
The Cyber Security
Body of KnowledgeSoftware Security Knowledge Tree

Version 1.0
31st October 2019

https://www.cybok.org/

https://www.cybok.org/


The Cyber Security Body Of Knowledge
www.cybok.org

COPYRIGHT
© Crown Copyright, The National Cyber Security Centre 2019. This information is licensedunder the Open Government Licence v3.0. To view this licence, visit:
https://www.nationalarchives.gov.uk/doc/open-government-licence/

When you use this information under the Open Government Licence, you should include thefollowing attribution: CyBOK Version 1.0 © Crown Copyright, The National Cyber SecurityCentre 2019, licensed under the Open Government Licence: https://www.nationalarchives.gov.
uk/doc/open-government-licence/.
The CyBOK project would like to understand how the CyBOK is being used and its uptake.The project would like organisations using, or intending to use, CyBOK for the purposes ofeducation, training, course development, professional development etc. to contact it at con-
tact@cybok.org to let the project know how they are using CyBOK.

— October 2019 Page ii

https://www.cybok.org
https://www.nationalarchives.gov.uk/doc/open-government-licence/
https://www.nationalarchives.gov.uk/doc/open-government-licence/
https://www.nationalarchives.gov.uk/doc/open-government-licence/
mailto:contact@cybok.org
mailto:contact@cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

categories of vulnerabilities

prevention of vulnerabilities

mitigating exploitation

detection of vulnerabilities

CVEs and CWEs

memory management vulnerabilities

structured output generation vulnerabilities

race condition vulnerabilities

API vulnerabilities

side-channel vulnerabilities

attacks

code corruption attacks

control-flow hijack attacks

information leak attack

data-only-attacks

API design

coding practices

erroneous execution

language design and type systems

structured output generations mitigations

race condition mitigations

information flow

runtime detection of attacks

automated software diversity

limiting privileges

static detection

dynamic detection

soundness

completeness

safe languages

spatial vulnerabilities

temporal vulnerabilities

SQL injection

command injection vulnerabilitiies

script injection vulnerabilities (XSS)

stored injection vulnerabiliites

higher-order injection vulnerabilities

concurrency bugs

time-of-check to time-of-use

correct use

correct implementation

defensive programming

sandboxing

principle of least privilege

assertions

contracts

coding guidelines

dangerous functions

programming idioms

resource acquisition is initialisation

move semantics

smart pointers

checking compliance

MISRA

stack canaries

non-executable memory

control flow integrity

ASLR

sandboxing

compartmentalisation

object-capability systems

monitors

jails

heurisitic static detection

sound static verification

generating relevant executions

monitoring

black-box fuzzing

white-box fuzzing

dynamic symbolic execution

software-based side-channels

covert channels

micro-architectual effects

fault-injection attacks

physical fault-injection

software fault-injection Rowhammer

trapped errors

untrapped errors

memory management mitigations

immutable state

dynamic checks

static checks

type systems

query generation

ownership

aliasing

taint analysis

information flow analysis

program verification

abstract interpretation

model checking

soundiness

pre/post-conditions

design by contract

KA — October 2019 Page 1

https://www.cybok.org

