
Software Security
Knowledge Area
Issue 1.0
Frank Piessens KU Leuven

EDITOR
Awais Rashid University of Bristol

REVIEWERS
Eric Bodden Paderborn University
Rod Chapman Altran UK
Michael Hicks University of Maryland
Jacques Klein University of Luxembourg
Andrei Sablefeld Chalmers University of Technology



The Cyber Security Body Of Knowledge
www.cybok.org

COPYRIGHT
© Crown Copyright, The National Cyber Security Centre 2019. This information is licensedunder the Open Government Licence v3.0. To view this licence, visit:
http://www.nationalarchives.gov.uk/doc/open-government-licence/

When you use this information under the Open Government Licence, you should include thefollowing attribution: CyBOK © Crown Copyright, The National Cyber Security Centre 2018, li-censed under the Open Government Licence: http://www.nationalarchives.gov.uk/doc/open-
government-licence/.
The CyBOK project would like to understand how the CyBOK is being used and its uptake.The project would like organisations using, or intending to use, CyBOK for the purposes ofeducation, training, course development, professional development etc. to contact it at con-
tact@cybok.org to let the project know how they are using CyBOK.
Issue 1.0 is a stable public release of the Software Security Knowledge Area. However, itshould be noted that a fully-collated CyBOK document which includes all of the KnowledgeAreas is anticipated to be released by the end of July 2019. This will likely include updatedpage layout and formatting of the individual Knowledge Areas

KA Software Security | October 2019 Page 1

https://www.cybok.org
http://www.nationalarchives.gov.uk/doc/open-government-licence/
http://www.nationalarchives.gov.uk/doc/open-government-licence/
http://www.nationalarchives.gov.uk/doc/open-government-licence/
mailto:contact@cybok.org
mailto:contact@cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

INTRODUCTION
The purpose of this Software Security chapter is to provide a structured overview of knowncategories of software implementation vulnerabilities, and of techniques that can be usedto prevent or detect such vulnerabilities, or to mitigate their exploitation. This overview isintended to be useful to academic staff for course and curricula design in the area of softwaresecurity, as well as to industry professionals for the verification of skills and the design ofjob descriptions in this area.
Let us start by defining some terms and concepts, and by defining the scope of this chap-ter. A first key issue is what it means for software to be secure? One possible definition isthat a software system is secure if it satisfies a specified or implied security objective. Thissecurity objective specifies confidentiality, integrity and availability requirements1 for the sys-tem’s data and functionality. Consider, for instance, a social networking service. The securityobjective of such a system could include the following requirements:

• Pictures posted by a user can only be seen by that user’s friends (confidentiality)
• A user can like any given post at most once (integrity)
• The service is operational more than 99.9% of the time on average (availability)

Different security requirements can be at odds with each other, for instance, locking down asystem on the appearance of an attack is good for confidentiality and integrity of the system,but bad for availability.
A security failure is a scenario where the software system does not achieve its security ob-jective, and a vulnerability is the underlying cause of such a failure. The determination of anunderlying cause is usually not absolute: there are no objective criteria to determine whatvulnerability is responsible for a given security failure or where it is located in the code. Onemight say that the vulnerability is in the part of the code that has to be fixed to avoid thisspecific security failure, but fixes can be required in multiple places, and often multiple mit-igation strategies are possible where each mitigation strategy requires a different fix or setof fixes.
The definitions of “security” and “vulnerability” above assume the existence of a security ob-jective. In practice however, most software systems do not have precise explicit securityobjectives, and even if they do, these objectives are not absolute and have to be traded offagainst other objectives such as performance or usability of the software system. Hence,software security is often about avoiding known classes of bugs that enable specific attacktechniques. There are well-understood classes of software implementation bugs that, whentriggered by an attacker, can lead to a substantial disruption in the behaviour of the software,and are thus likely to break whatever security objective the software might have. Thesebugs are called implementation vulnerabilities even if they are relatively independent fromapplication- or domain-specific security objectives like the example objectives above.
This document, the Software Security KA, covers such implementation vulnerabilities, as well

1Other common information security requirements like non-repudiation or data authentication can be seenas instances or refinements of integrity from a software perspective. But from other perspectives, for instancefrom a legal perspective, the semantics of these requirements can be more involved.

KA Software Security | October 2019 Page 2

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

as countermeasures for them. Many other aspects are relevant for the security of softwarebased systems, including human factors, physical security, secure deployment and procedu-ral aspects, but they are not covered in this chapter. The impact of security on the variousphases of the software lifecycle is discussed in the Secure Software Lifecycle CyBOK Knowl-edge Area [1]. Security issues specific to software running on the web or mobile platformsare discussed in the Web & Mobile Security CyBOK Knowledge Area [2].
The remainder of this chapter is structured as follows. Topic 1 (Categories) discusses widelyrelevant categories of implementation vulnerabilities, but without the ambition of describinga complete taxonomy. Instead, the topic discusses how categories of vulnerabilities can of-ten be defined as violations of a partial specification of the software system, and it is unlikelythat a useful complete taxonomy of such partial specifications would exist. The discussionof countermeasures for implementation vulnerabilities is structured in terms of where in thelifecycle of the software system they are applicable. Topic 2 (Prevention) discusses how pro-gramming language and Application Programming Interface (API) design can prevent vulner-abilities from being introduced during development in software programmed in that languageand using that API. In addition, defensive coding practices can contribute to the preventionof vulnerabilities. Topic 3 (Detection) covers techniques to detect vulnerabilities in existingsource code, for instance, during development and testing. Topic 4 (Mitigation) discusseshow the impact of remaining vulnerabilities can be mitigated at runtime. It is important tonote, however, that some countermeasure techniques could in principle be applied in all threephases, so this is not an orthogonal classification. For instance, a specific dynamic check(say, an array bounds check) could be mandated by the language specification (Prevention,the countermeasure is built in by the language designer), could be used as a testing oracle(Detection, the countermeasure is used by the software tester) or could be inlined in the pro-gram to block attacks at run-time (Mitigation, the countermeasure is applied on deployment).
CONTENT

1 CATEGORIES OF VULNERABILITIES
[3][4, c4,c5,c6,c7,c10,c11][5, c6,c9] [6, c17][7, c5,c9,c11,c13,c17]

As discussed in the Introduction, we use the term implementation vulnerability (sometimesalso called a security bug) both for bugs that make it possible for an attacker to violate asecurity objective, as well as for classes of bugs that enable specific attack techniques.
Implementation vulnerabilities play an important role in cybersecurity and come in manyforms. The Common Vulnerabilities and Exposures (CVE) is a publicly available list of en-tries in a standardised form describing vulnerabilities in widely-used software components,and it lists close to a hundred thousand such vulnerabilities at the time of writing. Implemen-tation vulnerabilities are often caused by insecure programming practices and influenced bythe programming language or APIs used by the developer. This first topic covers importantcategories of implementation vulnerabilities that can be attributed to such insecure program-ming practices.
Existing classifications of vulnerabilities, such as the Common Weakness Enumeration (CWE),a community-developed list of vulnerability categories, are useful as a baseline for vulnera-bility identification, mitigation and prevention, but none of the existing classifications havesucceeded in coming up with a complete taxonomy. Hence, the categories discussed in this

KA Software Security | October 2019 Page 3

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

first topic should be seen as examples of important classes of vulnerabilities, and not as anexhaustive list. They were selected with the intention to cover the most common implemen-tation vulnerabilities, but this selection is at least to some extent subjective.
Specific categories of implementation vulnerabilities can often be described as violations ofa (formal or informal) specification of some sub-component of the software system. Sucha specification takes the form of a contract that makes explicit what the sub-component ex-pects of, and provides to its clients. On violation of such a contract, the software systementers an error-state, and the further behaviour of the software system is typically behaviourthat has not been considered by the system developers and is dependent on system imple-mentation details. Attackers of the system can study the implementation details and exploitthem to make the system behave in a way that is desirable for the attacker.
1.1 Memory Management Vulnerabilities

Imperative programming languages support mutable state, i.e., these languages have con-structs for allocating memory cells that can subsequently be assigned to, or read from bythe program, and then deallocated again. The programming language definition specifieshow to use these constructs correctly: for instance, allocation of n memory cells will returna reference to an array of cells that can then be accessed with indices 0 to n − 1 until thereference is deallocated (freed) again. This specification can be seen as a contract for thememory management sub-component. Some programming languages implement this con-tract defensively, and will throw an exception if a client program accesses memory incorrectly.Other programming languages (most notably, C and C++) leave the responsibility for correctlyallocating, accessing and deallocating memory in the hands of the programmer, and say thatthe behaviour of programs that access or manage memory incorrectly is undefined. Suchlanguages are sometimes called memory unsafe languages, and bugs related to memorymanagement (memory management vulnerabilities) are a notorious source of security bugsin these languages.
• A spatial vulnerability is a bug where the program is indexing into a valid contiguousrange of memory cells, but the index is out-of-bounds. The archetypical example is abuffer overflow vulnerability where the program accesses an array (a buffer) with anout-of-bounds index.
• A temporal vulnerability is a bug where the program accesses memory that was onceallocated to the program, but has since been deallocated. A typical example is derefer-encing a dangling pointer.

