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1 INTRODUCTION

Machine Learning (ML) has rapidly become a fundamental technology that underpins count-
less applications, from natural language processing [7, 15, 18, 86, 97] and computer vision [46,
83] to fraud detection [106] and personalized recommendations [105]. In recent years, there
has been a growing understanding of how to use ML in security contexts, leading to the
development of advanced tools and techniques for detecting and preventing malicious ac-
tivities [23, 24, 43]. Readers interested in knowing more about AI for security can refer to
the corresponding CyBOK Topic Guide [76]. However, the security and privacy aspects of ML
itself remain less understood, posing new challenges and opportunities for researchers and
practitioners.

This Cybersecurity Body of Knowledge (CyBoK) Knowledge Guide (KG) aims to describe
attacks and defenses that undermine the security and privacy of ML models 1, which define
the field of adversarial machine learning. Our focus is on the key challenges, open problems,
and promising solutions that have emerged in the context of securing and preserving the
privacy of ML models in this rapidly evolving field.

Traditionally, the primary focus of ML research has been on improving performance, often
measured in terms of accuracy, precision, recall, and other traditional performance-related
metrics. However, as ML systems are increasingly deployed in real-world settings with sig-
nificant security and privacy implications, there is a growing need to consider additional
objectives. These objectives may include robustness against adversarial attacks [44] and
distributions shifts [9, 70], fairness in decision-making processes [55], and ensuring the ex-
plainability and interpretability of models [58]. Balancing these often competing objectives is
a central challenge in developing trustworthy ML systems.

Moreover, privacy concerns are becoming increasingly crucial as ML models are trained on
massive amounts of data [15], which may include sensitive or confidential information [16].
There is an inherent tension between the need to release or provide access to data and
models for the sake of transparency and collaboration and the requirement to protect data
confidentiality as well as the privacy of individuals and organisations. This tension is further
exacerbated by the growing sophistication of techniques for inferring sensitive information
from ML models, even when the models themselves are considered “black boxes”.

Research in the area of trustworthy ML is advancing rapidly, with new techniques and method-
ologies being proposed and evaluated regularly. As a result, this CyBoK KG is not intended
to provide an exhaustive survey of the field but rather to offer an overview of the current
trends, open problems, and promising solutions that are shaping the landscape of adversarial
machine learning with a specific focus on the Security and Privacy of AI systems. By explor-
ing these topics, we provide a valuable resource for computer scientists, practitioners, and
researchers seeking to better understand and address the security and privacy challenges
associated with ML systems.

In the rest of the KG, we will delve into various aspects of adversarial machine learning,
covering topics such as evasive attacks, poisoning and backdoor attacks, realisable and
problem-space attacks, inference attacks, as well as defenses against adversarial attacks
and privacy-preserving techniques. We hope that future extensions of this KG will cover
in more detail the broader context of trustworthy ML, including issues related to fairness,

1Although this Knowledge Guide focuses on data-driven learning-based algorithms (ML), we may use the
broader term AI interchangeably throughout the text.
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interpretability, and explainability, as well as related supply chain security, emerging trends
and future directions for research in this exciting and rapidly evolving field [22, 77].

2 THREATMODELS

Before delving into the security and privacy aspects of machine learning, we first introduce
relevant adversarial models [10].

Knowledge. One important aspect is what kind of knowledge the attacker might have:

• Perfect-knowledge: they have some information about the model or its original training
data, e.g., ML algorithm, model parameters, network structure, and (some) training data.

• Zero-Knowledge: they have no knowledge about the model. Rather, they might explore a
model by providing a series of carefully crafted inputs and observing outputs.

• Partial-Knowledge: attackers’ knowledge sits in between perfect and zero knowledge.

Training vs Inference. Another variable is where the attack might take place:

• Training Phase: the adversary may alter the training dataset to influence the underlying
learning process. They may also attempt to learn the model, e.g., accessing a summary,
partial or all of the training data. In the process and depending on the context, the
adversary might create a substitute model (also known as auxiliary or surrogate model)
to use to mount attacks on the victim system.

• Inference Phase: the adversary may generate carefully-crafted test-time examples to
affect the model’s predictions. The adversary may also collect evidence about the model
characteristics by observing inferences made by it.

Passive vs Active. Finally, one can also distinguish between passive and active attacks,
roughly mirroring the traditional distinction in security literature between honest-but-curious
and fully malicious adversaries:

• Passive attack: the adversary passively observes the updates and performs inference,
e.g., without changing anything in the training procedure;

• Active attack: the adversary actively changes the way they operate.

These knowledge settings represent different realistic threat models and influence security
as well as privacy aspects ML systems [10, 91].
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3 ADVERSARIAL ML ATTACKS

Adversarial machine learning attacks pose a significant threat to the security and privacy
of machine learning systems. In the following section, we outline evasion, poisoning, and
backdoor attacks, the main categories of adversarial threats that undermine the security
properties of ML systems. Although such attacks expose inherent weaknesses of learning-
based algorithms, it is important to consider their implications in the context of realisable (or
problem-space) attacks, discussion that we provide at the end of the section.

3.1 Evasion Attacks

Evasion attacks, also known as test-time attacks, occur when an adversary manipulates
(perturbs) input data to mislead a machine learning model during its inference phase. In
general, the main working mechanism of adversarial attacks is to solve an optimisation
problem that aims to find perturbations to the input data, which, when added, cause the
target machine learning model to produce incorrect or misleading outputs [10, 17, 87]. These
perturbations are typically small and often imperceptible to humans, yet effective enough to
fool the model.

