
Web & Mobile Security
Knowledge Area
Version 1.0.1
Sascha Fahl Leibniz University Hannover

EDITOR
Emil Lupu Imperial College London

REVIEWERS
Alastair Beresford University of Cambridge
Sven Bugiel CISPA Helmholtz Center for Information Security
Hao Chen University of California, Davis
Paul Freemantle WSO2

Marco Viera University of Coimbra



The Cyber Security Body Of Knowledge
www.cybok.org

COPYRIGHT

© Crown Copyright, The National Cyber Security Centre 2021. This information is licensed
under the Open Government Licence v3.0. To view this licence, visit:
http://www.nationalarchives.gov.uk/doc/open-government-licence/

When you use this information under the Open Government Licence, you should include the
following attribution: CyBOK © Crown Copyright, The National Cyber Security Centre 2021,
licensed under theOpenGovernment Licence: http://www.nationalarchives.gov.uk/doc/open-
government-licence/.

The CyBOK project would like to understand how the CyBOK is being used and its uptake.
The project would like organisations using, or intending to use, CyBOK for the purposes
of education, training, course development, professional development etc. to contact it at
contact@cybok.org to let the project know how they are using CyBOK.

Version 1.0.1 is a stable public release of the Web & Mobile Security Knowledge Area.

KA Web & Mobile Security | July 2021 Page 1

https://www.cybok.org
http://www.nationalarchives.gov.uk/doc/open-government-licence/
http://www.nationalarchives.gov.uk/doc/open-government-licence/
http://www.nationalarchives.gov.uk/doc/open-government-licence/
mailto:contact@cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

CHANGELOG

Version date Version number Changes made
July 2021 1.0.1 Updated copyright statement; amended “issue” to “ver-

sion”; amended typos
October 2019 1.0

KA Web & Mobile Security | July 2021 Page 2

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

1 INTRODUCTION

The purpose of this Knowledge Area is to provide an overview of security mechanisms, attacks
and defences in modern web and mobile ecosystems. This overview is intended for use in
academic courses and to guide industry professionals interested in this area.

Web and mobile security have become the primary means through which many users interact
with the Internet and computing systems. Hence, their impact on overall information security is
significant due to the sheer prevalence of web and mobile applications (apps). Covering both
web and mobile security, this Knowledge Area emphasises the intersection of their security
mechanisms, vulnerabilities and mitigations. Both areas share a lot in common and have
experienced a rapid evolution in the features and functionalities offered by their client side
applications (apps). This phenomenon, sometimes called appification, is a driver in modern
web and mobile ecosystems. Web and mobile client apps typically interact with server side
application interfaces using web technologies. This second phenomenon, also sometimes
called webification, equally affects both web and mobile ecosystems. In the 1990s, web and
mobile security had a strong focus on server-side and infrastructure security. Web browsers
were mostly used to render and display static websites without dynamic content. The focus
on the server-side prevailed even with the rise of early scripting languages such as Perl and
PHP. However, web content became more dynamic in the 2000s, and server-side security
had to address injection attacks. Similarly to web browsers, early mobile devices had limited
functionality and were mostly used to make calls or send SMS. Mobile security back then
focused on access control, calls and SMS security.

The rise of modern web and mobile platforms brought notable changes. A significant amount
of web application code is no longer executed on the server-side but runs in the browser.
Web browser support for Java, Adobe Flash, JavaScript and browser plugins and extensions
broughtmany new features to the client, which prompted a drastic change of the attack surface
on the web. New types of attacks such as Cross-Site Scripting emerged and plugins proved
to be vulnerable, e.g. Adobe Flash browser plugins are known for being an attractive target
for attackers. In response to these new threats, browser vendors and website developers
and operators took measures. For instance, Google Chrome disabled the Adobe Flash plugin
by default in 2019 [1] and new security best practices were developed [2]. Similarly to web
browsers, mobile devices became smarter andmore feature-rich. Smartphones and tablets are
equipped with sensors, including motion, GPS and cameras. They have extensive computing
power, storage capacity and are connected to the Internet 24-7. Modern Android and iOS
devices run full-blownoperating systemsand increasingly feature-rich and complex application
frameworks. Mobile apps can request access to all the devices’ resources and sensors using
permission based access control, and process highly sensitive user information. Being
powerful, feature-rich, and connected makes mobile clients promising and attractive targets
for attackers.

Modern web and mobile ecosystems are the primary drivers for the rise of appification and
the "there is an app for everything" motto sums up many of the technological and security
developments in recent years. The appification trend resulted in millions of apps ranging from
simple flashlight apps to online social network apps, from online banking apps to mobile and
browser-based games. It also sparked the merging of technologies and security mechanisms
used in web and mobile applications. Both ecosystems are typically client-server oriented.