The C and C++ language specifications leave the behaviour of a program with a memory man-agement vulnerability undefined. As such, the observed behaviour of a program with a vul-nerability will depend on the actual implementation of the language. Memory managementvulnerabilities are particularly dangerous from a security point of view, because in many im-plementations mutable memory cells allocated to the program are part of the same memoryaddress space where also compiled program code, and runtime metadata such as the callstack are stored. In such implementations, a memory access by the program that violatesthe memory management contract can result in an access to compiled program code or run-time metadata, and hence can cause corruption of program code, program control flow andprogram data. There exists a wide range of powerful attack techniques to exploit memorymanagement vulnerabilities [3].
An attack consists of providing input to the program to trigger the vulnerability, which makes

KA Software Security | October 2019 Page 4

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

the program violate the memory management contract. The attacker chooses the input suchthat the program accesses a memory cell of interest to the attacker:
• In a code corruption attack, the invalid memory access modifies compiled program codeto attacker specified code.
• In a control-flow hijack attack, the invalid memory access modifies a code pointer (forinstance, a return address on the stack, or a function pointer) to make the processorexecute attacker-provided code (a direct code injection attack), or to make the proces-sor reuse existing code of the program in unexpected ways (a code-reuse attack, alsoknown as an indirect code injection attack, such as a return-to-libc attack, or a return-oriented-programming attack).
• In a data-only attack, the invalid memory access modifies other data variables of theprogram, possibly resulting in increased privileges for the attacker.
• In an information leak attack, the invalid memory access is a read access, possiblyresulting in the exfiltration of information, either application secrets such as crypto-graphic keys, or runtime metadata such as addresses which assist prediction of theexact layout of memory and hence may enable other attacks.

Because of the practical importance of these classes of attacks, mitigation techniques havebeen developed that counter specific attack techniques, and we discuss these in Topic 4.
1.2 Structured Output Generation Vulnerabilities

Programs often have to dynamically construct structured output that will then be consumedby another program. Examples include: the construction of SQL queries to be consumedby a database, or the construction of HTML pages to be consumed by a web browser. Onecan think of the code that generates the structured output as a sub-component. The intendedstructure of the output, and how input to the sub-component should be used within the output,can be thought of as a contract to which that sub-component should adhere. For instance,when provided with a name and password as input, the intended output is a SQL query thatselects the user with the given name and password from the users database table.
A common insecure programming practice is to construct such structured output by meansof string manipulation. The output is constructed as a concatenation of strings where someof these strings are derived (directly or indirectly) from input to the program. This practiceis dangerous, because it leaves the intended structure of the output string implicit, and mali-ciously chosen values for input strings can cause the program to generate unintended output.For instance, a programmer can construct a SQL query as:
query = ”select * from users where name=’” + name

+ ”’” and pw = ’” + password + ”’”

with the intention of constructing a SQL query that checks for name and password in thewhere clause. However, if the name string is provided by an attacker, the attacker can setname to ”John’ --”, and this would remove the password check from the query (note that
-- starts a comment in SQL).
A structured output generation vulnerability is a bug where the program constructs such un-intended output. This is particularly dangerous in the case where the structured output rep-resents code that is intended to include provided input as data. Maliciously chosen inputdata can then influence the generated output code in unintended ways. These vulnerabilities

KA Software Security | October 2019 Page 5

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

are also known as injection vulnerabilities (e.g., SQL injection, or script injection). The name‘injection’ refers to the fact that exploitation of these vulnerabilities will often provide data in-puts that cause the structured output to contain additional code statements, i.e. exploitationinjects unintended new statements in the output. Structured output generation vulnerabilitiesare relevant for many different kinds of structured outputs:
• A SQL injection vulnerability is a structured output generation vulnerability where thestructured output consists of SQL code. These vulnerabilities are particularly relevantfor server-side web application software, where it is common for the application to inter-act with a back-end database by constructing queries partially based on input providedthrough web forms.
• A command injection vulnerability is a structured output generation vulnerability wherethe structured output is a shell command sent by the application to the operating sys-tem shell.
• A script injection vulnerability, sometimes also called a Cross-Site Scripting (XSS) vul-nerability is a structured output generation vulnerability where the structured output isJavaScript code sent to a web browser for client-side execution.

This list is by no means exhaustive. Other examples include: XPath injection, HTML injec-tions, CSS injection, PostScript injection and many more.
Several factors can contribute to the difficulty of avoiding structured output generation vul-nerabilities:

• The structured output can be in a language that supports sublanguages with a signifi-cantly different syntactic structure. An important example of such a problematic caseis HTML, that supports sublanguages such as JavaScript, CSS and SVG.
• The computation of the structured output can happen in different phases with outputsof one phase being stored and later retrieved as input for a later phase. Structured out-put generation vulnerabilities that go through multiple phases are sometimes referredto as stored injection vulnerabilities, or more generally as higher-order injection vulnera-bilities. Examples include stored XSS and higher-order SQL injection.

Attack techniques for exploiting structured output generation vulnerabilities generally de-pend on the nature of the structured output language, but a wide range of attack techniquesfor exploiting SQL injection or script injection are known and documented.
The Web & Mobile Security CyBOK Knowledge Area [2] provides a more detailed discussionof such attack techniques.
1.3 Race Condition Vulnerabilities

When a program accesses resources (such as memory, files or databases) that it shareswith other concurrent actors (other threads in the same process, or other processes), theprogram often makes assumptions about what these concurrent actors will do (or not do) tothese shared resources.
Such assumptions can again be thought of as part of a specification of the program. Thisspecification is no longer a contract between two sub-components of the program (a callerand a callee), but it is a contract between the actor executing the program and its environ-ment (all concurrent actors), where the contract specifies the assumptions made on how the

KA Software Security | October 2019 Page 6

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

environment will interact with the program’s resources. For instance, the specification cansay that the program relies on exclusive access to a set of resources for a specific interval ofits execution: only the actor executing the program will have access to the set of resourcesfor the specified interval.
Violations of such a specification are concurrency bugs, also commonly referred to as raceconditions, because a consequence of these bugs is that the behaviour of the program maydepend on which concurrent actor accesses a resource first (‘wins a race’). Concurrency, andthe corresponding issues of getting programs correct in the presence of concurrency, is animportant sub-area of computer science with importance well beyond the area of cybersecu-rity [8].
But concurrency bugs can be security bugs, too. Concurrency bugs often introduce non-determinism: the behaviour of a program will depend on the exact timing or interleavingof the actions of all concurrent actors. In adversarial settings, where an attacker controlssome of the concurrent actors, the attacker may have sufficient control on the timing ofactions to influence the behaviour of the program such that a security objective is violated.A race condition vulnerability is a concurrency bug with such security consequences. A verycommon instance is the case where the program checks a condition on a resource, and thenrelies on that condition when using the resource. If an attacker can interleave his/her ownactions to invalidate the condition between the check and the time of use, this is called aTime Of Check Time Of Use (TOCTOU) vulnerability.
Race condition vulnerabilities are relevant for many different types of software. Two impor-tant areas where they occur are:

• Race conditions on the file system: privileged programs (i.e., programs that run withmore privileges than their callers, for instance, operating system services) often needto check some condition on a file, before performing an action on that file on behalfof a less privileged user. Failing to perform check and action atomically (such thatno concurrent actor can intervene) is a race condition vulnerability: an attacker caninvalidate the condition between the check and the action.
• Races on the session state in web applications: web servers are often multi-threadedfor performance purposes, and consecutive HTTP requests may be handled by differentthreads. Hence, two HTTP requests belonging to the same HTTP session may accessthe session state concurrently. Failing to account for this is a race condition vulnerabil-ity that may lead to corruption of the session state.

