
Cyber Security Body of
Knowledge:
Software Security

Frank Piessens

KU Leuven

© Crown Copyright, The National Cyber Security Centre
2019. This information is licensed under the Open
Government Licence v3.0. To view this licence, visit
http://www.nationalarchives.gov.uk/doc/open-
government-licence/.

When you use this information under the Open
Government Licence, you should include the following
attribution: CyBOK Software Security Knowledge Area
Issue 1.0 © Crown Copyright, The National Cyber Security
Centre 2019, licensed under the Open Government
Licence http://www.nationalarchives.gov.uk/doc/open-
government-licence/.

The CyBOK project would like to understand how the
CyBOK is being used and its uptake. The project would like
organisations using, or intending to use, CyBOK for the
purposes of education, training, course development,
professional development etc. to contact it at
contact@cybok.org to let the project know how they are
using CyBOK.

http://www.nationalarchives.gov.uk/doc/open-government-licence/
http://www.nationalarchives.gov.uk/doc/open-government-licence/
mailto:contact@cybok.org

Software security

• The field of software security studies the problem of:

– Maintaining good properties of software systems in the presence
of intelligent adversaries trying to break these properties

• Rigorous study of a security problem requires three ingredients:

– A system model:

• a rigorous description of the system we are trying to secure.

– A security objective:

• what good properties of the system do we want to maintain under
malicious attacker behavior?

• Or what bad things do we want to prevent?

– An attacker model:

• a precise definition of the power of the attacker.

Software vulnerabilities

• In practice, software systems often do not have an explicit
security objective

• Instead, software security is often about (avoiding) specific
bugs that can lead to significant disruption

• The software security KA is about such “implementation
vulnerabilities”:

– Important categories of vulnerabilities

– And how to prevent, detect or mitigate them

Overview of this seminar

This seminar mainly focuses on explaining three categories of
vulnerabilities:

• Memory management vulnerabilities

• Structured output generation vulnerabilities

• Side-channel vulnerabilities

The Software Security KA document in addition discusses

• Several other categories of vulnerabilities

• Countermeasures

– Prevention

– Detection

– Mitigation

Classifying implementation
vulnerabilities

• Implementation vulnerability =

– A defect in software code (a bug) that enables a specific attack
technique

• Around 100.000 such vulnerabilities listed in the Common
Vulnerabilities and Exposures (CVE) list:

– Buffer overflows, SQL injection, cross-site scripting, race
conditions, side-channel vulnerabilities, information leaks,
incomplete access mediation, cross-site scripting, double free, . . .

• We discuss three classes in detail

– the Cybok Software Security KA discusses more

1. Memory management
vulnerabilities

• C-like languages offer mutable state that can be allocated,
deallocated and accessed in a number of ways:
– Local and global variables, malloc() / free(), …

– Access through pointers and array indexing

• These memory management and access operations should be
used correctly, e.g.:
– Access arrays within bounds

– Do not access memory after it has been deallocated

• For performance, compilers do not detect invalid memory
accesses
– Instead, behavior of the program becomes undefined

– A program that can perform such an invalid access has a memory
management vulnerability

System model

• The system under attack is a C program that has been compiled
to run on a modern processor

• Hence, the details of the system under attack vary with

– The underlying platform (processor, operating system, …)

– The compiler used

• But fortunately the general structure of processors, operating
systems and compilers is sufficiently similar

Compilation

• Each function is compiled separately and the
resulting machine code is stored in a code
section in memory

• Control-flow through the program is tracked by
means of a call stack

• Variables used in the program are allocated in
a number of ways:
– Local variables are allocated on the call stack
– Global variables are allocated in a dedicated

data section in memory
– Dynamic allocation is handled by a memory

management library that manages a heap
• malloc(), free(), …

• Pointers are represented as integer addresses,
supporting pointer arithmetic

• Arrays are represented as pointers, indexing is
similar to pointer arithmetic

Stack
grows
down

Heap
grows
up

MAX <arguments/env>

<call stack>

<heap>

<data>

MIN

<code>

Attacker model

• We consider attacks that consist of crafting malicious input and
learning from output of the program

– Attacker knows the code and system software stack of the victim

– Attacker can send arbitrary input and inspect resulting output

ProgramInput / Output

Memory corruption attacks

HEAP

CODE
for main(),
getints(),…

STACK

DATA (empty)

0

MAX

buffer

isAdmin

Many variants exist:
• Data-only attack
• Code corruption attack
• Direct code injection attack
• Code reuse (indirect code injection) attack

#include <stdio.h>

int main() {

int isAdmin = 0;

char buffer[10];

gets(buffer);

if (isAdmin != 0)

printf("you are administrator!\n");

}

Memory disclosure attacks

HEAP

CODE
for main(), …

STACK

DATA (empty)

0

MAX

data

999

#include <stdio.h>

#include <stdlib.h>

void main() {

int i;

int* secret = malloc(sizeof(int)); *secret = 999;

// ...