KA Web & Mobile Security | July 2021 Page 3

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

Web browsers andmobile apps communicate with back-end services often using web focused
technologies. Communication is mostly based on the Hypertext Transfer Protocol (HTTP)
and its secure extension HTTPS. Both web-browsers and mobile applications tend to primarily
exchange Hyptertext Markup Language (HTML), JSON and XML documents and both make
extensive use of the JavaScript programming language, on the server- and the client-side.
Webification describes the conversion to these web technologies.

The sheer amount of applications in modern web and mobile ecosystems also impacted
the software distribution model, which moved away from website downloads to centralised
application stores, which allow developers to publish, advertise and distribute their software,
and users to download new apps and app updates. The centralised software distribution had
a positive impact on update frequencies and speed for both web and mobile.

This Knowledge Area focuses on the appification trend and an introduction to the core tech-
nologies of thewebification phenomenon. Figure 1 provides an overviewof the entities involved
and their interactions.

Mobile Device

Apps
Apps

Sandboxed Apps

https://example.com
https://example.com

Web Browser

https://example.com

<html>
<head>
<title>This is an example</title>
</head>
<script src="myscripts.js"></script>
<body>
...
</body>
</html>

Devs

App Store
Security Checks

Develop web 
applications 
and configure 
infrastructure

Push app updatesInstall apps

Web Server

Users

Is
ol

at
ed

 W
eb

sit
es

HTT
PS Req

ue
sts

HTT
PS Res

po
ns

es

Devs/Ops

Publish apps and 
push updates

Exchange Data with Application Server

Server Side

Client Side

Figure 1: Web and Mobile Ecosystem

After introducing core technologies and concepts, we describe important securitymechanisms
and illustrate how they differ from non-web and non-mobile ecosystems. Software and
content isolation are crucial security mechanisms and aim to protect apps and websites from
malicious access. While isolation is understood in relation to traditional operating systems
(cf. the Operating Systems & Virtualisation CyBOK Knowledge Area [3]), specifics for web and
mobile platforms will be outlined.

Modern web and mobile platforms introduced new forms of access control based on per-
mission dialogues. Whilst a more general discussion of access control is included in the
Authentication, Authorisation & Accountability CyBOK Knowledge Area [4], this Knowledge
Area discusses web and mobile specifics. Web and mobile applications make extensive use
of the HTTP and HTTPS protocols. Hence, we will discuss the Web Public-Key Infrastructure
(PKI) and HTTPS extending the Transport Layer Security (TLS) section in the Network Security

KA Web & Mobile Security | July 2021 Page 4

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

CyBOK Knowledge Area [5]. Similarly, we will discuss web and mobile-specific authentica-
tion aspects, referring readers to the Authentication, Authorisation & Accountability CyBOK
Knowledge Area [4] for a more general discussion of authentication. Finally, we address
frequent software updates as a crucial security measure. While software updates are equally
important in traditional computer systems, the centralisation1 of web and mobile ecosystems,
introduces new challenges and opportunities.

The following sections focus on web and mobile-specific client and server-side security
aspects. However, we will not address common software vulnerabilities (cf. the Software
Security CyBOK Knowledge Area [6]) and operating system security (cf. Operating Systems
& Virtualisation CyBOK Knowledge Area [3]) in general. Section 3 first covers phishing and
clickjacking attacks and defenses. Both affect web and mobile clients and exploit human
difficulties in correctly parsing URLs or identifying changes in the visual appearance of web-
sites. As feature-rich web and mobile clients store sensitive data, we will then discuss client-
side storage security issues and mitigations. Finally, Section 3 discusses physical attacks on
mobile clients, including smudge attacks and shoulder surfing. Section 4 addresses server-
side challenges, starting with an overview of frequent injection attacks. We discuss SQL and
command injection attacks that allow malicious users to manipulate database queries to
storage backends of web applications and commands that are executed. This is followed
by a discussion of cross-site scripting and cross-site request forgery attacks and common
server-side misconfigurations that might lead to vulnerable service backends.

Overall, the discussion of client- and server-side security challenges aims to serve as the
underlining of the natural split between entities in web and mobile ecosystems. Additionally,
the chosen aspects illustrate the difference between the web and mobile world from other
ecosystems.

Due to its focus on the intersection of both web andmobile security, this Knowledge Area does
not cover aspects that are unique to eitherweb ormobile such asmobile device security, mobile
network (i. e., 2G/3G/4G/5G) security (see Physical Layer and Telecommunications Security
CyBOK Knowledge Area [7]), and mobile malware. Some of these aspects are discussed in
the Hardware Security CyBOK Knowledge Area [8], the Malware & Attack Technologies CyBOK
Knowledge Area [9] and the Network Security CyBOK Knowledge Area [5]. We also do not
discuss side-channel attacks; the concept and examples for side-channel security are given
in the Hardware Security CyBOK Knowledge Area [8].