1.4 API Vulnerabilities
An Application Programming Interface, or API, is the interface through which one softwarecomponent communicates with another component, such as a software library, operatingsystem, web service, and so forth. Almost all software is programmed against one or morepre-existing APIs. An API comes with an (explicit or implicit) specification/contract of how itshould be used and what services it offers, and just like the contracts we considered in previ-ous subsections, violations of these contracts can often have significant consequences forsecurity. If the client of the API violates the contract, the software system again enters anerror-state, and the further behaviour of the software system will depend on implementationdetails of the API, and this may allow an attacker to break the security objective of the overallsoftware system. This is essentially a generalisation of the idea of implementation vulnera-bilities as contract violations from subsections 1.1, 1.2 and 1.3 to arbitrary API contracts.

KA Software Security | October 2019 Page 7

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

Of course, some APIs are more security sensitive than others. A broad class of APIs that aresecurity sensitive are APIs to libraries that implement security functionality like cryptographyor access control logic. Generally speaking, a software system must use all the ‘securitycomponents’ that it relies on in a functionally correct way, or it is likely to violate a securityobjective. This is particularly challenging for cryptographic libraries: if a cryptographic libraryoffers a flexible API, then correct use of that API (in the sense that a given security objectiveis achieved) is known to be hard. There is substantial empirical evidence [9] that developersfrequently make mistakes in the use of cryptographic APIs, thus introducing vulnerabilities.
An orthogonal concern to secure use is the secure implementation of the cryptographic API.Secure implementations of cryptography are covered in the Cryptography CyBOK KnowledgeArea [10].
1.5 Side-channel Vulnerabilities

The execution of a program is ultimately a physical process, typically involving digital elec-tronic circuitry that consumes power, emits electro-magnetic radiation, and takes time toexecute to completion. It is common, however, in computer science to model the executionof programs abstractly, in terms of the execution of code on an abstract machine whose se-mantics is defined mathematically (with varying levels of rigour). In fact, it is common tomodel execution of programs at many different levels of abstraction, including, for instance,execution of assembly code on a specified Instruction Set Architecture (ISA), execution ofJava bytecode on the Java Virtual Machine, or execution of Java source code according tothe Java language specification. Each subsequent layer of abstraction is implemented interms of a lower layer, but abstracts from some of the effects or behaviours of that lowerlayer. For instance, an ISA makes abstraction from some physical effects such as electro-magnetic radiation or power consumption, and the Java Virtual Machine abstracts from thedetails of memory management.
A side-channel is an information channel that communicates information about the execu-tion of a software program by means of such effects from which the program’s code ab-stracts. Some side-channels require physical access to the hardware executing the softwareprogram. Other side-channels, sometimes called software-based side-channels can be usedfrom software running on the same hardware as the software program under attack.
Closely related to side-channels are covert channels. A covert channel is an informationchannel where the attacker also controls the program that is leaking information through theside-channel, i.e., the attacker uses a side-channel to purposefully exfiltrate information.
Side-channels play an important role in the field of cryptography, where the abstraction gapbetween (1) the mathematical (or source code level) description of a cryptographic algorithmand (2) the physical implementation of that algorithm, has been shown to be relevant for se-curity [11]. It was demonstrated that, unless an implementation carefully guards against this,side-channels based on power consumption or execution time can easily leak the crypto-graphic key used during the execution of an encryption algorithm. This breaks the securityobjectives of encryption for an attacker model where the attacker can physically monitor theencryption process. Side-channel attacks against cryptographic implementations (and corre-sponding countermeasures) are discussed in the Cryptography CyBOK Knowledge Area [10].
But side-channels are broadly relevant to software security in general. Side-channels can bestudied for any scenario where software is implemented in terms of a lower-layer abstraction,even if that lower-layer abstraction is itself not yet a physical implementation. An important

KA Software Security | October 2019 Page 8

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

example is the implementation of a processor’s Instruction Set Architecture (ISA) in termsof a micro-architecture. The execution of assembly code written in the ISA will have effectson the micro-architectural state; for instance, an effect could be that some values are copiedfrom main memory to a cache. The ISA makes abstraction of these effects, but under at-tacker models where the attacker can observe or influence these micro-architectural effects,they constitute a side-channel.
Side-channels, and in particular software-based side-channels, are most commonly a confi-dentiality threat: they leak information about the software’s execution to an attacker mon-itoring effects at the lower abstraction layer. But side-channels can also constitute an in-tegrity threat in case the attacker can modify the software’s execution state by relying onlower layer effects. Such attacks are more commonly referred to as fault injection attacks.Physical fault-injection attacks can use voltage or clock glitching, extreme temperatures, orelectromagnetic radiation to induce faults. Software-based fault-injection uses software todrive hardware components of the system outside their specification range with the objec-tive of inducing faults in these components. A famous example is the Rowhammer attackthat uses maliciously crafted memory access patterns to trigger an unintended interactionbetween high-density DRAM memory cells that causes memory bits to flip.
1.6 Discussion
1.6.1 Better connection with overall security objectives needs more complex specifica-

tions

We have categorised implementation vulnerabilities as violations of specific partial specifi-cations of software components. However, the connection to the security objective of theoverall software system is weak. It is perfectly possible that a software system has an imple-mentation vulnerability, but that it is not exploitable to break a security objective of the system,for instance, because there are redundant countermeasures elsewhere in the system. Evenmore so, if a software system does not have any of the implementation vulnerabilities wediscussed, it may still fail its security objective.
To have stronger assurance that the software system satisfies a security objective, one canformalise the security objective as a specification. During the design phase, on decom-position of the system in sub-components, one should specify the behaviour of the sub-components such that they jointly imply the specification of the overall system. With such adesign, the connection between an implementation vulnerability as a violation of a specifica-tion on the one hand, and the overall security objective of the system on the other, is muchstronger.
It is important to note, however, that specifications would become more complex and moredomain-specific in such a scenario. We discuss one illustration of additional complexity. Forthe vulnerability categories we discussed (memory management, structured output genera-tion, race conditions and API vulnerabilities), the corresponding specifications express prop-erties of single executions of the software: a given execution either satisfies or violates thespecification, and the software has a vulnerability as soon as there exists an execution thatviolates the specification.
There are, however, software security objectives that cannot be expressed as properties ofindividual execution traces. A widely studied example of such a security objective is informa-tion flow security. A baseline specification of this security objective for deterministic sequen-tial programs goes as follows: label the inputs and outputs of a program as either public or

KA Software Security | October 2019 Page 9

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

confidential, and then require that no two executions of the software with the same public in-puts (but different confidential inputs) have different public outputs. The intuition for lookingat pairs of executions is the following: it might be that the program does not leak confidentialdata directly but instead leaks some partial information about this data. If collected alongmultiple runs, the attacker can gather so much information that eventually relevant parts ofthe confidential original data are, in fact, leaked. The above specification effectively requiresthat confidential inputs can never influence public outputs in any way, and hence cannot leakeven partial information. In a dual way, one can express integrity objectives by requiring thatlow-integrity inputs can not influence high-integrity outputs.
But an information flow specification is more complex than the specifications we consideredin previous sections because one needs two executions to show a violation of the specifica-tion. Information leak vulnerabilities are violations of a (confidentiality-oriented) informationflow policy. They can also be understood as violations of a specification, but this is now aspecification that talks about multiple executions of the software system. This has profoundconsequences for the development of countermeasures to address these vulnerabilities [12].
1.6.2 Side channel vulnerabilities are different

Side channel vulnerabilities are by definition not violations of a specification at the abstrac-tion level of the software source code: they intrinsically use effects from which the sourcecode abstracts. However, if one develops a model of the execution infrastructure of the soft-ware that is detailed enough to model side channel attacks, then side channel vulnerabilitiescan again be understood as violations of a partial specification. One can choose to locatethe vulnerability in the execution infrastructure by providing a specification for the executioninfrastructure that says that it should not introduce additional communication mechanisms.This is essentially what the theory of full abstraction [13] requires. Alternatively, one can refinethe model of the source code language to expose the effects used in particular side channelattacks, thus making it possible to express side-channel vulnerabilities at the source codelevel. Dealing with general software side-channel vulnerabilities is not yet well understood,and no generally applicable realistic countermeasures are known. One can, of course, iso-late the execution, i.e., prevent concurrent executions on the same hardware, but that thencontradicts other goals such as optimised hardware utilisation.
1.6.3 Vulnerabilities as faults

The classification of vulnerabilities by means of the specification they violate is useful forunderstanding relevant classes of vulnerabilities, but is not intended as a complete taxonomy:there are a very large number of partial specifications of software systems that contributeto achieving some security objective. Vulnerabilities can, however, be seen as an instance ofthe concept of faults, studied in the field of dependable computing, and a good taxonomy offaults has been developed in that field [14].

