

#### Security and Privacy of Al Knowledge Guide

**Lorenzo Cavallaro and Emiliano de Cristofaro** *University College London* 

> contact@cybok.org www.cybok.org



© Crown Copyright, The National Cyber Security Centre 2023. This information is licensed under the Open Government Licence v3.0. To view this licence, visit <u>http://www.nationalarchives.gov.uk/doc/opengovernment-licence/</u>.

When you use this information under the Open Government Licence, you should include the following attribution: Security and Privacy of AI Knowledge Guide v1.0.0 © Crown Copyright, The National Cyber Security Centre 2023, licensed under the Open Government Licence <u>http://www.nationalarchives.gov.uk/doc/opengovernment-licence/</u>.

The CyBOK project would like to understand how CyBOK is being used and its uptake. The project would like organisations using, or intending to use, CyBOK for the purposes of education, training, course development, professional development etc. to contact it at contact@cybok.org to let the project know how they are using CyBOK.



#### Security is Adversarial





New detection systems trigger an immediate response...



...which causes dataset shifts, often violating the i.i.d. assumption

# Adversaries Affect Security and Privacy of AI Systems CyBCK

#### This CyBoK Knowledge Guide

- Part 1 Security of Al
- Part 2 Privacy of Al

#### Threat Models (Attacks and Defenses)

- Perfect-, Limited-, Zero-Knowledge
- Training vs Inference
- Passive vs Active

# Adversaries Affect Security and Privacy of AI Systems CyBCK

#### This CyBoK Knowledge Guide

- Part 1 Security of Al Webinar focuses on
- Perfect Knowledge
  - Inference (aka adversarial ML)
- Threa Mactive (Attacks and Defenses)
- Perfect-, Limited-, Zero-Knowledge
- Training vs Inference
- Passive vs Active

Details about other threat models, attacks, and defenses in the CyBoK KG





#### Let's Analyze What Happened

# **CyBOK**



This optimization problem can be solved in different ways, i.e., different attacks, e.g., FGSM, PGD, Carlini and Wagner, etc – see the CyBoK KG



#### Let's Analyze What Happened

# **CyBOK**



[IEEE S&P 2020] Intriguing Properties of Adversarial ML Attacks in the Problem Space

#### Inverse Feature-Mapping Problem







The feature mapping arphi is <u>differentiable</u> — you can backpropagate to input

#### Inverse Feature-Mapping Problem





In the software domain,

the feature mapping  $\varphi$  is neither <u>invertible</u> nor <u>differentiable</u> — how to get back to the problem space?



#### Available Transformations

How can you alter problem-space objects?

#### **Problem-Space Constraints**





Which semantics do you preserve? How? Which automatic tests can verify it?

# <section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item>

Malicious Node

[IEEE S&P 2020] Intriguing Properties of Adversarial ML Attacks in the Problem Space https://s2lab.cs.ucl.ac.uk/projects/intriguing

Prvesierbed TS anst otics tions



#### Available Transformations Problem-Space Constraints



#### **Test Suite**

- User studies
- Automated heuristics
- By Construction
- Taking precautions during mutation





Which preprocessing are you considering?

Preserved Semantics Problem-Space Constraints Available Transformations





#### **Side-effect Features**

#### Feature Space vs. Problem Space

# **CyBOK**

1

òÔ

$$egin{aligned} oldsymbol{\delta}^* &= rg\min_{oldsymbol{\delta}\in\mathbb{R}^n} & f_t(oldsymbol{x}+oldsymbol{\delta})\ & ext{subject to:} & oldsymbol{\delta} &\models \Omega \,. \end{aligned}$$