2 FUNDAMENTAL CONCEPTS AND APPROACHES

[10, 11, 12, 13, 14, 15, 16, 17, 18]

This section describes fundamental concepts and approaches of modern web and mobile
platforms that affect security. The information presented in this section is intended to serve as
a foundation to better understand the security challenges in the following sections. Similar to
other software products and computer systems, mobile operating systems and applications
and web browsers as well as web servers may contain exploitable bugs. General purpose
software vulnerabilities are discussed in the Software Security CyBOK Knowledge Area [6].

1There are only a limited number of widely used web browsers and application stores.

KA Web & Mobile Security | July 2021 Page 5

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

2.1 Appification

Over the last ten years, the rise of mobile devices and ubiquitous Internet access have changed
the way software is produced, distributed and consumed, altering how humans interact with
computer devices and with software installed on the devices. While regular Internet browsers
have been the dominant way of accessing content on theweb in the pre-mobile era, the concept
of appification significantly changed the way users access content online [11]. Appification
describes the phenomenon of moving away from a web-based platform to access most
digital tools and media online with a web-browser through mobile applications with highly
specialised, tiny feature sets. As mobile devices grew to become the primary interface for web
access worldwide [19], the number of apps rose enormously over the last decade. “There is
an app for everything” became the mantra of appified software ecosystems, which produced
numerous applications for all sorts of use cases and application areas. Many apps look like
native local desktop or mobile applications. However, they are often (mobile) web applications
that communicate with back end services, which then outsource computation and storage
tasks to the client. The shift towards appification had a significant impact on web and mobile
security creating more security challenges on the client-side. The rise of appification also
impacted the developer landscape. In the pre-appification era, software development was
mostly dominated by experienced developers. Due to the more extensive tool and framework
support, the market entrance barrier is lower in appified ecosystems. This attracts more
inexperienced developers, and has negative consequences for web and mobile security in
general (cf. the Human Factors CyBOK Knowledge Area [20]).

TheRise of the Citizen Developer The appification trend attractsmany non-professional soft-
ware developers called citizen developers. Many of them do not have a software engineering
education but make use of multiple simple APIs and tools available to build apps for different plat-
forms. Oltrogge et al. [21] found that the adoption of easy-to-use Online Application Generators
(OAGs) to develop, distribute and maintain apps has a negative impact on application security.
Generated apps tend to be vulnerable to reconfiguration and code injection attacks and rely on an
insecure infrastructure.

2.2 Webification

Modern web andmobile platforms gave rise to another phenomenon. Many of the applications
are not native applications written in compiled programming languages such as Java or Kotlin
and C/C++ (e. g. for Android apps) or Objective-C and Swift (e. g. for iOS apps). Instead, they
are based on web technologies including server-side Python, Ruby, Java or JavaScript scripts
and client-side JavaScript. In addition to conventional web applications targeting regular web
browsers, mobile web applications are more frequently built using these web technologies. In
particular, mobile web applications make heavy use of the JavaScript language.

This section gives a brief introduction to the most essential technologies needed to explain
vulnerabilities and mitigations later in the KA. We include Uniform Resource Locators (URLs),
the Hypertext Transfer Protocol (HTTP), the Hyptertext Markup Language (HTML), Cascading
Style Sheets (CSS) and the JavaScript programming language. For more detailed information,
we suggest reading [22].

KA Web & Mobile Security | July 2021 Page 6

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

2.2.1 Uniform Resource Locators

Uniform Resource Locators (URLs) [12] are a core concept in the web. A URL is a well-
formed and fully qualified text string that addresses and identifies a resource on a server.
Address bars in modern browser User Interfaces (UIs) use the URLs to illustrate the remote
address of a rendered document. A fully qualified absolute URL string consists of several
segments and contains all the required information to access a particular resource. The syntax
of an absolute URL is: scheme://credentials@host:port/resourcepath?query_parameters#fragments.
Each segment has a particular meaning (cf. Table 1).

Segment Optional Description

scheme: Indicates the protocol a web client should use to retrieve a resource.
Common protocols in the web are http: and https:

// Indicates a hierarchical URL as required by [12]

credentials@ Can contain a username and password that might be needed to
retrieve a resource from a remote server.

host Specifies a case-insensitive DNS name (e. g. cybok.org), a raw IPv4
(e. g. 127.0.0.1) or IPv6 address (e. g. [0:0:0:0:0:0:0:1]) to indicate the
location of the server hosting a resource.