KA Software Security | October 2019 Page 10

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

2 PREVENTION OF VULNERABILITIES
[15, 16, 17] [18, c3]

Once a category of vulnerabilities is well understood, an important question is how the intro-duction of such vulnerabilities in software can be prevented or at least be made less likely.The most effective approaches eradicate categories of vulnerabilities by design of the pro-gramming language or API.
The general idea is the following. We have seen in Topic 1 that many categories of im-plementation vulnerabilities can be described as violations of a specification of some sub-component. Let us call an execution of the software system that violates this specification,an erroneous execution, or an execution with an error. From a security point of view, it is usefulto distinguish between errors that cause the immediate termination of the execution (trappederrors), and errors that may go unnoticed for a while (untrapped errors) [16]. Untrapped errorsare particularly dangerous, because the further behaviour of the software system after anuntrapped error can be arbitrary, and an attacker might be able to steer the software systemto behaviour that violates a security objective. Hence, designing a language or API to avoiderrors, and in particular untrapped errors, is a powerful approach to prevent the presence ofvulnerabilities. For instance, languages like Java effectively make it impossible to introducememory management vulnerabilities: a combination of static and dynamic checks ensuresthat no untrapped memory management errors can occur. This effectively protects againstthe attack techniques discussed in 1.1. It is, however, important to note that this does not pre-vent the presence of memory-management bugs: a program can still access an array out ofbounds. But the bug is no longer a vulnerability, as execution is terminated immediately whensuch an access occurs. One could argue that the bug is still a vulnerability if one of the se-curity objectives of the software system is availability, including the absence of unexpectedprogram termination.
In cases where choice or redesign of the programming language or API itself is not an op-tion, specific categories of vulnerabilities can be made less likely by imposing safe codingpractices.
This topic provides an overview of these techniques that can prevent the introduction of vul-nerabilities.
2.1 Language Design and Type Systems

A programming language can prevent categories of implementation vulnerabilities that canbe described as violations of a specification by:
1. making it possible to express the specification within the language, and
2. ensuring that there can be no untrapped execution errors with respect to the expressedspecification.

KA Software Security | October 2019 Page 11

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

2.1.1 Memory management vulnerabilities

A programming language specification inherently includes a specification of all the memoryallocation, access and deallocation features provided by that language. Hence, the speci-fication of the memory management sub-component is always available. A programminglanguage is called memory-safe if the language definition implies that there can be no un-trapped memory management errors. Languages like C or C++ are not memory-safe becausethe language definition allows for implementations of the language that can have untrappedmemory management errors, but even for such languages one can build specific implemen-tations that are memory-safe (usually at the cost of performance).
A language can be made memory-safe through a combination of:

1. the careful selection of the features it supports: for instance, languages can choose toavoid mutable state, or can choose to avoid dynamic memory allocation, or can chooseto avoid manual deallocation by relying on garbage collection,
2. imposing dynamic checks: for instance, imposing that every array access must bebounds-checked, and
3. imposing static checks, typically in the form of a static type system: for instance, object-field access can be guaranteed safe by means of a type system.

Programming languages vary widely in how they combine features, dynamic and static checks.Pure functional languages like Haskell avoid mutable memory and rely heavily on static checksand garbage collection. Dynamic languages like Python rely heavily on dynamic checks andgarbage collection. Statically typed object-oriented languages like Java and C# sit betweenthese two extremes. Innovative languages like SPARK (a subset of Ada) [19] and Rust achievememory safety without relying on garbage collection. Rust, for instance, uses a type systemthat allows the compiler to reason about pointers statically, thus enabling it to insert codeto free memory at places where it is known to no longer be accessible. This comes at theexpense of some decreased flexibility when it comes to structuring program code.
2.1.2 Structured output generation vulnerabilities

An important cause for structured output generation vulnerabilities is that the programmerleaves the intended structure of the output implicit, and computes the structured output bystring manipulation. A programming language can help prevent such vulnerabilities by provid-ing language features that allow the programmer to make the intended structure explicit, thusproviding a specification. The language implementation can then ensure that no untrappederrors with respect to that specification are possible.
A first approach is to provide a type system that supports the description of structured data.This approach has been worked out rigorously for XML data: the programming languagesupports XML documents as first class values, and regular expression types [20] support thedescription of the structure of XML documents using the standard regular expression oper-ators. A type-correct program that outputs an XML document of a given type is guaranteedto generate XML output of the structure described by the type.
A second approach is to provide primitive language features for some of the common usecases of structured output generation. Language Integrated Query (LINQ) is an extension ofthe C# language with syntax for writing query expressions. By writing the query as an expres-sion (as opposed to building a SQL query by concatenating strings), the intended structure of

KA Software Security | October 2019 Page 12

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

the query is explicit, and the LINQ provider that compiles the query to SQL can provide strongguarantees that the generated query has the intended structure.
2.1.3 Race condition vulnerabilities

Race condition vulnerabilities on heap allocated memory are often enabled by aliasing, theexistence of multiple pointers to the same memory cell. If two concurrent threads both holdan alias to the same cell, there is the potential of a race condition on that cell. The exis-tence of aliasing also leads to temporal memory-management vulnerabilities, when memoryis deallocated through one alias but then accessed through another alias. The notion of own-ership helps mitigate the complications that arise because of aliasing. The essence of theidea is that, while multiple aliases to a resource can exist, only one of these aliases is theowner of the resource, and some operations can only be performed through the owner. Anownership regime puts constraints on how aliases can be created, and what operations areallowed through these aliases. By doing so, an ownership regime can prevent race conditionvulnerabilities, or it can support automatic memory management without a garbage collector.For instance, a simple ownership regime for heap allocated memory cells might impose theconstraints that: (1) aliases can only be created if they are guaranteed to go out of scope be-fore the owner does, (2) aliases can only be used for reading, and (3) the owner can write toa cell only if no aliases currently exist. This simple regime avoids data races: there can neverbe a concurrent read and write on the same cell. It also supports automatic memory man-agement without garbage collection: a heap cell can be deallocated as soon as the ownergoes out of scope. Of course, this simple regime is still quite restrictive, and a significantbody of research exists on designing less restrictive ownership regimes that can still provideuseful guarantees.
An ownership regime can be enforced by the programming language by means of a typesystem, and several research languages have done this with the objective of preventing dataraces or memory management vulnerabilities. The Rust programming language, a recent sys-tems programming language, is the first mainstream language to incorporate an ownershiptype system.
2.1.4 Other vulnerabilities

Many other categories of vulnerabilities can, in principle, be addressed by means of pro-gramming language design and static type checking. There is, for instance, a wide bodyof research on language-based approaches to enforce information flow security [21]. Theseapproaches have until now mainly been integrated in research prototype languages. SPARKis an example of a real-world language that has implemented information flow analysis in thecompiler. Language-based information flow security techniques have also had a profoundinfluence on the static detection techniques for vulnerabilities (Topic 3).

KA Software Security | October 2019 Page 13

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

2.2 API Design
The development of software not only relies on a programming language, it also relies onAPIs, implemented by libraries or frameworks. Just like language design impacts the likeli-hood of introducing vulnerabilities, so does API design. The base principle is the same: theAPI should be designed to avoid execution errors (where now, execution errors are violationsof the API specification), and in particular untrapped execution errors. It should be difficultfor the programmer to violate an API contract, and if the contract is violated, that shouldbe trapped, leading, for instance, to program termination or to well-defined error-handlingbehaviour.
Where the programming language itself does not prevent a certain category of vulnerabilities(e.g. C does not prevent memory-management vulnerabilities, Java does not prevent raceconditions or structured output generation vulnerabilities), the likelihood of introducing thesevulnerabilities can be reduced by offering a higher-level API:

• Several libraries providing less error-prone APIs for memory management in C or C++have been proposed. These libraries offer fat pointers (where pointers maintain boundsinformation and check whether accesses are in bound), garbage collection (where man-ual deallocation is no longer required), or smart pointers (that support an ownership-regime to safely automate deallocation).
• Several libraries providing less error-prone APIs to do structured output generation forvarious types of structured output and for various programming languages have beenproposed. Examples include Prepared Statement APIs that allow a programmer to sep-arate the structure of a SQL statement from the user input that needs to be plugged intothat structure, or library implementations of language integrated query, where query ex-pressions are constructed using API calls instead of using language syntax.
• Several libraries providing less error-prone APIs to cryptography have been proposed.These libraries use simplification (at the cost of flexibility), secure defaults, better doc-umentation and the implementation of more complete use-cases (for instance, includesupport for auxiliary tasks such as key storage) to make it less likely that a developerwill make mistakes.

