketing and Selling Disruptive Products to Main-
stream Customers. Harper Collins, 2002.

[53] R. Anderson, “Why information security is hard - an economic perspective,” in Seventeenth
Annual Computer Security Applications Conference, Dec 2001, pp. 358–365.

[54] N. R. Mead and C. Woody, Cyber Security Engineering: A Practical Approach for Systems

KA Secure Software Lifecycle | July 2021 Page 38

https://www.cybok.org
https://www.commoncriteriaportal.org/files/ccfiles/CommonCriteriaDevelopersGuide_1_0.pdf
https://www.commoncriteriaportal.org/files/ccfiles/CommonCriteriaDevelopersGuide_1_0.pdf
lirias.kuleuven.be/1655460
http://safecode.org/wp-content/uploads/2018/01/SAFECode_Agile_Dev_Security0712.pdf
http://safecode.org/wp-content/uploads/2018/01/SAFECode_Agile_Dev_Security0712.pdf
https://www.microsoft.com/en-us/securityengineering/devsecops
https://www.microsoft.com/en-us/securityengineering/devsecops
https://www.owasp.org/index.php/OWASP_Mobile_Security_Project
https://www.owasp.org/index.php/OWASP_Mobile_Security_Project
https://www.owasp.org/index.php/Projects/OWASP_Mobile_Security_Project_-_Mobile_Threat_Model
https://www.owasp.org/index.php/Projects/OWASP_Mobile_Security_Project_-_Mobile_Threat_Model
https://safecode.org/publication/SAFECode_CSA_Cloud_Final1213.pdf
https://csrc.nist.gov/publications/detail/white-paper/2018/10/17/iot-trust-concerns/draft
https://csrc.nist.gov/publications/detail/white-paper/2018/10/17/iot-trust-concerns/draft
https://www.enisa.europa.eu/publications/cloud-computing-risk-assessment/at_download/fullReport
https://www.enisa.europa.eu/publications/cloud-computing-risk-assessment/at_download/fullReport
https://thenextweb.com/contributors/2019/02/10/where-automotive-cybersecurity-is-headed-in-2019/
https://thenextweb.com/contributors/2019/02/10/where-automotive-cybersecurity-is-headed-in-2019/
https://www.cybok.org/
https://www.cybok.org/
https://www.cybok.org/
https://www.bsimm.com/
https://www.bsimm.com/


The Cyber Security Body Of Knowledge
www.cybok.org

and Software Assurance, 1st ed. Addison-Wesley Professional, 2016.
[55] R. Ross, V. Pillitteri, R. Graubart, D. Bodeau, and R. McQuaid, “Developing cyber resilient

systems: a systems security engineering approach,” National Institute of Standards
and Technology, Tech. Rep. Draft (FPD) SP 800-160 Volume 2, 2019. [Online]. Available:
https://csrc.nist.gov/publications/detail/sp/800-160/vol-2/draft

[56] W. Newhouse, S. Keith, B. Scribner, and G. Witte, “National Initiative for Cy-
bersecurity Education (NICE) cybersecurity workforce framework,” National In-
stitute of Standards and Technology, Tech. Rep. Special Publication 800-181,
2017. [Online]. Available: https://www.nist.gov/itl/applied-cybersecurity/nice/resources/
nice-cybersecurity-workforce-framework

ACRONYMS

AI Artificial Intelligence.

API Application Programming Interface.

ASC Application Security Controls.

ASVS Application Security Verfication Standard.

BSIMM Building Security In Maturity Model.

CB Certification/Validation Body.

CC Common Criteria.

CEO Chief Executive Officer.

CI/CD Continuous Integration/Continuous Delivery.

CLASP Comprehensive, Lightweight Application Security Process.

COTS Common Off The Shelf.

CSA Cloud Security Alliance.

CVSS Common Vulnerability Scoring System.

CWE Common Weakness Enumeration.

DAST Dynamic Analysis Security Testing.

DES Data Encryption Standard.

DoS Denial of Service.

EAL Evaluation Assurance Level.

ECU Electrical Control Unit.

ENISA European Union Agency for Cybersecurity.

GDPR General Data Protection Regulation.

KA Secure Software Lifecycle | July 2021 Page 39

https://www.cybok.org
https://csrc.nist.gov/publications/detail/sp/800-160/vol-2/draft
https://www.nist.gov/itl/applied-cybersecurity/nice/resources/nice-cybersecurity-workforce-framework
https://www.nist.gov/itl/applied-cybersecurity/nice/resources/nice-cybersecurity-workforce-framework


The Cyber Security Body Of Knowledge
www.cybok.org

HIPAA Health Insurance Portability and Accountability Act.

HTSA Highway Traffic Safety Administration.

ICV Intelligent and Connected Vehicle.

IDE Integrated Development Environment.