:port Describes a non-default network port number to connect to a
remote server. Default ports are 80 for HTTP and 443 for HTTPS.

/resourcepath Identifies the resource address on a remote server. The resource
path format is built on top of Unix directory semantics.

?query_parameters Passes non-hierarchical parameters to a remote resource, such as
server-side script input parameters.

#fragment Provides instructions for the browser. In practice, it is used to
address an HTML anchor element for in-document navigation.

Table 1: URL segments.

2.2.2 Hypertext Transfer Protocol

The Hypertext Transfer Protocol (HTTP) is the most widely used mechanism to exchange
documents between servers and clients on the web. While HTTP is mostly used to transfer
HTML documents, it can be used for any data. Although HTTP/2.0 [23] is the newest protocol
revision, the most widely supported protocol version is HTTP/1.1 [10]. HTTP is a text-based
protocol using TCP/IP. An HTTP client initiates a session by sending an HTTP request to an
HTTP server. The server returns an HTTP response with the requested file.

The first line of a client request includes HTTP version information (e. g. HTTP/1.1). The
remaining request header consists of zero or more name:value pairs. The pairs are sep-
arated by a new line. Common request headers are User-Agent – these include browser
information, Host – the URL hostname, Accept – which carries all supported document types,
Content-Length – the length of the entire request and Cookie – see Section 2.8. The
request header is terminated with a single empty line. HTTP clients may pass any additional
content to the server. Although the content can be of any type, clients commonly send HTML
content to the server, e. g. to submit form data. The HTTP server responds to the request
with a response header followed by the requested content. The response header contains the
supported protocol version, a numerical status code, and an optional, human-readable status

KA Web & Mobile Security | July 2021 Page 7

https://www.cybok.org
scheme://credentials@host:port/resourcepath?query_parameters#fragments


The Cyber Security Body Of Knowledge
www.cybok.org

message. The status notification is used to indicate request success (e. g. status 200), error
conditions (e. g. status 404 or 500) or other exceptional events. Response headers might
also contain Cookie headers – cf. Section 2.8. Additional response header lines are optional.
The header ends with a single empty line followed by the actual content of the requested
resource. Similar to the request content, the content may be of any type but is often an HTML
document.

Although cookies were not part of the original HTTP RFC [10], they are one of the most
important protocol extensions. Cookies allow remote servers to store multiple name=value
pairs in client storage. Servers can set cookies by sending a Set-Cookie: name=value response
header and consume them by reading a client’s Cookie: name=value request header. Cookies
are a popularmechanism tomaintain sessions between clients and servers and to authenticate
users.

HTTP is request-response based and neatly fits unidirectional data transfer use cases. How-
ever, for better latency andmore effective use of bandwidth, bidirectional network connections
are needed. Bidirectional connections not only allow clients to pull data from the server, but
also the server to push data to the client at any time. Therefore, the WebSocket protocol [24]
provides a mechanism on top of HTTP. WebSocket connections start with a regular HTTP
request that includes an Upgrade: WebSocket header. After the WebSocket handshake is
completed, both parties can send data at any time without having to run a new handshake.

2.2.3 Hypertext Markup Language

The Hyptertext Markup Language (HTML) [13] is the most widely used method to produce and
consume documents on theweb. Themost recent version is HTML5. The HTML syntax is fairly
straightforward: a hierarchical tree structure of tags, name=value tag parameters and text
nodes form anHTML document. The Domain ObjectModel (DOM) defines the logical structure
of an HTML document and rules how it is accessed and manipulated. However, competing
web browser vendors introduced all sorts of custom features andmodified the HTML language
to their wishes. The many different and divergent browser implementations resulted in only a
small portion of the websites on the Internet adhering to the HTML standard’s syntax. Hence,
implementations of HTML parsing modes and error recovery vary greatly between different
browsers.

The HTML syntax comes with some constraints on what may be included in a parameter value
or inside a text node. Some characters (e. g., angle brackets, single and double quotes and
ampersands) make the blocks of the HTML markup. Whenever they are used for a different
purpose, such as parts of substrings of a text, they need to be escaped. To avoid undesirable
side effects, HTML provides an entity encoding scheme. However, the failure to properly apply
the encoding to reserved characters when displaying user-controlled information may lead to
severe web security flaws such as cross-site scripting (cf. Section 4).

KA Web & Mobile Security | July 2021 Page 8

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

2.2.4 Cascading Style Sheets

Cascading Style Sheets (CSS) [25] are a consistent and flexible mechanism to manipulate the
appearance of HTML documents. The primary goal of CSS was to provide a straightforward
and simple text-based description language to supersede the many vendor-specific HTML
tag parameters that lead to many inconsistencies. However, similar to divergent HTML
parsing implementations, different browsers also implement different CSS parsing behavior.
CSS allows HTML tags to be scaled, positioned or decorated without being limited by the
original HTML markup constraints. Similar to HTML tag values, values inside CSS can be
user-controlled or provided externally, which makes CSS crucial for web security.