#### Feature-Space Constraints

- Lp perturbations
- Domain constraints for vectors

#### Search Strategy

• Gradient-driven

[IEEE S&P 2020] Intriguing Properties of Adversarial ML Attacks in the Problem Space https://s2lab.cs.ucl.ac.uk/projects/intriguing

argmin<sub> $\mathbf{T\in\mathcal{T}}$ </sub>  $f_t(\varphi(\mathbf{T}(z))) = f_t(x + \delta^* + \eta)$ subject to:  $[z]^{\tau} = [\mathbf{T}(z)]^{\tau}, \quad \forall \tau \in \Upsilon$  $\pi(\mathbf{T}(z)) = 1, \quad \forall \pi \in \Pi$  $\mathbf{A}(\mathbf{T}(z)) = \mathbf{T}(z), \quad \forall \mathbf{A} \in \Lambda$ 

#### Problem-Space Constraints

- Available Transformations
- Preserved Semantics
- Plausibility
- Robustness to Preprocessing

#### Search Strategy

- Gradient-driven
- Problem-driven
- Hybrid



[IEEE S&P 2023] Yang et al. Jigsaw Puzzle: Selective Backdoor Attack to Subvert Malware Classifiers



# Inference Time Defenses\*

\* Focus on Adversarial Training – details on OOD detection, certified models, and defenses against training time attacks (e.g., poisoning and backdoor) in the CyBoK KG

#### **Adversarial Training**

# **CyBOK**

- Widely used defense technique
- Idea: augment the training dataset with adversarial examples
  - It enables the model to learn robust features
  - It helps the model become more resistant to adversarial perturbations
- Successful in limiting the attack success rate for a given set of perturbations (attacks)
- Affects performance against clean data

Set of allowed perturbations  $\min_{\theta} \mathbb{E}(x, y) \sim D[\max \delta \in S, \mathbb{L}(f_{\theta}(x + \delta), y)]$ The model distribution

• What does it happen in the problem space?

#### **Problem vs Feature Space Adversarial Training**



- Exciting work [IEEE S&P 2023] on Text, Botnet Traffic, Windows Malware Classification Tasks
  - Text: Problem Space AT 16.94% more effective than Feature Space AT
  - Botnet Traffic: Problem Space AT robustness ~= Feature Space AT
  - Windows Malware: Problems Space AT outperforms Feature Space AT robustness

#### Problem vs Feature Space Adversarial Training



- Exciting work [IEEE S&P 2023] on Text, Botnet Traffic, Windows Malware Classification Tasks
  - (Marginal) Text: Problem Space AT 16.94% more effective than Feature Space AT
  - (Not Required) Botnet Traffic: Problem Space AT robustness ~= Feature Space AT
  - (Required) Windows Malware: Problems Space AT > Feature Space AT robustness
- It may seem a task-dependent result...

#### Problem vs Feature Space Adversarial Training



- Exciting work [IEEE S&P 2023] on Text, Botnet Traffic, Windows Malware Classification Tasks
  - (Marginal) Text: Problem Space AT 16.94% more effective than Feature Space AT
  - (Not Required) Botnet Traffic: Problem Space AT robustness ~= Feature Space AT
  - (Required) Windows Malware: Problems Space AT > Feature Space AT robustness
- Perhaps not task-dependent but affected by services
  - Program abstractions
  - Feature representations
  - ML models

Further details on Adversarial Training and other defenses to adversarial attacks, such as OOD detection, certified models, and defenses against training time attacks (e.g., poisoning and backdoor) in the CyBoK KG 25

# **CyBOK Discriminative vs Generative Models** Discriminative cat | dog Model Generative Model 26

#### **Collaborative/Federated Learning**



**CyBOK** 



#### Background

#### **Privacy Tech**

- Cryptography
- Differential Privacy

#### **Adversarial Modeling**

 Access (white vs black box), target (training vs inference), mode (passive vs active)



#### Reasoning about "privacy" in ML

Most privacy attacks in ML focus on inferring either:

- Inclusion of a data point in the training set (aka "membership inference")
- What class representatives (in training set) look like (aka "model inversion")





#### 1. Membership Inference

Adversary wants to test whether data of a target victim has been used to train a model

Serious problem if inclusion in training set is privacy-sensitive

E.g., main task is: predict whether a smoker gets cancer [Shokri et al., S&P'17] show it for discriminative models [Hayes et al. PETS'19] for generative models

Membership inference is a very active research area, not only in machine learning...