int* data = malloc(10 * sizeof(int));

data[0] = 1; data[1] = 13; // ... store public data

scanf("%d",&i);

printf("%d\n", data[i]);

}

secret

2. Structured output generation
vulnerabilities

• (aka: injection vulnerabilities)

• Programs often construct structured output (e.g. SQL) using
string concatenation

• When some of the strings can be chosen by an attacker,
maliciously chosen values can change the structure of the
output in unintended ways

• Examples: SQL injection, script injection (XSS), command
injection, …

System model and attacker model

• System model

• Attacker model

– Same attacker model as for the previous class:

• Attacker knows the code of the system

• Attacker can provide user input and read user output

Vulnerable
Program

Other
Program

Structured outputUser input/output

Browser Web application Database

var sql = `SELECT * FROM USERS

WHERE Name = "${name}" AND Pw = "${password}"`

name = 'ann'

password = 'xx'
SELECT * FROM USERS

WHERE Name = "ann" AND Pw = "xx"

SQL injection attack

Browser Web application Database

var sql = `SELECT * FROM USERS

WHERE Name = "${name}" AND Pw = "${password}"`

name = 'ann" --'

password = 'xx'
SELECT * FROM USERS

WHERE Name = "ann" --" AND Pw = "xx"

SQL injection attack

Browser Web application Database

var sql = `SELECT * FROM USERS

WHERE Name = "${name}" AND Pw = "${password}"`

name = 'ann" --'

password = 'xx'
SELECT * FROM USERS

WHERE Name = "ann"

SQL injection attack

Additional complications

• Structured output generation vulnerabilities may seem
conceptually simple, but several factors can contribute to the
difficulty of avoiding them:

– Structured output in languages that have sublanguages with a
different structure, e.g. HTML with JavaScript, CSS, SVG, …

– Structured output generation can happen in different phases,
where output of one phase is later used as input for the next
phase

• Stored injection vulnerabilities

• Higher-order injection vulnerabilities

3. Side-channel vulnerabilities

• A side-channel is an information channel leaking information
about the execution of a program through effects not intended
for communication

– E.g. timing, power consumption, electro-magnetic radiation, …

• Many side-channels require physical access to the system
running the program under attack.

• Software-based side-channels can be read by software running
on the same system as the program under attack

• A very recent important class of such channels exploit effects of
the processor implementation.

– Software-based micro-architectural side-channels

System model: a shared platform

• A platform runs programs from multiple stakeholders

– Isolation mechanism isolates these programs

– The platform supports communication between these programs

Hardware

Operating System

Process
1

Process
2

Process
3 …

OS is protected
from applications
by privilege level

Processes are protected from each other through virtual memory isolation

Attacker model

• The attacker can run code on the same platform where victim
code is running.

• The objective of the attacker is to learn more about the victim
than what one can learn through intended communication
interfaces.

Platform

Victim
Program

Attacker
Program

Shared Resources

controls

Micro-architectural attacks

• The attacker uses shared micro-architectural resources

– Architectural state: state as observed by software (memory,
registers, …)

– Micro-architectural state: additional state in the processor
implementation, usually for performance (caches, branch
predictors, …)

Platform

Victim
Program

Attacker
Program

Shared Resources

Side-channels: a simple example of
a cache-attack

CPU

0x12

0x34

0x56

0x78

0x9A

0xBC

0xED

0xF0

0

1

2

3

-

-

-

-

4

5

6

7

cache

main memory

Attacker
Memory

Victim
Memory

Platform

Victim
Program

Attacker
Program

Shared Resources

› The shared resources between attacker and victim

program include a direct-mapped cache

…

if secret {

load address 4

}

else {

load address 5

}

…

Side-channels: a simple example of
a cache-attack

CPU

0x12

0x34

0x12

0x34

0x56

0x78

0x9A

0xBC

0xED

0xF0

0

1

2

3

0

1

-

-

4

5

6

7

cache

main memory

Attacker
Memory

Victim
Memory

Platform

Victim
Program

Attacker
Program

Shared Resources

› The shared resources between attacker and victim

program include a direct-mapped cache

First the attacker program runs and occupies the first two

cache lines

…

if secret {

load address 4

}

else {

load address 5

}

…

Side-channels: a simple example of
a cache-attack

CPU

0x9A

0x34

0x12

0x34

0x56

0x78

0x9A

0xBC

0xED

0xF0

0

1

2

3

4

1

-

-

4

5

6

7

cache

main memory

Attacker
Memory

Victim
Memory

Platform

Victim
Program

Attacker
Program

Shared Resources

› The shared resources between attacker and victim

program include a direct-mapped cache

First the attacker program runs and occupies the first two

cache lines

Next the victim program runs and performs secret-

dependent memory accesses

…

if secret {

load address 4

}

else {

load address 5

}

…

Side-channels: a simple example of
a cache-attack

CPU

0x9A

0x34

0x12

0x34

0x56

0x78

0x9A

0xBC

0xED

0xF0

0

1

2

3

4

1

-

-

4

5

6

7

cache

main memory

Attacker
Memory

Victim
Memory

Platform

Victim
Program

Attacker
Program

Shared Resources

…

if secret {

load address 4

}

else {

load address 5

}

…

› The shared resources between attacker and victim

program include a direct-mapped cache

First the attacker program runs and occupies the first two

cache lines

Next the victim program runs and performs secret-

dependent memory accesses

Finally, attacker measures duration of an access to

address 0

Transient execution attacks

• Transient execution attacks amplify the impact of existing side-
channels by giving the attacker control over the sending side
of the channel too