The optimisation problem can be formally defined as follows [44]:

minimize
δ

∥δ∥p

subject to C(x+ δ) ̸= C(x), (a)
x+ δ ∈ [0, 1]n, (b)

(1)

where x is the original input, δ is the perturbation, ∥δ∥p is the perturbation’s lp norm (a measure
of the size of the perturbation), C is the classifier, and n is the dimensionality of the input
space. The objective function seeks to minimize the lp-norm of the perturbation δ, subject to
the constraint (a) that the classifier produces a different class for the perturbed input (x+ δ)
compared to the original input x. The additional constraint (b) ensures that the perturbed
input remains within the valid input domain, which is [0, 1]n for normalized inputs.

Adversarial attack algorithms, such as Fast Gradient Sign Method (FGSM) [35], Projected
Gradient Descent (PGD) [47], Carlini and Wagner (C&W) [17], and the recently-proposed Fast-
minimum Norm (FMN) [75], differ in the specifics of how they solve this optimisation problem
and take care of hyperparameter choices, adversarial starting points, and convergence com-
putational complexity. Some attacks use gradient information of the model’s loss function to
efficiently compute adversarial perturbations, while others employ more advanced optimi-
sation techniques. Despite these differences, the general goal of these attacks is to find an
optimal perturbation that effectively fools the target model while minimising the size of the
perturbation according to some chosen norm.

Adversarial ML attacks have been originally studied in the context of computer vision tasks.
Therefore, the above considerations on minimal lp-norm perturbations are, in general, a re-
quirement to guarantee adversarial input is perceived as similar to the original input. Biggio
and Roli [10] extend this observation and suggest to reason about high vs low confidence
attacks, instead, with the former non-necessarily being bounded by minimal perturbation
objectives. This reasoning is further exacerbated when we consider domains for which the
notion of visual perception has no meaning, such as in software, network, or natural language
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processing tasks. Here, in fact, it might not be important to minimize input perturbations but
rather to satisfy other constraints, such as semantics [48, 73], which would affect the way
in which input objects are manipulated. We discuss so-called problem space or realizable
attacks in Section 3.5.

3.2 Poisoning Attacks

Poisoning attacks, in general, are a class of adversarial attacks that target the training phase
of a machine learning model [19]. The main working mechanism of poisoning attacks involves
injecting carefully crafted points that differ from the training distribution or mislabelled data
into the training dataset. These poisoned samples are designed to manipulate the learn-
ing process, resulting in a compromised model that misbehaves or performs poorly when
deployed.

In general, poisoning attacks can be formulated as an optimisation problem. The attacker
aims to find the optimal poisoned samples that maximise the model’s loss on a specific target
or set of targets, subject to certain constraints. The optimisation problem can be expressed
as follows:

maximize
{x∗

i ,y
∗
i }Ni=1

L(θ∗, {x∗i , y∗i }Ni=1)

subject to θ∗ = argmin
θ

L(θ, {xi, yi}Mi=1 ∪ {x∗i , y∗i }Ni=1), (a)

constraints on {x∗i , y∗i }Ni=1, (b)

(2)

where L is the model’s loss function, θ represents the model’s parameters, {xi, yi}Mi=1 is the
original training dataset, {x∗

i , y
∗
i }Ni=1 are the poisoned samples, and M and N are the sizes

of the original and poisoned datasets, respectively. The first constraint (a) ensures that the
poisoned model, represented by θ∗, is trained on the combined dataset of original and poisoned
samples, and the second constraint (b) imposes limitations on the poisoned samples, such
as adherence to certain data distributions or limitations on the degree of perturbation allowed.
In the context of poisoning attacks, the loss function’s intuition is as follows. High values
of the loss function indicate that the attacker is successful in compromising the model’s
performance on a specific target or set of targets. The attacker aims to maximise the model’s
loss by injecting poisoned samples that mislead the model during the learning process.
Conversely, low values of the loss function suggest that the attacker is not successful in
affecting the model’s performance on the target or set of targets. This means that the model
is more robust against the poisoning attack and can still make correct predictions despite the
presence of poisoned samples in the training data.

The exact methodology for solving this optimisation problem varies depending on the attack
strategy and the constraints imposed on the poisoned samples. Some poisoning attacks
use gradient-based methods or bilevel optimization techniques [19], while others employ
more heuristic approaches. The overall goal is to craft poisoned samples that effectively
compromise the target model while remaining inconspicuous and adhering to any imposed
constraints.
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3.3 Backdoor Attacks

Backdoor attacks, also known as backdoor or trojan attacks, are a type of poisoning attack that
aims to embed a hidden malicious functionality (i.e., the backdoor) into a machine learning
model during the training process. The main working mechanism of backdoor attacks involves
injecting specially crafted samples, called triggering or trojaned samples, into the training
dataset 2. These samples contain a specific pattern (i.e., the trigger) that, when present in the
input data, causes the compromised model to produce a predefined, incorrect output chosen
by the attacker.

Similar to the broader poisoning attacks, backdoor attacks can in general be formulated as an
optimisation problem, where the attacker’s goal is to find the optimal set of triggering samples
that maximise the success of the backdoor attack while minimising its detectability [102].
The optimisation problem can be expressed as follows:

maximize
{x∗

i ,y
∗
i }Ni=1

Psuccess(θ
∗, {x∗i , y∗i }Ni=1)

subject to θ∗ = argmin
θ

L(θ, {xi, yi}Mi=1 ∪ {x∗i , y∗i }Ni=1), (a)

constraints on {x∗i , y∗i }Ni=1, (b)

(3)

where Psuccess is the probability of a successful backdoor attack, L is the model’s loss function,
θ represents the model’s parameters, {xi, yi}Mi=1 is the original training dataset, {x∗

i , y
∗
i }Ni=1 are

the triggering samples, and M and N are the sizes of the original and triggering datasets,
respectively. The first constraint (a) ensures that the backdoored model, represented by θ∗, is
trained on the combined dataset of original and triggered samples, and the second constraint
(b) imposes limitations on the triggering samples, such as restrictions on the trigger pattern
or the degree of perturbation allowed.