The use of assertions, contracts and defensive programming [18, c3] is a general approachto construct software with high reliability, and it is a highly useful approach to avoid APIvulnerabilities. Design by contract makes the contract of an API explicit by providing pre-conditions and post-conditions, and in defensive programming these preconditions will bechecked, thus avoiding the occurrence of untrapped errors.
A programming language API also determines the interface between programs in the lan-guage and the surrounding system. For instance, JavaScript in a browser does not expose anAPI to the local file system. As a consequence, JavaScript programs running in the browsercan not possibly access the file system. Such less privileged APIs can be used to contain orsandbox untrusted code (see Section 4.3), but they can also prevent vulnerabilities. Objectcapability systems [22] take this idea further by providing a language and API that supportsstructuring code such that each part of the code only has the privileges it really needs (thussupporting the principle of least privilege).
The design of cryptographic APIs that keep cryptographic key material in a separate protec-tion domain, for instance in a Hardware Security Module (HSM) comes with its own chal-lenges. Such APIs have a security objective themselves: the API to a HSM has the objective

KA Software Security | October 2019 Page 14

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

of keeping the encryption keys it uses confidential – it should not be possible to extract thekey from the HSM. Research has shown [6, c18] that maintaining such a security objective isextremely challenging. The HSM API has an API-level vulnerability if there is a sequence ofAPI calls that extracts confidential keys from the HSM. Note that this is an API design defectas opposed to the implementation defects considered in Topic 1.
2.3 Coding Practices

The likelihood of introducing the various categories of vulnerabilities discussed in Topic 1 canbe substantially reduced by adopting secure coding practices. Coding guidelines can alsohelp against vulnerabilities of a more generic nature that can not be addressed by languageor API design, such as, for instance, the guideline to not hard-code passwords. Secure codingpractices can be formalised as collections of rules and recommendations that describe andillustrate good and bad code patterns.
A first approach to design such coding guidelines is heuristic and pragmatic: the program-ming community is solicited to provide candidate secure coding rules and recommendationsbased on experience in how things have gone wrong in the past. These proposed rules arevetted and discussed by the community until a consensus is reached that the rule is suf-ficiently appropriate to be included in a coding standard. Influential standards for generalpurpose software development include the SEI CERT coding standards for C [17] and Java[23].
For critical systems development, more rigorous and stricter coding standards have beendeveloped. The MISRA guidelines [24] have seen widespread recognition and adoption fordevelopment of critical systems in C. The SPARK subset of Ada [19] was designed to supportcoding to enable formal verification of the absence of classes of vulnerabilities.
Rules can take many forms, including:

• the avoidance of dangerous language provided API functions (e.g., do not use the sys-tem() function in C),
• attempting to avoid undefined behaviour or untrapped execution errors (e.g., do notaccess freed memory in C),
• mitigations against certain vulnerabilities caused by the language runtime (e.g., notstoring secrets in Java Strings, as the Java runtime can keep those Strings stored onthe heap indefinitely), or,
• proactive, defensive rules that make it less likely to run into undefined behaviour (e.g.,exclude user input from format strings).

Also, specific side-channel vulnerabilities can be addressed by coding rules, for instanceavoiding control flow or memory accesses that depend on secrets can prevent these secretsfrom leaking through cache-based or branch-predictor based side-channels.
When they are not enforced by a type system, ownership regimes for safely managing re-sources such as dynamically allocated memory can also be the basis for programming id-ioms and coding guidelines. For instance, the Resource Acquisition Is Initialisation (RAII)idiom, move semantics and smart pointers essentially support an ownership regime for C++,but without compiler enforced guarantees.
An important challenge with secure coding guidelines is that their number tends to grow over

KA Software Security | October 2019 Page 15

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

time, and hence programmers are likely to deviate from the secure practices codified in theguidelines. Hence, it is important to provide tool support to check compliance of softwarewith the coding rules. Topic 3.1 discusses how static analysis tools can automatically detectviolations against secure coding rules.
3 DETECTION OF VULNERABILITIES

[5, 25] [18, c4]
For existing source code where full prevention of the introduction of a class of vulnerabilitieswas not possible, for instance, because the choice of programming language and/or APIswas determined by other factors, it is useful to apply techniques to detect the presence ofvulnerabilities in the code during the development, testing and/or maintenance phase of thesoftware.
Techniques to detect vulnerabilities must make trade-offs between the following two goodproperties that a detection technique can have:

• A detection technique is sound for a given category of vulnerabilities if it can correctlyconclude that a given program has no vulnerabilities of that category. An unsound de-tection technique on the other hand may have false negatives, i.e., actual vulnerabilitiesthat the detection technique fails to find.
• A detection technique is complete for a given category of vulnerabilities, if any vulnera-bility it finds is an actual vulnerability. An incomplete detection technique on the otherhand may have false positives, i.e. it may detect issues that do not turn out to be actualvulnerabilities.

Trade-offs are necessary, because it follows from Rice’s theorem that (for non-trivial cate-gories of vulnerabilities) no detection technique can be both sound and complete.
Achieving soundness requires reasoning about all executions of a program (usually an infinitenumber). This is typically done by static checking of the program code while making suitableabstractions of the executions to make the analysis terminate.
Achieving completeness can be done by performing actual, concrete executions of a programthat are witnesses to any vulnerability reported. This is typically done by dynamic detectionwhere the analysis technique has to come up with concrete inputs for the program that triggera vulnerability. A very common dynamic approach is software testing where the tester writestest cases with concrete inputs, and specific checks for the corresponding outputs.
In practice, detection tools can use a hybrid combination of static and dynamic analysis tech-niques to achieve a good trade-off between soundness and completeness.
It is important to note, however, that some detection techniques are heuristic in nature, andhence the notions of soundness and completeness are not precisely defined for them. Forinstance, heuristic techniques that detect violations of secure coding practices as describedin 2.3 are checking compliance with informally defined rules and recommendations, and it isnot always possible to unambiguously define the false positives or false negatives. Moreover,these approaches might highlight ‘vulnerabilities’ that are maybe not exploitable at this pointin time, but should be fixed nonetheless because they are ‘near misses’, i.e., might becomeeasily exploitable by future maintenance mistakes.

KA Software Security | October 2019 Page 16

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

Static and dynamic program analysis techniques are widely studied in other areas of com-puter science. This Topic highlights the analysis techniques most relevant to software secu-rity.
Another important approach to detection of vulnerabilities is to perform manual code reviewand auditing. These techniques are covered in the Secure Software Lifecycle CyBOK Knowl-edge Area [1]. When using tool-supported static detection, it makes sense to adjust suchsubsequent code review and other verification activities. For instance, if static detection issound for a given category of vulnerabilities, then one might consider not to review or testfor that category of vulnerabilities in later phases.
3.1 Static Detection

Static detection techniques analyse program code (either source code or binary code) to findvulnerabilities. Opposed to dynamic techniques, the static ones have the advantage that theycan operate on incomplete code that is not (yet) executable, and that in a single analysis runthey attempt to cover all possible program executions. Roughly speaking, one can distinguishtwo important classes of techniques, that differ in their main objective.
3.1.1 Heuristic static detection

First, there are static analysis techniques that detect violations of rules that are formal en-codings of secure programming-practice heuristics. The static analysis technique builds asemantic model of the program, including, for instance, an abstract syntax tree, and abstrac-tions of the data flow and control flow in the program. Based on this model, the techniquecan flag violations of simple syntactic rules such as, do not use this dangerous API function,or only use this API function with a constant string as first parameter.
An important indicator for the presence of vulnerabilities is the fact that (possibly malicious)program input can influence a value used in a risky operation (for instance, indexing into anarray, or concatenating strings to create a SQL query). Taint analysis (sometimes also calledflow analysis) is an analysis technique that determines whether values coming from programinputs (or more generally from designated taint sources) can influence values used in sucha risky operation (or more generally, values flowing into a restricted sink). The same analysiscan also be used to detect cases where confidential or sensitive information in the programflows to public output channels.
Many variants of static taint analysis exist. Important variations include (1) how much ab-straction is made of the code, for instance, path-sensitive versus path-insensitive, or context-sensitive versus context-insensitive analysis, and (2) whether influences caused by the pro-gram control flow instead of program data flow are taken into account (often distinguishedby using the terms taint analysis versus information flow analysis).
To reduce the number of false positives, a taint analysis can take into account sanitisationperformed by the program. Tainted values that were processed by designated sanitisationfunctions (that are assumed to validate that the values are harmless for further processing)have their taint removed.
An important challenge is that taint analyses must be configured with the right sets of sources,sinks and sanitisers. In practice, such configurations currently often occur manually althoughsome recent works have added tool assistance in which, for instance, machine learning isused to support security analysts in this task.