2.2.5 JavaScript

JavaScript [14] is a simple yet powerful object-oriented programming language for the web.
It runs both client-side in web browsers and server-side as part of web applications. The
language is meant to be interpreted at runtime and has a C-inspired syntax. JavaScript sup-
ports a classless object model, provides automatic garbage collection and weak and dynamic
typing. Client-side JavaScript does not support I/O mechanisms out of the box. Instead, some
limited predefined interfaces are provided by native code inside the browser. Server-side
JavaScript (e. g., Node.js [26]) supports a wide variety of I/O mechanisms, e. g., network
and file access. The following discussion will focus on client JavaScript in web browsers.
Every HTML document in a browser is given its JavaScript execution context. All scripts in a
document context share the same sandbox (cf. Section 2.4). Inter-context communication
between scripts is supported through browser-specific APIs. However, execution contexts are
strictly isolated from each other in general. All JavaScript blocks in a context are executed
individually and in a well-defined order. Script processing consists of three phases:

Parsing validates the script syntax and translates it to an intermediate binary representation
for performance reasons. The code has no effect until parsing is completed. Blocks
with syntax errors are ignored, and the next block is parsed.

Function Resolution registers all named, global functions the parser found in a block. All
registered functions can be reached from the following code.

Execution runs all code statements outside of function blocks. However, exceptions may still
lead to execution failures.

While JavaScript is a very powerful and elegant scripting language, it brings up new challenges
and security issues such as Cross-Site Scripting vulnerabilities (cf. Section 4.1).

2.2.6 WebAssembly

WebAssembly (Wasm) [27] is an efficient and fast binary instruction format and is supported
by most modern browser vendors. It is a stack-based virtual machine language and mainly
aims to execute at native speed on client machines. Code written in WebAssembly is memory
safe and benefits from all security features provided by regular code associated with a website.
WebAssembly code is sandboxed, enforces the same origin policy (cf. Section 2.4) and is
limited to the resources provided by the corresponding website’s permissions. Additionally,
WebAssembly code can access JavaScript code running in the same origin container and
provide its functionality to JavaScript code from the same origin.

KA Web & Mobile Security | July 2021 Page 9

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

2.2.7 WebViews

WebViews are a further trend in webification and mobile apps. They allow the easy integration
of web content intomobile apps [28]. Developers can integrate appswith HTML and JavaScript
and benefit from portability advantages. WebViews run in the context of regular mobile apps
and allow a rich two-way interaction with the hosted web content. Mobile apps can invoke
JavaScript from within the web content, and monitor and intercept events in the web content.
At the same time, specific JavaScript APIs allow WebView apps to interact with content and
sensors outside the WebView context. The interaction of web content with native app content
raises new security concerns and enables both app-to-web andweb-to-app attacks [29, 30, 31].
App-to-web attacks, allow malicious apps to inject JavaScript into hosted WebViews with the
goal to exfiltrate sensitive information or trick WebViews into navigating to and presenting
users with untrusted and potentially malicious websites. Web-to-app attacks inject untrusted
web content into an app and leverage an app’s JavaScript bridge to the underlying host app.
The goal of a web-to-app attack is privilege escalation to the level of its hosting app’s process.

Both the appification and webification phenomena led to a new way of software distribution.
Instead of decentralised download sources, centralised application stores which are illustrated
in the next section emerged.

2.3 Application Stores

Application stores are centralised digital distribution platforms that organise the management
and distribution of software in many web and mobile ecosystems. Famous examples are
the Chrome web store for extensions for the Chrome browser, Apple’s AppStore for iOS
applications, and Google Play for Android applications. Users can browse, download, rate
and review mobile applications or browser plugins and extensions. Developers can upload
their software to application stores that manage all of the software distribution challenges,
including the provision of storage, bandwidth and parts of the advertisement and sales.
Before publication, most application stores deploy application approval processes for testing
reliability, adherence to store policies, and for security vetting [32, 33].