The exact methodology for solving this optimisation problem varies depending on the attack
strategy and the constraints imposed on the triggering samples. Some backdoor attacks
use gradient-based methods or optimisation techniques [80], while others employ more
heuristic approaches. The overall goal is to craft triggering samples that effectively implant
the backdoor into the target model while remaining inconspicuous and satisfying to any
imposed constraints.

3.4 Poisoning vs Backdoor Attacks

From a high-level perspective, both poisoning and backdoor attacks target the training phase
of a machine learning model, but their objectives and attack mechanisms are different.

Poisoning attacks aim to degrade the overall performance of a machine learning model by
injecting maliciously crafted samples into the training dataset. The attacker’s goal is to cause
the model to make incorrect predictions or perform poorly on a specific target or set of targets.
In poisoning attacks, the attacker typically tries to maximise the model’s loss on the targets by
solving an optimization problem, which may involve modifying the input data or their labels.

On the other hand, backdoor attacks aim to insert a hidden vulnerability or ”backdoor” into
the machine learning model during training, which can be exploited later during inference.
The attacker trains the model on a dataset containing carefully crafted samples with specific

2Supply chain attacks against ML model codebase are also theoretically possible, but not discussed here.
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triggers or patterns, which are associated with an incorrect target label. The model learns
to recognise these triggers and associate them with the target label. During inference, when
the attacker provides an input containing the trigger, the model produces the incorrect target
output, allowing the attacker to control the model’s behaviour. In backdoor attacks, the
attacker’s goal is to maximise the probability of success Psuccess when the trigger is present
while maintaining the model’s performance on clean data [102].

In summary, poisoning attacks focus on degrading the overall performance of the model,
while backdoor attacks aim to insert a hidden vulnerability that can be exploited later by the
attacker. The formalisation of these attacks may be similar, but their objectives and attack
mechanisms are different.

Recent comprehensive surveys on poisoning and backdoor attacks (and defenses) are pro-
vided by Tian et al. [89] and Ciná et al. [19].

3.5 Realisable Attacks

So far, we have discussed adversarial attacks that involve reasoning about perturbations
in the feature space, the geometric space where input data is mapped into. This happens
particularly when the input and feature spaces are closely related, as in computer vision tasks.
In these tasks, the feature space is in fact derived from the input data (e.g., pixel values of
an image), and a deep learning model learns hierarchical representations of these features
at different layers.3 When input and feature spaces are not closely related, it is necessary to
reason about the input space on its own (the problem space) and different ways in which
we can abstract and represent it. For instance, in the context of malware classification, one
can define a feature mapping function that abstracts programs in a binary feature space or
learns a suitable representation of programs 4. Here, adversarial perturbations as outlined
earlier affect the feature space and can thus influence a classifier’s prediction. However, the
underlying attacks would represent unrealistic threats as they would only affect the feature
space and not the problem space with related constraints.

Realisable attacks are a category of adversarial attacks that focus on creating real adversarial
objects. For instance, in malware classification tasks, realisable adversarial attacks are not
just concerned at creating digital adversarial examples (an adversarial example that exists in
the feature space and breaks the classifier), but also focused at generating an adversarial
object that exists in the physical world (e.g., an ”adversarial” malware that still behaves as
such while being classified as goodware.) As such, these attacks may not require to minimise
lp-norm perturbations but might need to satisfy specific problem-space constraints. These
attacks take into account the practical limitations and properties of the targeted domain, such

3Adversarial attacks and the training of deep learning models both involve backpropagation [78], but they
have different goals and targets. (Although the focus here is on deep learning models, shallow learning-based
algorithms are equally vulnerable to adversarial perturbations.) As mentioned earlier, the goal of adversarial
attacks is to find input perturbations that cause the model to produce incorrect predictions while minimizing the
perceptibility of the perturbations. In this case, the attacker backpropagates the gradient of the loss function
with respect to the input data. By computing the gradient, the attacker can identify the direction in which the input
should be perturbed to maximize the model’s output error. Conversely, the goal of training a (deep) learning model
is to learn its optimal parameters (weights and biases) that minimize the loss function over the training dataset.
Here, the gradient of the loss function with respect to the model parameters is computed using backpropagation.
This gradient information is then used to update the model parameters iteratively, typically via optimization
algorithms like Stochastic Gradient Descent (SGD).

4The CyBoK AI for Security Topic Guide [76] and the Malware & Attack Technology Knowledge Area [50] offer
additional information on the topic.
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as the physical constraints of an adversarial image patch [14], the syntax and semantics of
code transformations and [73], or natural language [48].

An adversarial image patch represents realisable attacks in computer vision tasks. These
attacks require one to place a carefully designed patch on an object (e.g., a grayscale rectangle
on a road sign) to cause a learning-based computer vision system to misclassify the object.
These attacks differ from traditional adversarial examples as they do not require imperceptible
perturbations; instead, they create a visible patch that blends into the scene, exploiting the
model’s vulnerabilities in a real-world context.

Adversarial patch attacks can be formalised as an optimisation problem, where the goal is
to find the optimal patch that maximises the model’s classification or detection error. The
optimisation problem can be expressed as follows5:

maximize
P

L(P, θ)

subject to P ∈ P,
(4)

where, P represents the adversarial patch, θ represents the model parameters, L(P, θ) is a
function measuring the loss of the classifier induced by the patch, and P denotes the set of
valid patches, which may include constraints on the patch size, shape, and other properties.