• The key observations are:

– Processors are pipelined and sometimes execute instructions
speculatively

• No architectural effects are visible until instruction is committed

• Transient execution is any execution that never gets committed

– Transiently executed instructions also impact the micro-
architectural state

– The attacker can influence what instructions get executed
transiently

Speculative execution

• All major processors support
speculative execution

– Processor implementations
are pipelined

– To keep the hardware busy,
instructions are executed out-
of-order and speculatively

– If speculation was wrong, it
gets rolled back

– Such transient execution has
no visible architectural effects,
but there are persistent micro-
architectural effects

A simple example of a transient execution
attack

cache

attacker memory

3

victim memory

array a

array b

void process(int i) {

int y;

if (i < size) y = b[pub[i]];

}

array pub

SECRET

// train the branch predictor

process(0); process(0); …

// prime the cache

for (j=0; j<4; j++) z = a[j];

// attack!

process(size);

// measure access time to a[j] for all j

// slowest j is the SECRET

attacker code

victim code

void process(int i) {

int y;

if (i < size) y = b[pub[i]];

}

A simple example of a transient execution
attack

cache

attacker memory

3

victim memory

array a

array b

array pub

SECRET

// train the branch predictor

process(0); process(0); …

// prime the cache

for (j=0; j<4; j++) z = a[j];

// attack!

process(size);

// measure access time to a[j] for all j

// slowest j is the SECRET

attacker code

victim code
Branch predictor

learns that usually
then branch is taken

A simple example of a transient execution
attack

cache

attacker memory

3

victim memory

array a

array b

array pub

SECRET

// train the branch predictor

process(0); process(0); …

// prime the cache

for (j=0; j<4; j++) z = a[j];

// attack!

process(size);

// measure access time to a[j] for all j

// slowest j is the SECRET

attacker code

victim code

void process(int i) {

int y;

if (i < size) y = b[pub[i]];

}

A simple example of a transient execution
attack

cache

attacker memory

3

victim memory

array a

array b

array pub

SECRET

// train the branch predictor

process(0); process(0); …

// prime the cache

for (j=0; j<4; j++) z = a[j];

// attack!

process(size);

// measure access time to a[j] for all j

// slowest j is the SECRET

attacker code

victim code

void process(int i) {

int y;

if (i < size) y = b[pub[i]];

}

A simple example of a transient execution
attack

cache

attacker memory

3

victim memory

array a

array b

array pub

SECRET

// train the branch predictor

process(0); process(0); …

// prime the cache

for (j=0; j<4; j++) z = a[j];

// attack!

process(size);

// measure access time to a[j] for all j

// slowest j is the SECRET

attacker code

victim code

void process(int i) {

int y;

if (i < size) y = b[pub[i]];

}

void process(int i) {

int y;

if (i < size) y = b[pub[i]];

}

A simple example of a transient execution
attack

cache

attacker memory

3

victim memory

array a

array b

array pub

SECRET

// train the branch predictor

process(0); process(0); …

// prime the cache

for (j=0; j<4; j++) z = a[j];

// attack!

process(size);

// measure access time to a[j] for all j

// slowest j is the SECRET

attacker code

victim code
CPU speculatively
executes the then

branch

A simple example of a transient execution
attack

cache

attacker memory

3

victim memory

array a

array b

array pub

SECRET

// train the branch predictor

process(0); process(0); …

// prime the cache

for (j=0; j<4; j++) z = a[j];

// attack!

process(size);

// measure access time to a[j] for all j

// slowest j is the SECRET

attacker code

victim code

void process(int i) {

int y;

if (i < size) y = b[pub[i]];

}

A simple example of a transient execution
attack

cache

attacker memory

3

victim memory

array a

array b

array pub

SECRET

// train the branch predictor

process(0); process(0); …

// prime the cache

for (j=0; j<4; j++) z = a[j];

// attack!

process(size);

// measure access time to a[j] for all j

// slowest j is the SECRET

attacker code

victim code

void process(int i) {

int y;

if (i < size) y = b[pub[i]];

}

Micro-architectural side-channel
vulnerabilities

• This class of vulnerabilities is relatively new

– Spectre and Meltdown were disclosed only in 2018

• The community is still building up a deeper understanding

– Other kinds of attack techniques?

– Should this be addressed in hardware or in software?

Conclusions

We have discussed three important categories of
vulnerabilities that enable specific attack techniques
against software.

The Software security KA document discusses more.

In addition, the document discusses how to protect
software by preventing or detecting vulnerabilities, or by
mitigating the effects of their exploitation.