IIoT Industrial IOT.

IIS Internet Information Services.

IoT Internet of Things.

IRP Incident Response Plan.

ISO International Organization for Standardization.

KAOS Keep All Objectives Satisfied.

KPI Key Performance Indicator.

KSA Knowledge, Skills and Abilities.

MASVS OWASP Mobile Application Security Verification Standard.

MSTG Mobile Security Testing Guide.

MTTC Mean Time To Contain.

MTTI Mean Time To Identify.

MUD Manufacturer Usage Description.

NCSC National Cyber Security Centre.

NICE National Institute for Cybersecurity Education.

NIST National Institute of Standards and Technology.

NVD National Vulnerability Database.

OWASP Open Web Application Security Project.

PaaS Platform as a Service.

PCI Payment Card Industry.

PCI DSS Payment Card Industry Data Security Standard.

RFID Radio-Frequency Identification.

S-SDLC Secure-Software Development Lifecycle Project.

SAE Society for Automotive Engineering.

SAMM Software Assurance Maturity Model.

SAST Static Analysis Security Testing.

KA Secure Software Lifecycle | July 2021 Page 40

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

SCA Software Composition Analysis.

SCADA Supervisory Control and Data Acquisition.

SDL Security Development Lifecycle.

SEI Software Engineering Institute.

SQL Structured Query Language.

SQUARE Security Quality Requirements Engineering.

SSO Single Sign On.

TPM Trusted Platform Module.

GLOSSARY

vulnerability Something open to attack or misuse that could lead to an undesirable outcome.

KA Secure Software Lifecycle | July 2021 Page 41

https://www.cybok.org


INDEX

abuse, 6, 12, 13, 27
access control, 14
access decision, 8
accountability, 6
administrator, 4, 23
agile, 3, 18
ambiguity analysis, 12
Android, 20
anti-model, 6
antivirus, 26
application programming interface, 20, 22
application security controls, 13, 14
Application Security Verfication Standard, 12
approved tool, 9
architectural review, 14
architectural risk analysis, 7, 11, 12
artificial intelligence, 33
assumption, 10–12
assurance program, 27, 28, 34, 35
attack model, 28
attack pattern, 11, 12
attack resistance analysis, 11
attack surface, 8, 9, 20, 23, 24, 27
attack target, 23, 24, 26
attack tree, 7
attack vector, 6, 18, 25
attacker behaviour, 13
attacker motivation, 3, 7
attestation, 22
attribute-based access control, 14
authentication, 8, 9, 14, 20, 22, 23, 25
authorisation, 8–10, 14, 18, 23, 29
automobile, 3, 13, 24, 26
autonomous, 8, 10, 14, 19, 20, 28
availability, 14, 18, 30, 32, 34
awareness, 16, 35

backward compatible, 9
bandwidth, 23
black box, 10, 12, 28
black box penetration testing, 10, 12
Black Duck On-Demand, 9
brute force attack, 9
buffer, 11
buffer overflow, 11
bug bounty, 31

build pipeline, 10
building secure software, 4, 32
building security in maturity model, 28–30

certificate, 19, 25, 29
certification bodies, 29
check-in gate, 9
checklist, 11, 20
CLASP, 16, 34
client-side scripting, 22
cloud computing, 3, 21, 23
Cloud Security Alliance, 21
cloud service provider, 21, 22
code pattern, 9
code review, 9, 11, 14, 27, 29
coding guidelines, 9, 14
collaboration, 7
commit pipeline, 9
common criteria, 15, 29
Common Vulnerability Scoring System, 15
Common Weakness Enumeration, 18
compiler, 9
complete mediation, 8
compliance, 16
compliance reporting, 18
comprehension, 11
conceptual diagram, 7
configuration file, 19
configuration setting, 21
connected vehicles, 24
containment, 24
continuous integration/continuous delivery, 19
control algorithm, 24
control instruction, 9
cookies, 4
cost-effectiveness, 23
counterfeit goods, 23
credentials, 19, 22–24
credit card data, 26
CredScan, 19
critical national infrastructure, 24
cryptographic standards, 9
cryptography, 4, 8, 9, 20, 22, 25
culture, 15, 31
custom domain, 22
customer response, 10

42



The Cyber Security Body Of Knowledge
www.cybok.org

cyber-physical system, 24

DARPA, 4
data buses, 25
data centre, 22
data encryption mechanism, 22
data flow, 20
data flow diagram, 20
data in transit, 14, 21–23
data masking, 21
data pattern, 23
data store, 7
data transfer, 9, 20, 23, 26
database, 21
debugging, 21, 25
decision-making, 8, 25
Deep Crack, 9
default password, 19, 23, 24
defense-in-depth, 8
denial of service, 7
dependencies, 9
deployment pipeline, 9, 18
deployment planning, 15
DES, 9
design flaw, 5, 8, 10, 11, 14, 32
design for updating, 8
design review, 14, 27
developer environment, 10
developers, 6, 10, 12, 18, 20, 22, 25, 29, 31, 32,