To solve this optimization problem, attackers typically use gradient-based methods, such as
gradient ascent or evolutionary algorithms, to iteratively update the patch. By solving this
optimization problem, attackers can generate adversarial patches that effectively deceive
deep learning models in real-world scenarios. These patches can be printed and placed on
objects, causing the model to misclassify the object or fail to detect it, even though the patch
is visible and not imperceptible like traditional adversarial examples.

Although adversarial attacks were initially explored in computer vision tasks, recent work by
Pierazzi et al. [73] reformulated adversarial attacks to provide principled reasoning across
domains where the input and feature spaces are not closely related. In this context, the feature
mapping function is often neither invertible nor differentiable, necessitating an approach
that deals with the inverse feature-mapping problem: it is insufficient to identify adversarial
examples solely in the feature space; one must also comprehend how to project those points
onto real objects and reason about the underlying implications.

Projecting adversarial points from the feature space back to the problem space introduces
side-effect features as a byproduct of satisfying problem space constraints (e.g., preserving
semantics and ensuring plausibility). Side-effect features exist to make the attack realistic, as
they facilitate adherence to the inherent constraints of the problem space. This perspective
broadens the understanding of adversarial attacks, encompassing not only computer vision
but also other application domains where the relationship between input and feature spaces
is less straightforward.

5This basic formulation can be extended to include additional challenges, such as environment conditions,
spatial constraints, physical limits on imperceptibility, and fabrication errors as outlined in Eykholt et al. [30].

Security and Privacy of AI | July 2023 Page 8

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

4 DEFENDING AGAINST ADVERSARIAL ML ATTACKS

The main categories of defenses against adversarial attacks can be broadly classified into
the following main groups. Adversarial training, out-of-distribution detection and selective
classification (also known as classification with rejection), and certified defenses; defenses
against poisoning and backdoor attacks include data sanitisation, robust learning algorithms,
and forensics analysis to identify and remove poisoned samples or backdoor triggers.

Without any loss of generality, it is worth noting that defending against adversarial attacks is a
vibrant and open research field and it always requires reasoning about adaptive attackers [91].

4.1 Adversarial Training

Adversarial training (AT) is a widely used defense technique primarily focused against test-
time adversarial attacks [35, 53]. The main idea behind AT is to augment the training dataset
with adversarial examples, enabling the model to learn robust features and become more
resistant to adversarial perturbations. The relation between AT, attack success rate (ASR),
and the model’s performance on clean data is crucial to understanding its effectiveness.

Formally, AT can be represented as a min-max optimisation problem:

min
θ

E(x, y) ∼ D [max δ ∈ S, L(fθ(x+ δ), y)] (5)

where θ denotes the model parameters, D represents the training data distribution, fθ is the
model, L is the loss function, and S is the set of allowed perturbations. In this equation, the
objective is to find the optimal model parameters, represented by θ, that minimise the expected
loss over the data distribution D, where each data point is a tuple (x, y) representing the input
and its corresponding label. The loss function L measures the difference between the model’s
prediction, given by fθ(x+ δ), and the true label y. The inner maximisation problem searches
for the adversarial perturbation δ within a set S that maximises the loss. This ensures that
the model is trained on adversarial examples, making it more robust to adversarial attacks.
The outer minimisation problem aims to find the model parameters θ that provide the best
performance against these adversarial examples.

In practice, AT can be applied with both feature-space and problem-space adversarial ex-
amples. Feature-space AT focuses on modifying the input data in the feature domain, while
problem-space AT explores adversarial perturbations within the specific problem constraints.
The choice between feature-space and problem-space AT depends on the application and the
extent to which it is feasible to generate adversarial examples within the problem domain. Dyr-
mishi et al. have recently shown how reasoning on the benefits of feature-space as opposed
to problem-space AT and vice versa is still an open problem [29].

Although promising, AT comes with challenges too. AT provides empirical robustness rather
than theoretical guarantees, as certified models do (cfr. Section 4.3). Since only partial
regions of the feature space can be explored exhaustively, AT robustness is generally tied to
the underlying adversarial lp-norm perturbations and attacks. It has also been observed that
increasing robustness to adversarial attacks often leads to a decrease in accuracy on clean
data as often clean and adversarial points lie close to each other, challenging the models’
generalization [96].
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Finally, AT is computationally expensive. Generating adversarial examples during training
requires solving an inner optimisation problem, which can significantly increase the training
time. Several approximations and techniques have been proposed to accelerate AT, such as
using fast gradient methods [53] or leveraging transferability between models [93].

4.2 Out-of-Distribution (OOD) Detection and Adversarial Examples

Adversarial attacks and out-of-distribution (OOD) samples 6 are closely related, as both involve
inputs that are different from the distribution of the training data. In the context of adversarial
attacks, adversaries craft adversarial examples by applying intentional perturbations to the
input data, aiming to cause misclassification [35, 87]. Depending on the domain, adversar-
ial perturbations might not be minimal and attacks may need to deal with problem-space
constraints [73]. On the other hand, OOD samples are instances that come from a different
distribution than the one used to train the model, and they may naturally occur during the
testing phase [9, 39, 59].

The connection between adversarial attacks and OOD samples is particularly evident when
considering the challenges faced by machine learning models in detecting and handling both
types of inputs. For instance, deep neural networks have been shown to be overconfident in
their predictions for both adversarial examples and OOD samples, assigning high confidence
scores to incorrect predictions [61]. Moreover, several studies have demonstrated that adver-
sarial examples can be considered as extreme cases of OOD samples, lying near the decision
boundaries of the model [96].