Most of the software available in ecosystems that have application stores is distributed
through the stores. Only a few users side-load software (i. e. install software from other
sources than the store). Application stores allow providers to control which applications are
available in their stores, which allows them to ban particular applications. Whilst this can
give rise to accusations of censorship, the deployment of security vetting techniques has
helped to significantly reduce the amount of malicious software available in stores [32] and
to reduce the number of applications that suffer from vulnerabilities due to the misuse of
security APIs by developers [34]. Deployed security vetting techniques include static and
dynamic analysis applied to application binaries and running instances of applications. In
addition to security vetting techniques, application stores require applications to be signed
by developer or application store keys. In Android, application signing does not rely on the
same public key infrastructures used on the web. Instead, developers are encouraged to use
self-signed certificates and required to sign application updates with the same key to prevent
malicious updates [35]. The application signing procedure on iOS devices requires apps to be
signed by Apple. Unsigned apps cannot be installed on iOS devices. Application stores not
only allow developers and users centralised access to software publication, distribution and
download, they also enable users to rate and review published applications. User rating and
reviews are intended to help other users make more informed download decisions, but they

KA Web & Mobile Security | July 2021 Page 10

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

also have a direct connection to application security.

Impact of User Ratings and Reviews on Application Security Nguyen et al. [36] con-
ducted a large-scale analysis of user reviews for Android applications and their impact on security
patches. They found that the presence of security- and privacy-related user reviews for applica-
tions are contributing factors to future security-related application updates.

2.4 Sandboxing

Both modern mobile and browser platforms make use of different sandboxing techniques to
isolate applications and websites and their content from each other (cf. Operating Systems
& Virtualisation CyBOK Knowledge Area [3]) [37, 38]. This also aims to protect the platform
against malicious applications and sites. Major web browsers (e.g. Google Chrome [39]) and
mobile platforms (e.g. Android [40]) implement isolation at an operating system process level.
Each application or website runs in its own process 2. By default, isolated processes cannot
interact with each other and cannot share resources. In browsers, site isolation serves as a
second line of defence as an extension to the same-origin-policy (cf. Section 2.4.2).

2.4.1 Application Isolation

Modern mobile platforms provide each application with their sandbox running in a dedicated
process and their own file-system storage. Mobile platforms take advantage of underlying
operating system process protection mechanisms for application resource identification
and isolation. For example, application sandboxes in Android [40] are set-up at kernel-level.
Security is enforced through standard operating system facilities, including user and group
IDs as well as security contexts. By default, sandboxing prevents applications from accessing
each other and only allows limited access to operating system resources. To access protected
app and operating system resources inter-app communication through controlled interfaces
is required.

2.4.2 Content Isolation

Content isolation is one of the major security assurances in modern browsers. The main
idea is to isolate documents based on their origin so that they cannot interfere with each
other. The Same-Origin-Policy (SOP) [41] was introduced in 1995 and affects JavaScript and
its interaction with a document’s DOM, network requests and local storage (e. g., cookies). The
core idea behind SOP is that two separate JavaScript execution contexts are only allowed to
manipulate a document’s DOM if there is an exact match between the document host and the
protocol, DNS name and port numbers3. Cross-origin manipulation requests are not allowed.
Table 2 illustrates sample SOP validation results. Similar to JavaScript-DOM-interaction, the
SOP limits the JavaScript XMLHttpRequest capabilities to only issue HTTP requests to the
origin of the host document.

One major flaw of SOP is that it relies on DNS instead of IP addresses. Attackers who can
intentionally change the IP address of a DNS entry can therefore circumvent SOP security
guarantees.

2Process-based site isolation is mostly used on desktop computers [39].
3The protocol, DNS name and port number triple is called origin.

KA Web & Mobile Security | July 2021 Page 11

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

Originating document Accessed document Browser behaviour

https://www.cybok.org/docs/ https://www.cybok.org/scripts/ Access okay
https://www.cybok.org/ https://books.cybok.org/ Host mismatch
http://www.cybok.org/ https://www.cybok.org/ Protocol mismatch
https://www.cybok.org/ https://www.cybok.org:10443/ Port mismatch

Table 2: SOP validation examples.

Since code that enforces the same-origin-policy occasionally contains security bugs, modern
browsers introduced a second line of defence: websites are rendered in their own processes
that run in a sandbox. Sandboxing websites is meant to prevent attacks such as stealing
cross-site cookies and saved passwords [42].

Another additional layer of defence to enforce the same-origin policy and improve web ap-
plication security is the Content Security Policy (CSP) mechanism [43]. A CSP is primarily
intended to prevent code injection attacks such as XSS (cf. Section 4.1), which exploit the
browsers’ trust of content that was sent by a web server. This allows malicious scripts to be
executed in clients’ browsers. CSP allows web developers and server operators to limit the
number of origins that browsers should consider to be trusted sources of content – including
executable code and media files. A CSP can be used so that servers can globally disable
code execution on the client. To enable CSP, developers or operators can either configure a
web server to send a Content-Security-Policy HTTP response header or add a HTML
<meta> tag to a website. Compatible browsers will then only execute code or load media
files from trusted origins.