KA Software Security | October 2019 Page 17

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

3.1.2 Sound static verification

Second, there are static analysis techniques that aim to be sound for well-defined categoriesof vulnerabilities (but usually in practice still make compromises and give up soundness tosome extent). For categories of vulnerabilities that can be understood as specification orcontract violations, the main challenge is to express this underlying specification formally.Once this is done, the large body of knowledge on static analysis and program verificationdeveloped in other areas of computer science can be used to check compliance with thespecification. The three main relevant techniques are program verification, abstract interpre-tation and model checking.
Program verification uses a program logic to express program specifications, and relies onthe programmer/verifier to provide an adequate abstraction of the program in the form of in-ductive loop invariants or function pre- and post-conditions to make it possible to constructa proof that covers all program executions. For imperative languages with dynamic memoryallocation, separation logic [26] is a program logic that can express absence of memory-management and race-condition vulnerabilities (for data races on memory cells), as well ascompliance with programmer provided contracts on program APIs. Checking of compliancewith a separation logic specification is typically not automatic: it is done by interactive pro-gram verification where program annotations are used to provide invariants, pre-conditionsand post-conditions. However, if one is interested only in absence of memory managementvulnerabilities, these annotations can sometimes be inferred, making the technique auto-matic. Also avoiding the use of certain language features (e.g., pointers), and adhering toa coding style amenable to verification can help making verification automatic.
Abstract interpretation is an automatic technique where abstraction is made from the con-crete program by mapping the run-time values that the program manipulates to adequatefinite abstract domains. For imperative programs that do not use dynamic allocation or re-cursion, abstract interpretation is a successful technique for proving the absence of memorymanagement vulnerabilities automatically and efficiently.
Model checking is an automatic technique that exhaustively explores all reachable statesof the program to check whether none of the states violates a given specification. Becauseof the state explosion problem, model checking can only exhaustively explore very smallprograms, and in practice techniques to bound the exploration need to be used, for instance,by bounding the number of times a program loop can be executed. Bounded model checkingis no longer sound, but can still find many vulnerabilities.
Most practical implementations of these analysis techniques give up on soundness to someextent. In order to be both sound and terminating, a static analysis must over-approximate thepossible behaviours of the program it analyses. Over-approximation leads to false positives.Real programming languages have features that are hard to over-approximate without lead-ing to an unacceptable number of false positives. Hence, practical implementations haveto make engineering trade-offs, and will under-approximate some language features. Thismakes the implementation unsound, but more useful in the sense that it reduces the numberof false positives. These engineering trade-offs are nicely summarised in the ‘SoundinessManifesto’ [27].

KA Software Security | October 2019 Page 18

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

3.2 Dynamic Detection
Dynamic detection techniques execute a program and monitor the execution to detect vul-nerabilities. Thus, if sufficiently efficient, they can also be used for just-in-time vulnerabilitymitigation (See Topic 4). There are two important and relatively independent aspects to dy-namic detection: (1) how should one monitor an execution such that vulnerabilities are de-tected, and (2) how many and what program executions (i.e., for what input values) shouldone monitor?
3.2.1 Monitoring

For categories of vulnerabilities that can be understood as violations of a specified propertyof a single execution (See Topic 1.6), complete detection can be performed by monitoring forviolations of that specification. For other categories of vulnerabilities, or when monitoringfor violations of a specification is too expensive, approximative monitors can be defined.
Monitoring for memory-management vulnerabilities has been studied intensively. It is, inprinciple, possible to build complete monitors, but typically at a substantial cost in time andmemory. Hence, existing tools explore various trade-offs in execution speed, memory use,and completeness. Modern C compilers include options to generate code to monitor formemory management vulnerabilities. In cases where a dynamic analysis is approximative,like a static analysis, it can also generate false positives or false negatives, despite the factthat it operates on a concrete execution trace.
For structured output generation vulnerabilities, a challenge is that the intended structure ofthe generated output is often implicit, and hence there is no explicit specification that can bemonitored. Hence, monitoring relies on sensible heuristics. For instance, a monitor can use afine-grained dynamic taint analysis [25] to track the flow of untrusted input strings, and thenflag a violation when untrusted input has an impact on the parse tree of generated output.
Assertions, pre-conditions and post-conditions as supported by the design-by-contract ap-proach to software construction [18, c3] can be compiled into the code to provide a monitorfor API vulnerabilities at testing time, even if the cost of these compiled-in run-time checkscan be too high to use them in production code.
Monitoring for race conditions is hard, but some approaches for monitoring data races onshared memory cells exist, for instance, by monitoring whether all shared memory accessesfollow a consistent locking discipline.
3.2.2 Generating relevant executions

An important challenge for dynamic detection techniques is to generate executions of theprogram along paths that will lead to the discovery of new vulnerabilities. This problem is aninstance of the general problem in software testing of systematically selecting appropriateinputs for a program under test [18, c4]. These techniques are often described by the umbrellaterm fuzz testing or fuzzing, and can be classified as:
• Black-box fuzzing, where the generation of input values only depends on the input/outputbehaviour of the program being tested, and not on its internal structure. Many differentvariants of black-box fuzzing have been proposed, including (1) purely random testing,where input values are randomly sampled from the appropriate value domain, (2) model-based fuzzing, where a model of the expected format of input values (typically in theform of a grammar) is taken into account during generation of input values, and (3)

KA Software Security | October 2019 Page 19

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

mutation-based fuzzing, where the fuzzer is provided with one or more typical input val-ues and it generates new input values by performing small mutations on the providedinput values.
• White-box fuzzing, where the internal structure of the program is analysed to assistin the generation of appropriate input values. The main systematic white-box fuzzingtechnique is dynamic symbolic execution. Dynamic symbolic execution executes a pro-gram with concrete input values and builds at the same time a path condition, a logicalexpression that specifies the constraints on those input values that have to be fulfilledfor the program to take this specific execution path. By solving for input values that donot satisfy the path condition of the current execution, the fuzzer can make sure thatthese input values will drive the program to a different execution path, thus improvingcoverage.

4 MITIGATING EXPLOITATION OF VULNERABILITIES
[3, 28]

Even with good techniques to prevent introduction of vulnerabilities in new code, or to detectvulnerabilities in existing code, there is bound to be a substantial amount of legacy code withvulnerabilities in active use for the foreseeable future. Hence, vulnerability prevention anddetection techniques can be complemented with techniques that mitigate the exploitationof remaining vulnerabilities. Such mitigation techniques are typically implemented in theexecution infrastructure, i.e., the hardware, operating system, loader or virtual machine, orelse are inlined into the executable by the compiler (a so-called ‘inlined reference monitor’).An important objective for these techniques is to limit the impact on performance, and tomaximise compatibility with legacy programs.
4.1 Runtime Detection of Attacks

Runtime monitoring of program execution is a powerful technique to detect attacks. In prin-ciple, program monitors to detect vulnerabilities during testing (discussed in 3.2 DynamicDetection) could also be used at runtime to detect attacks. For instance, dynamic taint anal-ysis combined with a dynamic check whether tainted data influenced the parse tree of gen-erated output has also been proposed as a runtime mitigation technique for SQL injectionattacks.
But there is an important difference in the performance requirements for monitors used dur-ing testing (discussed in Topic 3) and monitors used at runtime to mitigate attacks. Forruntime detection of attacks, the challenge is to identify efficiently detectable violations ofproperties that are expected to hold for the execution trace of the program. A wide variety oftechniques are used:

• Stack canaries detect violations of the integrity of activation records on the call stack,and hence detect some attacks that exploit memory management vulnerabilities tomodify a return address.
• No Execute (NX) data memory detects attempts to direct the program counter to datamemory instead of code memory and hence detects many direct code injection attacks.
• Control-Flow Integrity (CFI) is a class of techniques that monitors whether the runtime

KA Software Security | October 2019 Page 20

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

control flow of the program complies with some specification of the expected controlflow, and hence detects many code-reuse attacks.
On detection of an attack, the runtime monitor must react appropriately, usually by terminat-ing the program under attack. Termination is a good reaction to ensure that an attack can dono further damage, but it has of course a negative impact on availability properties.
4.2 Automated Software Diversity