Recent research has explored the possibility of leveraging the similarities between adversarial
attacks and OOD samples to design more effective defenses against both types of inputs.
For example, adversarial training, which is commonly used as a defense against adversarial
attacks, has been shown to improve the model’s robustness to OOD samples [104].

In summary, the connection between adversarial attacks and OOD samples is an active area of
research, with potential implications for the design of more robust and secure machine learning
systems. By understanding and exploiting the similarities between these two phenomena, it
is possible to develop more effective defenses and improve the model’s performance on a
wide range of challenging inputs.

4.3 Certified Models

Certified models aim to provide guarantees on the model’s predictions within an lp-norm
hypersphere around the input samples. These models are designed to be robust against
adversarial attacks within a predefined perturbation budget. One popular approach for con-
structing certified models is randomised smoothing [20]. The main idea of this technique is
to add random noise to the input before passing it through the classifier and then averaging
the model’s predictions over multiple noisy samples. This process effectively smooths the
decision boundary of the classifier, making it more robust against small perturbations, such
as those introduced by adversarial attacks.

In more detail, given an input sample x, randomised smoothing generates multiple noisy
samples by adding Gaussian noise with zero mean and a predefined variance. These noisy

6That is, data points that differ significantly from the training distribution.
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samples are then passed through the classifier, and the final prediction (i.e., the certification)
is obtained by averaging the predictions or taking a majority vote.

Although randomised smoothing is a test-time defense, it can be combined with other training-
time defenses, such as adversarial training, to further improve the model’s robustness against
a wide range of adversarial attacks.

More formally, given a classifier f and an input x, the smoothed classifier g is defined as:

g(x) = argmax
c∈C

P(f(x+ ϵ) = c), (6)

where C is the set of classes and ϵ is a random noise vector sampled from a Gaussian
distribution. The certification radius r for an input x and a class c is then defined as the
maximum lp-norm distance such that with high probability, any perturbation within this distance
will not change the model’s prediction:

r(x, c) = sup r ≥ 0 : P(f(x+ δ) ̸= c) ≤ α,∀δ ∈ Bp(x, r), (7)

where Bp(x, r) denotes the lp-norm ball centered at x with radius r, and α is a user-defined
confidence level.

Certified models offer strong guarantees against adversarial attacks but have some limitations.
For instance, they typically suffer from reduced performance on clean data and increased
computational complexity [49]. Additionally, certification methods often require stronger
assumptions about the threat model (e.g., the requirement to reason within a lp-norm ball
of perturbation), limiting their applicability to specific types of adversarial attacks. Despite
these drawbacks, certified models represent an important step towards achieving robust and
secure machine learning systems.

4.4 Defenses against Poisoning and Backdoor Attacks

Defending against poisoning and backdooring attacks involves detecting and mitigating the
effects of maliciously manipulated training data. One approach to address these attacks is to
employ forensics techniques to identify poisoned datasets [85]. Such techniques typically
involve analysing the statistical properties of the training data, and looking for anomalies or
patterns that indicate the presence of malicious samples.

For example, some forensic methods leverage unsupervised learning techniques, such as
clustering, to group similar data points and identify potential outliers. Others use supervised
learning to train a classifier that can distinguish between clean and poisoned samples based
on their feature representations.

Recent comprehensive surveys on poisoning and backdoor attacks (and defenses) are pro-
vided by Tian et al. [89] and Ciná et al. [19].
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5 PRIVACY IN MACHINE LEARNING

In this section, we consider how privacy issues arise in the context of Machine Learning. We
refer the reader to the CyBOK Knowledge Area on Privacy and Online Rights [94] for a broader
discussion of Privacy.

5.1 Inference about Members of the Population

One kind of privacy violation may come from an adversary, who, given some kind of access to
a trained model, tries to learn something about the training data.

Statistical Disclosure. The adversary learns something about the input to the model; in
theory, one would like to control statistical disclosure (this is also known as the “Dalenius
desideratum” [21]), in that a model should reveal no more about the input to which it is applied
than would have been known otherwise. However, as also pointed out in [82], this cannot be
achieved by any useful model [27].

Model Inversion. An adversary can use the model’s output to infer the values of sensitive
attributes used as input to the model. Fredrikson et al. [31, 32] first showed how an attacker
could rely on outputs from a classifier to infer sensitive features used as inputs to the model
itself. Given the model and some demographic information about a patient whose records
are used for training, an attacker might predict sensitive attributes of the patient.

Note that it may not be possible to prevent this if the model is based on statistical facts
about the population. E.g., suppose that training the model has uncovered a high correlation
between a person’s observable features and their genetic predisposition to a certain disease;
this correlation is now a publicly known fact that allows anyone to infer information about a
person’s genome [82].

Inferring Class Representatives. Model inversion can be generalised to an adversary, who,
given some access to the model, infers features that characterise each class, making it
possible to construct representatives of these classes [40, 72].

5.2 Inference about members of the training dataset

Next, we focus on the privacy of individuals whose data was used to train the model. Of
course, members of the training dataset are members of the population, too. Therefore, one
should focus on what the model reveals about them beyond what it reveals about an arbitrary
member of the population.
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5.2.1 Membership Inference Attacks (MIA)

The attack involves an adversary who, given a model and an exact data point, tries to infer
whether or not that point was used to train the model.

MIA can directly violate privacy if inclusion in a training set is itself sensitive based on the
nature of the task at hand. For example, if health-related records are used to train a classifier,
discovering that a specific record was used for training inherently leaks information about the
individual’s health. Similarly, if images from a database of criminals are used to train a model
predicting the probability that one will re-offend, successful membership inference exposes
an individual’s criminal history.