34, 35
development, 3–6, 10, 12–19, 21, 23, 24, 26–31,

33, 34
DevOps, 3, 18, 19, 33
diagnostics, 25
digital signature, 25
disaster recovery, 21
discretionary access control, 14
disincentive, 31
distributed systems, 23
documentation, 5, 11, 29, 32
domain-specific, 30
dynamic analysis, 10

ecommerce, 3, 26
economics, 31
economy of mechanism, 8
education, 6, 16, 27, 34, 35
encryption, 9, 11, 14, 21, 22, 24–26
end-of-life, 5
ENISA, 23

environment hardening, 28
error-handling, 11, 15
ethical hacker, 10
evaluation assurance level, 29
execution path, 8
executive leadership, 31
exploit, 3, 4, 13, 15, 24

fail-safe defaults, 8
false-positive, 19
firewall, 3, 26
firmware, 24, 25
firmware update architecture, 24
Ford Escape, 24
forensic analysis, 14, 25
fuzz testing, 10

Gartner, 4
General Data Protection Regulation, 7, 14, 24
geographically-distributed, 23
governance, 19, 27, 28, 33
government, 21, 23, 31, 34
granted access rights, 8

HackerOne, 31
hard-coded password, 19
Heartbleed, 4
Highway Traffic Safety Administration, 24
HIPAA, 14
human error, 13
human interface, 8
hybrid cloud, 22

i*-modeling framework, 6
identity management, 22
IEEE Center for Secure Design, 8
immutable, 25
impact assessment, 24
implementation vulnerabilities, 3, 5, 10, 11, 32
incident response, 10
incident response plan, 10
Industrial IoT, 23
information flow, 7, 20
information security, 23, 26
infrastructure, 19, 22, 24
infrastructure as code, 19
injection attack, 10
input validation, 11, 24
integrated development environment, 19
integrity, 24
inter-app communication, 20

KA Secure Software Lifecycle | July 2021 Page 43

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

internet information services, 4
interview, 29
intuitive interface, 23
investigation, 30
iOS, 20
IoT, 23, 24, 33
IP address, 25
ISO, 15, 25
isolation, 25

Java, 14
Java SE, 14
JavaScript, 22

keep all objectives satisfied, 6
kernel, 4
kernel memory, 4
key management, 22
key performance indicators, 6
knowledge, skills and abilities, 34, 35

legal requirement, 6, 14
legislation, 26
licensing exposure, 19
local storage, 20
localized error, 11
log file, 14
logging, 8, 14

malformed string, 10
man-in-the-middle attack, 24
management, 6, 15, 28, 29, 33
mandatory access control, 14
manipulation, 24
manual penetration testing, 10
manufacturer usage description, 23
mean time to contain, 19
mean time to identify, 19
mediation, 8
Meltdown, 4
memory corruption, 10
methodology, 20
Microsoft, 3–6, 11, 16–18, 24, 32, 33
mitigating risk, 12
mitigation technique, 26
mobile app, 20
mobile computing, 3
mobile security, 20
Mobile Security Testing Guide, 20
multi-tenancy, 21

National Vulnerability Database, 11
NCSC, 34
network port, 25
network security, 13
NICE Cyber security Workforce Framework, 35
NIST, 13, 23, 24, 34, 35

object-sharing system, 11
online marketplace, 23
open design, 8
open source, 9, 19
OpenSSL, 4
Operating System, 20
operational environment, 7, 8, 12, 14
OWASP, 10, 12, 14, 18, 20, 34
OWASP mobile application security, 20
OWASP Mobile Security Project, 20

parallelism, 12
password, 4, 8, 19, 23–26
patching, 3–5, 8, 10, 23
payment card industry, 7, 14, 26
payment card industry data security , 26
payment card industry data security Standard,

7
payment method, 3, 26
penetration and patch model, 10
penetration testing, 3, 10, 12, 13, 25, 29
permission, 8
personal data, 24
phishing, 13
physical access, 26
platform as a service, 21, 22
policies, 9, 14, 24, 26–28
Poneman Institute, 3
pre-built attack, 10
principle of least common mechanism, 8
principle of least privilege, 8
privacy, 9
private cloud, 22
private key, 4, 19
privilege escalation, 7, 21, 25
probability, 11
processes, 7, 21, 26
processors, 25
product development, 5, 24
product manager, 6
production device, 25
program manager, 6, 15
programming language, 6, 14