Exploitation of vulnerabilities often relies on implementation details of the software underattack. For instance, exploitation of a memory management vulnerability usually relies ondetails of the memory layout of the program at runtime. A SQL injection attack can rely ondetails of the database to which the SQL query is being sent.
Hence, a generic countermeasure to make it harder to exploit vulnerabilities is to diversifythese implementation details. This raises the bar for attacks in two ways. First, it is harderfor an attacker to prepare and test his/her attack on an identical system. An attack thatworks against a web server installed on the attacker machine might fail against the sameweb server on the victim machine because of diversification. Second, it is harder to buildattacks that will work against many systems at once. Instead of building an exploit once,and then using it against many systems, attackers now have to build customised exploits foreach system they want to attack.
The most important realisation of this idea is Address Space Layout Randomization (ASLR),where the layout of code, stack and/or heap memory is randomised either at load or at run-time. Such randomisation can be coarse-grained, for instance, by just randomly relocatingthe base address of code, stack and heap segments, or fine-grained where addresses of in-dividual functions in code memory, activation records in the stack, or objects in the heap arechosen randomly.
The research community has investigated many other ways of automatically creating diver-sity at compilation time or installation time [28], but such automatic diversification can alsobring important challenges to software maintenance as bug reports can be harder to inter-pret, and software updates may also have to be diversified.
4.3 Limiting Privileges

The exploitation of a software vulnerability influences the behaviour of the software underattack such that some security objective is violated. By imposing general bounds on whatthe software can do, the damage potential of attacks can be substantially reduced.
Sandboxing is a security mechanism where software is executed within a controlled environ-ment (the ‘sandbox’) and where a policy can be enforced on the resources that software inthe sandbox can access. Sandboxing can be used to confine untrusted software, but it canalso be used to mitigate the impact of exploitation on vulnerable software: after a successfulexploit on the software, an attacker is still confined by the sandbox.
The generic idea of sandboxing can be instantiated using any of the isolation mechanismsthat modern computer systems provide: the sandbox can be a virtual machine running underthe supervision of a virtual-machine monitor, or it can be a process on which the operatingsystem imposes an access control policy. In addition, several purpose-specific sandboxingmechanisms have been developed for specific classes of software, such as, for instance, jails

KA Software Security | October 2019 Page 21

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

that can sandbox network- and filesystem-access in virtual hosting environments. The JavaRuntime Environment implements a sandboxing mechanism intended to contain untrustedJava code, or to isolate code from different stakeholders within the same Java Virtual Ma-chine, but several significant vulnerabilities have been found in that sandboxing mechanismover the years [29].
Compartimentalisation is a related but finer-grained security mechanism, where the softwareitself is divided in a number of compartments and where some bounds are enforced on theprivileges of each of these compartments. This again requires some underlying mechanismto enforce these bounds. For instance, a compartimentalised browser could rely on operat-ing system process access control to bound the privileges of its rendering engine by denyingit file system access. Exploitation of a software vulnerability in the rendering engine is nowmitigated to the extent that even after a successful exploit, the attacker is still blocked fromaccessing the file system. Very fine-grained forms of compartimentalisation can be achievedby object-capability systems [22], where each application-level object can be a separate pro-tection domain.
To mitigate side-channel vulnerabilities, one can isolate the vulnerable code, for instance, ona separate core or on separate hardware, such that the information leaking through the sidechannel is no longer observable for attackers.
4.4 Software Integrity Checking

Under the umbrella term Trusted Computing, a wide range of techniques have been devel-oped to measure the state of a computer system, and to take appropriate actions if thatstate is deemed insecure. A representative technique is Trusted Boot where measurementsare accumulated for each program that is executed. Any modification to the programs (forinstance, because of a successful attack) will lead to a different measurement. One can thenenforce that access to secret keys, for instance, is only possible from a state with a specifiedmeasurement.
Parno et al. [30] give an excellent overview of this class of techniques.
CONCLUSIONS

Software implementation vulnerabilities come in many forms, and can be mitigated by a widerange of countermeasures. Table 1 summarises the relationship between the categories ofvulnerabilities discussed in this chapter, and the relevant prevention, detection and mitigationtechniques commonly used to counter them.

KA Software Security | October 2019 Page 22

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

Vulnerability category Prevention Detection Mitigation
Memory managementvulnerabilities memory-safe languages,fat/smart pointers, cod-ing rules

many static and dynamicdetection techniques stack canaries, NX, CFI,ASLR, sandboxing
Structured output genera-tion vulnerabilities regular expression types,LINQ, Prepared State-ments

taint analysis runtime detection

Race condition vulnerabil-ities ownership types, codingguidelines static and dynamic detec-tion sandboxing
API vulnerabilities contracts, usable APIs,defensive API implemen-tations

runtime checking ofpre- and post-conditions,static contract verifica-tion

compartimentalisation

Side channel vulnerabili-ties coding guidelines static detection isolation

Table 1: Summary overview
Acknowledgments

The insightful and constructive comments and feedback from the reviewers and editor onearlier drafts have been extremely valuable, and have significantly improved the structureand contents of this chapter, as have the comments received during public review.

KA Software Security | October 2019 Page 23

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

CROSS-REFERENCE OF TOPICS VS REFERENCE MATERIAL

Du:
com

put
er-s

ecu
rity

[4]

Dow
d:ar

t[7]
and

ers
on2

008
sec

urit
y[6

]
Pie

rce
:20

02:
TPL

:50
904

3[1
5]

C-c
odi

ng-
sta

nda
rd[

17]
swe

bok
v3[

18]
Che

ss:s
tati

c-an
alys

is[5
]

1 Categories of Vulnerabilities1.1 Memory Management Vulnerabilities c4,c5 c5 c61.2 Structured Output Generation Vulnerabilities c10,c11 c17 c91.3 Race Condition Vulnerabilities c7 c91.4 API Vulnerabilities c6 c9,c111.5 Side-channel Vulnerabilities c172 Prevention of Vulnerabilities2.1 Language Design and Type Systems c12.2 API Design c18 c32.3 Coding Practices *3 Detection of Vulnerabilities3.1 Static Detection *3.2 Dynamic Detection c44 Mitigating Exploitation of Vulnerabilities4.1 Runtime Detection of Attacks c44.2 Automated Software Diversity c44.3 Limiting Privileges c7

FURTHER READING

Building Secure Software [31] and 24 Deadly Sins of Software Security [32]
Building Secure Software was the first book focusing specifically on software security, andeven if some of the technical content is somewhat dated by now, the book is still a solidintroduction to the field and the guiding principles in the book have withstood the test oftime.
24 Deadly Sins of Software Security is a more recent and updated book by mostly the sameauthors.

KA Software Security | October 2019 Page 24

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

The Art of Software Security Assessment [7]
Even if this is a book that is primarily targeted at software auditors, it is also a very usefulresource for developers. It has clear and detailed descriptions of many classes of vulnerabil-ities, including platform-specific aspects.
Surreptitious Software [33]

Software security in this chapter is about preventing, detecting and removing software imple-mentation vulnerabilities. However, another sensible, and different, interpretation of the termis that it is about protecting the software code itself, for instance, against reverse engineer-ing of the code, against extraction of secrets from the code, or against undesired tamperingwith the code before or during execution. Obfuscation, watermarking and tamperproofingare examples of techniques to protect software against such attacks. Surreptitious Softwareis a rigorous textbook about this notion of software security.
OWASP Resources