Overall, when a record is fully known to the adversary, learning that it was used to train a
particular model is an indication of information leakage through the model. On the other
hand, MIA can also be used by regulators to support the suspicion that a model was trained
on personal data without an adequate legal basis or for a purpose not compatible with the
data collection. For instance, DeepMind was found to have used personal medical records
provided by the UK’s National Health Service for purposes beyond direct patient care, the
basis on which the data was collected [99].

Inference via overfitting. MIA against zero-knowledge machine learning models was first
studied by Shokri et al. [82], in the context of supervised learning. They focus on classification
models trained by commercial Machine Learning as a Service (MLaaS) providers, such as
Google and Amazon, whereby a user has API access to a trained model. Their approach
exploits differences in the model’s response to inputs seen vs not seen during training. For
each class of the targeted model, they train a shadow model, with the same machine learning
technique; the intuition is that the model ends up “overfitting” on data used for training [82].
Overfitting is a modeling error that occurs when a function is too closely fit to a limited set of
data points and thus performs better on the training inputs than on the inputs drawn from
the same population but not used during the training. Therefore, the attacker can exploit the
confidence values on inputs belonging to the same classes and learn to infer membership.

Follow-up work studying and/or going beyond overfitting includes [79, 95, 103]. Other re-
searchers have also studied MIA in other contexts, such as generative models [38] and
federated learning [56, 60].

5.2.2 Property Inference

As mentioned, model inversion aims to infer properties that characterise an entire class: for
example, given a face recognition model where one of the classes is Bob, infer what Bob looks
like (e.g., Bob wears glasses). By contrast, property inference focuses on the adversarial goal
of inferring properties that are true of a subset of the training inputs but not of the class as a
whole. For instance, when Bob’s photos are used to train a classifier, can the attacker infer
that Alice appears in some of the photos?

Melis et al. [56] focus on the properties that are independent of the class’s characteristic
features in the context of federated learning. In contrast to the face recognition example, where
“Bob wears glasses” is a characteristic feature of an entire class, in their gender classifier study,
they infer whether people in Bob’s photos wear glasses—even though wearing glasses has no
correlation with gender. There is no “legitimate” reason for a model to leak this information; it
is purely an artifact of the learning process.
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5.3 Inferring Model Parameters

Model owners often charge others for queries to their commercially valuable models. However,
while the query interface of an ML model may be widely accessible, the model itself and
the data on which it was trained may be proprietary and confidential. Moreover, for security
applications such as spam or fraud detection, an ML model’s secrecy is critical to its utility;
an adversary that can learn the model can also often evade detection [5].

Model Extraction. The concept of model extraction (or stealing) is first explored by Tramer
et al. [92]. In this kind of attack, an adversary with zero-knowledge access, but no prior
knowledge of an ML model’s parameters or training data, aims to steal the model parameters.
The intuition behind their attack is to exploit the information-rich outputs returned by the ML
prediction APIs, e.g., high-precision confidence values in addition to class labels.

Overall, Tramer et al. [92]’s work is focused on inferring model parameters. In follow-up work,
other researchers have gone beyond inferring model parameters and perform hyperparameter
stealing [100], architecture extraction [63], etc.

Functionality Stealing. Here, the goal here is to create “knock-offs” of the model (also known
as surrogate models) solely based on input-output pairs observed from queries. In [65],
Orekondy et al. do so solely based on input-output pairs observed from MLaaS queries. More
specifically, the adversary interacts with a zero-knowledge “victim” by providing it with input
images and obtaining respective predictions. The resulting image-prediction pairs are used to
train a knock-off model, e.g., to compete with the victim model at the victim’s task.

Additional work in this category includes [67], whereby the adversary trains a local model to
substitute for a victim deep neural network (DNN), using inputs synthetically generated by an
adversary and labeled by the target DNN.

5.4 Take Aways

Sensitive Training Data. There has been a very significant amount of research work on
membership inference attacks against ML. Arguably, this is motivated by 1) the seriousness
of the privacy risks stemming from such attacks, 2) the fact that MIA is often just a signal of
leakage and can serve as a canary for broad privacy issues, and 3) the interesting challenges
in making attacks more effective, less reliant on strong assumptions, etc.

Overall, several attacks have been proposed in the context of a wide variety of datasets (images,
text, etc.), models (discriminative, generative, federated), as well as threat models (API access,
perfect-knowledge, zero-knowledge, active, passive, etc.). Such attacks are realistic, but their
effectiveness depends on the actual settings, e.g., the adversary’s knowledge of records,
model parameters, etc., and are likely to affect certain users more than others. Nonetheless,
we are confident in arguing that practitioners and researchers must think hard about whether
deploying ML models in the wild is a good idea whenever training data is sensitive, with
regards to privacy concerns. Further work is needed to provide clear guidelines and usable
tools for practitioners willing to provide access to trained models. More precisely, they should
be enabled to fully understand the privacy risks for the users whose data is used for training
in specific data/specific learning tasks.

Limitations of model inversion. Although research roughly falling in the “model inversion”
category is important, we believe there are some limitations in what this means for privacy.
Class members produced by model inversion and GANs are similar to the training inputs only
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if all members of the class are similar, as is the case for MNIST (the dataset of handwritten
digits used in [40]) and facial recognition. This does not violate the privacy of the training
data; it simply shows that machine learning works as it should. A trained classifier reveals the
input features characteristic of each class, thus enabling the adversary to sample from the
class population.

Therefore, the informal property violated by such attacks is, roughly speaking: “a classifier
should prevent users from generating an input that belongs to a particular class or even
learning what such an input looks like.” However, it is not clear why this property is desirable
or whether it is even achievable.