KA Secure Software Lifecycle | July 2021 Page 44

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

programming practices, 14
project inception, 16
project manager, 6, 33
proprietary, 9
Protection Poker, 7
protection profile, 29
psychological acceptability, 8
psychology, 8
public cloud, 22

quality assurance, 18, 28

radio wave, 23
radio-frequency identification, 23
radio-frequency identification tag, 23
re-engineering, 30
re-review, 15
recovery system, 11
redundancy, 8, 21
regulation, 7, 14, 21, 24
reliability, 4, 13, 29, 34
remediation plan, 15, 24
repudiation, 7, 14
reputation, 3
resilience, 24, 34
resource-constrained, 23
reverse engineering, 20
risk acceptance, 15
risk assessment, 25, 32
risk exposure, 11
risk identification, 12
risk management, 6, 33
risk ranking, 12
risk-based security testing, 12, 13
role-based access control, 14
root cause analysis, 15
routing, 25
runtime, 10, 22

SAE International, 25
SAFECode, 3, 13, 17, 18, 21, 34, 35
safety, 24, 25, 34
safety signal, 25
Saltzer and Schroeder, 8
SCADA, 14
scalability, 23
secure boot, 24
secure deployment, 5, 15, 16, 35
security breaches, 3, 8, 13, 14
security development lifecycle, 5, 6, 10, 16, 17,

33, 34

security emergency, 10
security game, 7
security goal, 6
security mechanism, 8
security metric, 6, 15, 18, 24, 27, 28
security posture, 13, 22
security practitioner, 16, 18
security requirements, 6, 12, 13, 20, 25–27, 30,

33
Security Standards Council, 26
SEI CERT, 15
self-assessment, 28
sensors, 23
separation of privilege, 8
serial console, 25
service provider, 21, 22
shared-domain issues, 22
single sign-on, 22
software analysis, 4
Software Assurance Maturity Model, 27–29
software composition analysis, 19
software development, 3–5, 13, 16, 18, 21, 24,

28, 33, 34
Software Engineering Institute, 15, 34, 35
software framework, 14, 34
software library, 3, 9, 14
software maintenance, 5
software patches, 3–5, 8, 10, 23
software security, 3, 5, 8, 11, 13, 18, 27–29, 31–

33, 35
software testing, 5, 12, 32
software update, 23, 24, 26
source code, 14, 19, 23
specification, 6, 15, 23
spreadsheet, 28
SPY Car Act, 26
SQL connection string, 19
stakeholder, 15, 18, 30
static analysis, 9–11
supply chain, 24
Synopsys, 29

tamper-proof, 14
tampering, 7, 9, 14
telemetry, 24
test case, 10, 20
third-party software, 3, 9, 10, 12, 19
threat agent, 20
threat assessment, 27
threat landscape, 6, 15

KA Secure Software Lifecycle | July 2021 Page 45

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

threat model, 7, 8, 11, 14, 19–21
threat scenario, 7
tokenisation, 21
touchpoints, 3, 11–13, 16, 17, 28, 33
Toyota Prius, 24
traffic data, 23
training, 6, 15, 17–19, 28, 31, 35
trust, 4, 7, 8, 11, 13, 15, 22, 23, 34, 35
trust boundary, 7
trusted compute pools, 22
trusted platform module, 22
Trustworthy Computing initiative, 4
Trustworthy Software Foundation, 34, 35
Trustworthy Software Framework, 34

unit test, 12
use case, 12, 13
user content, 22
user identities, 26
user interface, 23
user stories, 18

validation body, 29
verification standard, 20
vulnerabilities, 3–6, 9–11, 14, 15, 18–20, 24, 26,

28, 29, 31–33
vulnerability detection, 6, 9
vulnerability disclosure policy, 24

warnings, 9
water services, 4
weakness analysis, 12
web applications, 10, 12, 18, 34
white hat hacker, 10
WhiteSource, 19
Windows .NET Server, 4
Windows 7, 4
Windows security push, 4, 32
wireless transmission protocol, 20
workflow, 19

KA Secure Software Lifecycle | July 2021 Page 46

https://www.cybok.org

	1 Motivation
	2 Prescriptive Secure Software Lifecycle Processes
	2.1 Secure Software Lifecycle Processes
	2.1.1 Microsoft Security Development Lifecycle (SDL)
	2.1.2 Touchpoints
	2.1.3 SAFECode

	2.2 Comparing the Secure Software Lifecycle Models

	3 Adaptations of the Secure Software Lifecycle
	3.1 Agile Software Development and DevOps
	3.2 Mobile
	3.3 Cloud Computing
	3.4 Internet of Things (IoT)
	3.5 Road Vehicles
	3.6 ECommerce/Payment Card Industry

	4 Assessing the Secure Software Lifecycle
	4.1 SAMM
	4.2 BSIMM
	4.3 The Common Criteria

	5 Adopting a Secure Software Lifecycle