Example: Content Security Policy Header The following CSP allows users of a web appli-
cation to include images from any origin, but to restrict media data (audio or video media) to
the trusted trusted-media.com domain. Additionally, scripts are restricted to the trusted-scripts.com
origin that the web developer trusts:
Content-Security-Policy: default-src ’self’; img-src *; media-src
trusted-media.com; script-src trusted-scripts.com

2.5 Permission Dialog Based Access Control

Permission systems in modern mobile and web platforms enable protection of the privacy
of their users and reduce the attack surface by controlling access to resources. The control
of access to resources on a traditional computer system requires the accurate definition
of all involved security principals and the protected resources in the system. Finally, an
access control system requires a non-bypassable and trusted mechanism to evaluate access
requests (the referencemonitor) and sound security policies that define the appropriate course
of action for all access requests. Based on the security policies, the reference monitor can
decide whether it grants access or denies access (cf. the Authentication, Authorisation &
Accountability CyBOK Knowledge Area [4]).

Modern mobile and web platforms deviate from conventional computer systems in multiple
ways:

KA Web & Mobile Security | July 2021 Page 12

https://www.cybok.org
trusted-media.com
trusted-scripts.com


The Cyber Security Body Of Knowledge
www.cybok.org

2.5.1 The Security Principals

Traditional computer systems are primarily multi-user systems with human users and pro-
cesses running on their behalf. Modern mobile and web platforms extend conventional
multi-user systems to also consider all involved developers that have their applications in-
stalled on the system as security principals.

2.5.2 The Reference Monitor

Typically, conventional computer systems implement access control as part of the Operating
System (OS), e.g., the file system and network stack. User-level processes can then extend
this OS functionality and implement their own access control mechanisms.

Like conventional computer systems, modern mobile and web platforms build on top of
OS low-level access control mechanisms. Additionally, the extensive frameworks on top of
which applications are developed and deployed, provide extended interfaces. Modern web
and mobile platforms use Inter-Process Communication (IPC) for privilege separation and
compartmentalisation between apps and between apps and the operating system instead of
allowing direct access to resources. Access control mechanisms on calling processes are
used to protect IPC interfaces.

2.5.3 The Security Policy

In conventional computer systems, a process can have different privilege levels. It can run
as the superuser, as a system service, with user-level privileges or with guest privileges4. All
processes that share the same privilege level have the same set of permissions and can
access the same resources.

Modern mobile and web platforms make a clear distinction between system and third-party
applications: access to security- and privacy-critical resources is only granted to designated
processes and third-party applications have, by default, no access to critical resources. If
such access is required, application developers must request permissions from a set com-
monly available to all third-party applications. Most permissions allow developers to use
designated system processes as deputies to access protected sensitive resources. Those
system processes serve as reference monitors and enforce access control policies.

2.5.4 Different Permission Approaches

Mobile and web platforms implement distinct permission approaches. First, platforms dis-
tinguish different privilege levels. A common distinction is two levels (e.g., as implemented
on Android): normal (e.g., access to the Internet) and dangerous permissions (e.g., access
to the camera or microphone). While application developers have to request both normal
and dangerous permissions to grant their applications access to the respective resources,
the levels differ for application users. Normal permissions are granted silently without any
application user interaction. However, whenever applications require dangerous permissions,
the underlying mobile or web platform presents users with permission dialogues. While earlier
Android versions showed users a list of all the necessary permissions of an application at
install time, modern mobile platforms and browsers present permission dialogues at run-time.

4Depending on the system, more levels may be implemented.

KA Web & Mobile Security | July 2021 Page 13

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

A permission dialog usually is shown the first time an application requests access to the cor-
responding resource. Application users can then either grant or deny the application access
to the resource. Modern permission-based access control systems allow greater flexibility
and control for both developers and users.

(a) Install permissions (b) Runtime permissions

Figure 2: Firefox Permission Dialogues

(a) Install permissions that can still be found
on legacy apps

(b) Runtime permissions on modern apps

Figure 3: Android Permission Dialogues

Permission Dialogues: Attention, Comprehension and Behaviour While permission dia-
logues theoretically allow for greater flexibility and control, in practice they tend to have serious
limitations. Porter Felt et al. found that Android applications developers tend to request more
permissions for their applications than needed [15]. Hence, applications request access to more
resources than strictly necessary, which violates the least-privilege principle. Similarly to develop-
ers, end-users struggle with permission dialogues. Porter Felt et al. [44] found that they often do
not correctly understand permission dialogues and ignore them due to habituation (cf. the Human
Factors CyBOK Knowledge Area [20]).