Property inference needs further work. Overall, property inference attacks are not to be
ignored, even though their effectiveness depends on the context. As mentioned earlier,
inferring sensitive attributes is really a privacy breach when the attacker can confidently
assess those attributes related to records in the training set, and even more so if they do not
leak simply because the class which the model is learning to classify is strictly correlated.

The only “attack” we are aware of in this sense is that of Melis et al. [56], which has only been
studied in the context of collaborative learning. Even in that case, the authors essentially show
that the accuracy of the attack quickly degrades with an increasing number of participants.
In fact, if this is large enough, then differentially private defenses based on the moments
accountant method [2] (discussed in Section 6) can be used to thwart such attacks.

It remains, however, an open research question to investigate whether property inference
attacks: 1) are possible, as per our definition, in non-collaborative learning settings and at
scale and 2) can be thwarted in collaborative settings involving a small number of participants.

Overall, we can categorise privacy defenses against attacks discussed in this document based
on the main tools they rely on. These include advanced privacy-enhancing technologies like
cryptography and differential privacy as well approaches used as part of the learning process
(mainly training) to reduce the information available to the adversary.

6 PRIVACY DEFENSES

6.1 Cryptography

Cryptography, and more precisely encryption, can be used to protect data confidentiality.
There are two main primitives that are relevant in the context of ML and in general data
analysis/processing: 1) secure multi-party computation (SMC), and 2) fully homomorphic
encryption (FHE). SMC allows two or more parties to jointly compute a function over their
inputs, while keeping those inputs hidden from each other. Typically, SMC protocols build on
tools like garbled circuits, secret sharing, oblivious transfer (for a detailed overview of such
tools, we refer the reader to securecomputation.org). Whereas FHE is an encryption scheme
that allows processing of the underlying cleartext data while it still remains in encrypted form,
without giving away the secret key. Additional details on Cryptography can be found in the
Cryptography Knowledge Area [84].

Cryptography in ML can support confidential computing scenarios where, for instance, a server
has a model trained on its private data and wishes to provide inferences (e.g., classification) on
clients’ private data. In this context, there are a number of research proposals and prototypes
in the literature that allow the client to obtain the inference result without revealing their input
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to the server while at the same time preserving the confidentiality of the server’s model. For
instance, privacy-enhancing tools based on secure multi-party computation (SMC) and fully
homomorphic encryption (FHE) have been proposed to securely train supervised machine
learning models, such as matrix factorisation [62], linear classifiers [12, 36], decision trees [13,
51], linear regressors [25], and neural networks [11, 34, 52, 57].

SMC has also been used to build privacy-preserving neural networks in a distributed fashion.
For instance, SecureML [57] starts with the data owners (clients) distributing their private
training inputs among two non-colluding servers during the setup phase; the two servers
then use MPC to train a global model on the clients’ encrypted joint data. Then, Bonawitz et
al. [11] use secure multi-party aggregation techniques, tailored for federated learning, to let
participants encrypt their updates so that the central parameter server only recovers the sum
of the updates.

Confidentiality vs Privacy. Overall, cryptography in ML is really aimed at protecting confiden-
tiality, rather than privacy, which constitutes the main focus of our report. The two terms are
often confused, both in the context of ML and in general, but they actually refer to different
properties. Confidentiality is an explicit design property whereby one party wants to keep
information (e.g., training data, testing data, model parameters, etc.) hidden from both the
public and other parties (e.g., clients with respect to servers or vice-versa). Whereas, for
the sake of this guide, privacy is about protecting against unintended information leakage,
whereby an adversary aims to infer sensitive information through some (intended) interaction
with the victim. In other words, cryptographically-enforced confidential computing does not
provide any guarantees about what the output of the computation reveals. Therefore, we will
focus on privacy rather than confidentiality defenses.

6.2 Differential Privacy (DP)

What is Differential Privacy (DP)? DP addresses the paradox of learning nothing about an
individual while learning useful information about a population [28]. Generally speaking, it
provides rigorous, statistical guarantees against what an adversary can infer from learning
the result of some randomised algorithm.

Typically, differentially private techniques protect the privacy of individual data subjects by
adding random noise when producing statistics. In other words, DP guarantees that an
individual will be exposed to the same privacy risk whether or not her data is included in a
differentially private analysis.

Formally, for two non-negative numbers ϵ, δ, a randomised algorithmA satisfies (ϵ, δ)-differential
privacy if and only if, for any neighbouring datasets D and D′ (i.e., differing at most one record),
and for the possible output S ⊆ Range(A), the following formula holds:

Pr[A(D) ∈ S] ≤ eϵ Pr[A(D′) ∈ S] + δ

The ϵ, δ parameters. Differential privacy analysis allows for some information leakage specific
to individual data subjects, controlled by the privacy parameter ϵ. This measures the effect
on each individual’s information on the output of the analysis. With smaller values of ϵ, the
dataset is considered to have stronger privacy, but less accuracy, thus reducing its utility. An
intuitive description of the ϵ privacy parameter, along with examples, is available in [101].

Sensitivity. The notion of the sensitivity of a function is very useful in the design of differentially
private algorithms. It is usually defined with respect to a neighbouring relationship. Given a
query F on a dataset D, the sensitivity is used to adjust the amount of noise required for F (D).
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More formally, if F is a function that maps a dataset (in matrix form) into a fixed-size vector of
real numbers, we can define the Li-sensitivity of F as: Si(F ) = max

D,D′
||F (D)− F (D′)||i, where

|| · ||i denotes the Li norm, i ∈ {1, 2} and D and D′ are any two neighboring datasets.