The Open Web Application Security Project (OWASP) is a not-for-profit, volunteer-driven or-ganisation that organises events and offers a rich set of resources related to applicationsecurity and software security. They offer practice-oriented guides on secure developmentand on security testing, as well as a collection of tools and awareness raising instruments.All these resources are publicly available at https://www.owasp.org.
REFERENCES
[1] L. Williams, The Cyber Security Body of Knowledge. University of Bristol, 2019, ch.Secure Software Lifecycle, version 1.0. [Online]. Available: https://www.cybok.org/[2] S. Fahl, The Cyber Security Body of Knowledge. University of Bristol, 2019, ch. Web &Mobile Security, version 1.0. [Online]. Available: https://www.cybok.org/[3] L. Szekeres, M. Payer, T. Wei, and D. Song, “Sok: Eternal war in memory,” inProceedings of the 2013 IEEE Symposium on Security and Privacy, ser. SP ’13.Washington, DC, USA: IEEE Computer Society, 2013, pp. 48–62. [Online]. Available:http://dx.doi.org/10.1109/SP.2013.13[4] W. Du, Computer Security: A hands-on Approach, 2017.[5] B. Chess and J. West, Secure Programming with Static Analysis, 1st ed. Addison-WesleyProfessional, 2007.[6] R. J. Anderson, Security Engineering: a guide to building dependable distributed systems.Wiley, 2008.[7] M. Dowd, J. McDonald, and J. Schuh, The Art of Software Security Assessment: Identify-ing and Preventing Software Vulnerabilities. Addison-Wesley Professional, 2006.[8] B. Goetz, J. Bloch, J. Bowbeer, D. Lea, D. Holmes, and T. Peierls, Java Concurrency inPractice. Addison-Wesley Longman, Amsterdam, 2006.[9] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel, “An empirical study of cryptographicmisuse in android applications,” in Proceedings of the 2013 ACM SIGSAC Conference onComputer & Communications Security, ser. CCS ’13. ACM, 2013, pp. 73–84.[10] N. Smart, The Cyber Security Body of Knowledge. University of Bristol, 2019, ch.Cryptography, version 1.0. [Online]. Available: https://www.cybok.org/

KA Software Security | October 2019 Page 25

https://www.cybok.org
https://www.owasp.org
https://www.cybok.org/
https://www.cybok.org/
http://dx.doi.org/10.1109/SP.2013.13
https://www.cybok.org/


The Cyber Security Body Of Knowledge
www.cybok.org

[11] P. Kocher, “Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and othersystems,” in Proceedings of the 16th Annual International Cryptology Conference on Ad-vances in Cryptology, ser. CRYPTO ’96. Springer-Verlag, 1996, pp. 104–113.[12] F. B. Schneider, “Enforceable security policies,” ACM Transactions on Information Sys-tems Security, vol. 3, no. 1, pp. 30–50, Feb. 2000.[13] M. Abadi, “Protection in programming-language translations,” in Proceedings of the 25thInternational Colloquium on Automata, Languages and Programming, ser. ICALP ’98.London, UK, UK: Springer-Verlag, 1998, pp. 868–883.[14] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts and taxonomy ofdependable and secure computing,” IEEE Transactions onDependable Secure Computing,vol. 1, no. 1, pp. 11–33, Jan. 2004.[15] B. C. Pierce, Types and Programming Languages, 1st ed. The MIT Press, 2002.[16] L. Cardelli, “Type systems,” in The Computer Science and Engineering Handbook, 1997,pp. 2208–2236.[17] Software Engineering Institute – Carnegie Mellon University, “SEI CERT C coding stan-dard: Rules for developing safe, reliable, and secure systems,” 2016.[18] IEEE Computer Society, P. Bourque, and R. E. Fairley, Guide to the Software EngineeringBody of Knowledge (SWEBOK®), 3rd ed. Los Alamitos, CA, USA: IEEE Computer SocietyPress, 2014.[19] “SPARK 2014,” http://www.spark-2014.org/about, accessed: 2018-04-17.[20] H. Hosoya, J. Vouillon, and B. C. Pierce, “Regular expression types for xml,” ACM Trans.Program. Lang. Syst., vol. 27, no. 1, pp. 46–90, Jan. 2005.[21] A. Sabelfeld and A. C. Myers, “Language-based information-flow security,” IEEE J.Sel. A.Commun., vol. 21, no. 1, pp. 5–19, Sep. 2006.[22] M. S. Miller, “Robust composition: Towards a unified approach to access control andconcurrency control,” Ph.D. dissertation, Johns Hopkins University, Baltimore, Maryland,USA, May 2006.[23] F. Long, D. Mohindra, R. C. Seacord, D. F. Sutherland, and D. Svoboda, The CERT OracleSecure Coding Standard for Java, 1st ed. Addison-Wesley Professional, 2011.[24] MISRA Ltd, MISRA-C:2012 Guidelines for the use of the C language in Critical Systems,Motor Industry Software Reliability Association Std., Oct. 2013. [Online]. Available:www.misra.org.uk[25] E. J. Schwartz, T. Avgerinos, and D. Brumley, “All you ever wanted to know about dynamictaint analysis and forward symbolic execution (but might have been afraid to ask),” inPro-ceedings of the 2010 IEEE Symposium on Security and Privacy, ser. SP ’10. Washington,DC, USA: IEEE Computer Society, 2010, pp. 317–331.[26] J. C. Reynolds, “Separation logic: A logic for shared mutable data structures,” in Pro-ceedings of the 17th Annual IEEE Symposium on Logic in Computer Science, ser. LICS ’02.Washington, DC, USA: IEEE Computer Society, 2002, pp. 55–74.[27] B. Livshits, M. Sridharan, Y. Smaragdakis, O. Lhoták, J. N. Amaral, B.-Y. E. Chang, S. Z.Guyer, U. P. Khedker, A. Møller, and D. Vardoulakis, “In defense of soundiness: A mani-festo,” Commun. ACM, vol. 58, no. 2, pp. 44–46, Jan. 2015.[28] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz, “SoK: Automated software diversity,”in Proceedings of the 2014 IEEE Symposium on Security and Privacy, ser. SP ’14. Wash-ington, DC, USA: IEEE Computer Society, 2014, pp. 276–291.[29] P. Holzinger, S. Triller, A. Bartel, and E. Bodden, “An in-depth study of more than ten yearsof java exploitation,” in Proceedings of the 2016 ACM SIGSAC Conference on Computerand Communications Security, ser. CCS ’16, 2016, pp. 779–790.[30] B. Parno, J. M. McCune, and A. Perrig, “Bootstrapping trust in commodity computers,”

KA Software Security | October 2019 Page 26

https://www.cybok.org
http://www.spark-2014.org/about
www.misra.org.uk


The Cyber Security Body Of Knowledge
www.cybok.org

in Proceedings of the 2010 IEEE Symposium on Security and Privacy, ser. SP ’10. Wash-ington, DC, USA: IEEE Computer Society, 2010, pp. 414–429.[31] J. Viega and G. McGraw, Building Secure Software: How to Avoid Security Problems theRight Way. Addison-Wesley Professional, 2002.[32] M. Howard, D. LeBlanc, and J. Viega, 24 Deadly Sins of Software Security: ProgrammingFlaws and How to Fix Them, 1st ed. New York, NY, USA: McGraw-Hill, Inc., 2010.[33] C. Collberg and J. Nagra, Surreptitious Software: Obfuscation, Watermarking, and Tam-perproofing for Software Protection, 1st ed. Addison-Wesley Professional, 2009.
ACRONYMS
API Application Programming Interface.
ASLR Address Space Layout Randomization.
CFI Control-Flow Integrity.
CVE Common Vulnerabilities and Exposures.
CWE Common Weakness Enumeration.
DRAM Dynamic Random Access Memory.
HSM Hardware Security Module.
HTML Hypertext Markup Language.
HTTP Hypertext Transfer Protocol.
ISA Instruction Set Architecture.
LINQ Language Integrated Query.
NX No Execute.
RAII Resource Acquisition Is Initialisation.
SQL Structured Query Language.
TOCTOU Time Of Check Time Of Use.
XSS Cross-Site Scripting.

KA Software Security | October 2019 Page 27

https://www.cybok.org

	1 Categories of Vulnerabilities
	1.1 Memory Management Vulnerabilities
	1.2 Structured Output Generation Vulnerabilities
	1.3 Race Condition Vulnerabilities
	1.4 API Vulnerabilities
	1.5 Side-channel Vulnerabilities
	1.6 Discussion
	1.6.1 Better connection with overall security objectives needs more complex specifications
	1.6.2 Side channel vulnerabilities are different
	1.6.3 Vulnerabilities as faults


	2 Prevention of Vulnerabilities
	2.1 Language Design and Type Systems
	2.1.1 Memory management vulnerabilities
	2.1.2 Structured output generation vulnerabilities
	2.1.3 Race condition vulnerabilities
	2.1.4 Other vulnerabilities

	2.2 API Design
	2.3 Coding Practices

	3 Detection of Vulnerabilities
	3.1 Static Detection
	3.1.1 Heuristic static detection
	3.1.2 Sound static verification

	3.2 Dynamic Detection
	3.2.1 Monitoring
	3.2.2 Generating relevant executions


	4 Mitigating Exploitation of Vulnerabilities
	4.1 Runtime Detection of Attacks
	4.2 Automated Software Diversity
	4.3 Limiting Privileges
	4.4 Software Integrity Checking