# **CyBOK**

#### Membership Inference (cont'd)

Membership inference is a very active research area, not only in machine learning...

Given f(data), infer if x ∈ data (e.g., f is aggregation) [HSR+08, WLW+09] for genomic data [Pyrgelis et al., NDSS'18] for mobility data

Well-understood problem (besides leakage)

Use it to establish wrongdoing

Or to assess protection, e.g., with differentially private noise

#### 2. Inferring Class Representatives

Research focused on properties of an en Model Inversion [Fredrikson et al. CCS'1! GAN attacks [Hitaji et al. CCS'17]

E.g.: given a gender classifier, infer what

| lik | Privacy leakage !=           |
|-----|------------------------------|
| Βι  | Adv learns something about t |
| so  | data                         |
| sa  | ua ca                        |

### **CyBOK**





#### **Property Inference**

How about if we inferred **properties** of a subset of the training inputs...

...but not of the whole class?

In a nutshell: given a gender classifier, infer race of people in Bob's photos



#### Membership Inference/Discriminative







35





#### Membership Inference in Generative Models





# **CyBOK**

#### Inference without predictions?

#### Use generative models!

Train GANs to learn the distribution and a prediction model at the same time



#### **Collaborative**

#### **Federated**



| Algorithm 1 Parameter server with synchronized SGD     | Algorithm 2 Federated learning with model averaging         |
|--------------------------------------------------------|-------------------------------------------------------------|
| Server executes:                                       | Server executes:                                            |
| Initialize $\theta_0$                                  | Initialize $\theta_0$                                       |
| for $t = 1$ to $T$ do                                  | $m \leftarrow max(C \cdot K, 1)$                            |
| for each client $k$ do                                 | for $t = 1$ to $T$ do                                       |
| $g_t^k \leftarrow \mathbf{ClientUpdate}(\theta_{t-1})$ | $S_t \leftarrow (random set of m clients)$                  |
| end for                                                | for each client $k \in S_t$ do                              |
| $	heta_t \leftarrow 	heta_{t-1} - \eta \sum_k g_t^k$   | $\theta_t^k \leftarrow \mathbf{ClientUpdate}(\theta_{t-1})$ |
| end for                                                | end for                                                     |
| ClientUpdate( $\theta$ ):                              | $	heta_t \leftarrow \sum_k rac{n^k}{n} 	heta_t^k$ end for  |
| Select batch b from client's data                      |                                                             |
| <b>return</b> local gradients $\nabla L(b; \theta)$    | <b>ClientUpdate</b> ( $\theta$ ):                           |
|                                                        | for each local iteration do                                 |
|                                                        | 1012 2112 1112 1112 1112 1112 1112 1112                     |

ents)  $^{-1})$ for each batch b in client's split do  $\theta \leftarrow \theta - \eta \nabla L(b; \theta)$ end for end for **return** local model  $\theta$ 

# CyBOK

#### **Passive Property Inference Attack**



#### **Active Property Inference Attack**







#### More in the KG...

#### **Model Extraction**

An adversary with black-box access, but no prior knowledge of an ML model's parameters or training data, steals model parameters

#### **Functionality Extraction**

Create knock-offs of a model

#### Defenses

Using cryptography, differential privacy, or trusted hardware Opening the ML "box"



#### Privacy Take-Aways

- 1. Membership inference attacks are pretty accurate.
- 2. Threats from model inversion are sometimes unclear.
- 3. Federated learning not a panacea.
- 4. Policy implications still to be explored.
- 5. Need for actual evaluation frameworks.

# **CyBOK**

#### Looking Forward

- Lots of open technical problems remain unaddressed
  - E.g., adversarial drifts, adaptive attackers
- More work required on non-technical aspects
  - E.g., ethical, societal, and legal implications of AI and in particular Large Language Models
- Unintended effects of defenses
  - E.g., reduced accuracy for under-represented groups?



# CyBCK