DP inML. The state-of-the-art method for providing access to information free from inferences
is to satisfy differential privacy (DP) [26]. This applies to ML as well, and more precisely to
providing access to models that have been trained on (sensitive) datasets [2, 66, 68, 71, 81].
More precisely, there are two main privacy-preserving model-training approaches in literature:
1) using noisy stochastic gradient descent (noisy SGD) [3], and 2) Private Aggregation of
Teacher Ensembles (PATE) [66, 68].

Noisy SGD. ML models are often trained using stochastic gradient descent (SGD). The intuition
is to add noise to the SGD process; however, the main challenge is to do so while ensuring
that the noise is carefully calibrated. The sensitivity of the final value of θ (the parameter
vector) to the elements of the training data is generally hard to analyse. On the other hand,
since the training data affects θ only via the gradient computations, one may achieve privacy
by bounding gradients (by clipping) and by adding noise to those computations. In a nutshell,
this is the idea behind the seminal work by Abadi et al. [2], particularly in the accounting of
privacy loss, hence it is generally referred to as the Moments Accountant algorithm.

PATE. To protect the privacy of training data during learning, PATE transfers knowledge from
an ensemble of “teacher” models trained on data partitions to a “student” model. Intuitively,
privacy is provided by training teachers on disjoint data, and strong guarantees stem from the
noisy aggregation of teachers’ answers.

Collaborative Learning. In the collaborative learning setting, Shokri and Shmatikov [81] support
distributed training of deep learning networks in a privacy-preserving way. Specifically, their
system relies on the input of independent entities which aim to collaboratively build a machine-
learning model without sharing their training data. To this end, they selectively share subsets
of noisy model parameters during training. Moreover, federated learning proposals tackle the
problem of training deep learning models with differential privacy guarantees for the tasks of
training language models [54] and digits classification [33].

6.3 Trusted Execution Environments

A different line of work focuses on privacy (as well as integrity) guarantees for ML computa-
tions in untrusted environments (i.e., tasks outsourced by a client to a remote server, including
MLaaS) by leveraging so-called Trusted Execution Environments (TEEs), such as Intel SGX or
ARM TrustZone. TEEs use hardware and software protections to isolate sensitive code from
other applications while attesting to its correct execution. The main idea is that TEEs out-
perform purely cryptographic approaches by multiple orders of magnitude. For more details
about Hardware Security, please refer to the corresponding CyBOK Knowledge Area [98].

In this area, there are three main approaches. The first includes work supporting oblivious
data access patterns [64] and, in general, training for a range of ML algorithms run inside
SGX [41, 42]. The second, by Tramer and Boneh [90], focuses on high performance execution of
Deep Neural Networks (DNNs) in TEEs, by efficiently partitioning DNN computations between
trusted and untrusted devices. The third, by Hanzlik et al. [37], is essentially a guarded offline
deployment of MLaaS: models are executed locally on the client’s side (therefore, the data
never leaves the device).
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6.4 ML-Specific Approaches

Finally, a number of ML techniques are used to reduce information available to the adversary
to mount their attacks. For instance, dropout [8] is a popular technique often used to mitigate
overfitting in neural networks; as such, this might reduce the effectiveness of MIAs based on
overfitting.

Additional techniques in this space include weight normalisation (re-parameterisation of the
weights vectors that decouples the length of those weights from their direction), dimensionality
reduction (e.g., only using inputs that occur many times in the training data), selective gradient
sharing (in collaborative learning, participants could share only a fraction of their gradients
during each update), etc.

7 CONCLUSION

This Cybersecurity Body of Knowledge (CyBoK) Knowledge Guide (KG) presented an overview
of security and privacy in Machine Learning (ML). We introduced and reasoned about adver-
sarial ML and privacy challenges in ML, and discussed mitigation techniques. As mentioned,
this KG is not meant to provide an exhaustive survey of the problem space but rather to help
readers familiarise themselves with some of the most important notions related to security
and privacy in ML. While research in this space is making tremendous and fast-paced progress
year after year, there are still a number of important open research problems, both inherently
in the ML security/privacy context and with respect to adjacent issues.

With respect to security, despite promising directions outlined in Section 4 and open source
libraries [1, 74, 88], detecting adversarial and out of distribution (OOD) examples (commonly
referred to as adversarial drift [45, 48, 69, 73] remains an open problem [9, 59, 104]. This
challenge is further exacerbated by the fact that security is inherently adversarial and thus it
requires reasoning about adaptive attackers [91] and realistic threat models [4]. The role of
representations is fundamental, in terms of the way in which we abstract raw data to create
or learn embeddings. However, there is a lack of clarity around how different representations
impact the entire ML pipeline in terms of performance, explainability, robustness to adversarial
drift and more general trustworthiness properties.

Similarly, in the privacy space, while techniques that guarantee Differential Privacy (DP) can
be used to minimise privacy concerns, these are neither easy to use for non-experts nor do
they provide a one-size-fits-all solution. For instance, their effectiveness strongly depends
on the specific learning task at hand, data distributions, etc. It is also unclear how to reliably
quantify the inherent utility-privacy tradeoffs, what exactly the ϵ parameter means in practice,
or how to set it.

The implication of the notions covered in this KG vis-à-vis ethical, societal, and legal aspects
is also under-explored. For instance, while data protection regulations like the GDPR heavily
focus on the concept of identification, what it means for a person to be “identified, directly or
indirectly” is unclear. Clearly, more work is needed linking up privacy attacks (and defenses)
with regulation and data protection efforts. There are also, at times, conflicting objectives
stemming from defenses – e.g., using DP techniques to protect privacy can yield disparate
impact on accuracy for underrepresented classes such as minorities [6].

Overall, the community of researchers and practitioners in ML/AI security and privacy is
growing and working at an unprecedented pace; we are looking forward to progress and new
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results in the broader space over the next few years.
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