KA Web & Mobile Security | July 2021 Page 14

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

2.6 Web PKI and HTTPS

The web PKI and the HTTPS [16, 17] protocol play a central role in modern mobile and web
platforms, both of which are based on client-server architectures. In the web, web servers
or applications exchange information with browsers. On mobile platforms, apps exchange
information with backend (web) servers. In both cases, HTTPS should always be used for
secure network connections between clients and servers. To establish secure network con-
nections, the web public key infrastructure is used. Using the web PKI and X.509 certificates,
clients and servers can authenticate each other and exchange cryptographic key material
for further encrypted information transport. This KA will not provide further details on how
the authentication process and the key exchange procedures work in detail (cf. the Network
Security CyBOK Knowledge Area [5]). Rather, it gives an overview of aspects specific to web
and mobile platforms.

HTTPS is themost widely deployed secure network protocol on the web andmobile. It overlays
HTTP on top of the TLS protocol to provide authentication of the server, and integrity and
confidentiality for data in transit. While HTTPS offers mutual authentication of servers and
clients based on X.509 certificates, the primary use is the authentication of the accessed
server. Similar to TLS, HTTPS protects HTTP traffic against eavesdropping and tampering by
preventing man-in-the-middle attacks. Since HTTPS encapsulates HTTP traffic, it protects
URLs, HTTP header information including cookies and HTTP content against attackers. How-
ever, it does not encrypt the IP addresses and port numbers of clients and servers. While
HTTPS can hide the information exchanged by clients and servers, it allows eavesdroppers
to learn the top-level domains of the websites browsers that users visit, and to identify the
backend servers that mobile apps communicate with.

Bothweb browsers andmobile apps authenticateHTTPS servers by verifying X.509 certificates
signed by Certificate Authorities CAs. Browsers and mobile apps come with a list of pre-
installed certificate authorities or rely on a list of pre-installed CAs in the host operating system.
A pre-installed certificate authority list in modern browsers and on modern mobile platforms
typically contains hundreds of CAs. To be trusted, an HTTPS server certificate needs to be
signed by one pre-installed CA.5

Modern browsers present users with a warning message (e. g., see Figure 4) when the server
certificate could not be validated. The warning messages are intended to indicate a man-in-
the-middle attack. However, common reasons for warning messages are invalid certificates,
certificates that were issued for a different hostname, network errors between the client and
server and errors on the client such as misconfigured clocks [45]. In most cases, browser
users can click-through a warning message and visit a website even if the server certificate
could not be validated [46]. Browsers use coloured indicators in the address bar to display the
security information for a website. Websites loaded via HTTP, websites loaded via HTTPS that
load some of their content (e.g. CSS or JavaScript files) over an HTTP connection6 and sites
that use an invalid certificate but for which the user clicked through a warning are displayed as
insecure. HTTPS websites with a valid certificate are displayed with a corresponding security
indicator (e. g., see Figure 4). In contrast, users of mobile, non-browser apps cannot easily
verify whether an application uses the secure HTTPS protocol with a valid certificate. No visual
security indicators similar to those used in browsers are available. Instead, users have to trust
application developers to take all the necessary security measures for HTTPS connections.

5See the Network Security CyBOK Knowledge Area [5] for details on the validation process.
6Called mixed content.

KA Web & Mobile Security | July 2021 Page 15

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

(a) Warning message for invalid certificate in Chrome

(b) Invalid certificate (c) Valid and
trusted certifi-
cate

(d) Extended validation certificate

Figure 4: Warning messages and security indicators in Chrome.

As of 2019, most of the popular websites support HTTPS, and themajority of connections from
clients to servers in the web and mobile applications use HTTPS to protect their users against
man-in-the-middle attacks. To further increase the adoption of HTTPS, server operators are
encouraged to use HTTPS for all connections and deploy HTTP Strict Transport Security
(HSTS) [47]. Additionally, browser users can install extensions and plugins to rewrite insecure
HTTP URLs to secure HTTPS URLs [48] if possible, and mobile application frameworks make
HTTPS the default network protocol for HTTP connections.

Using HTTPS does protect the content against attackers but does not preservemetadata (e. g.,
which websites a user visits). Please refer to the Privacy & Online Rights CyBOK Knowledge
Area [49] for more information, including private browsing and the Tor network.

Rogue Certificate Authorities and Certificate Transparency The web PKI allows every
trusted root certificate authority to issue certificates for any domain. While this allows website
operators to freely choose a CA for their website, in the past some CAs have issued fraudulent
certificates for malicious purposes. One of the most prominent examples is the DigiNotar CA,
which in 2011 [50] issued fraudulent certificates for multiple websites including Google’s Gmail
service. Nobody has been charged for the attack. However, DigiNotar went bankrupt in 2011.
Certificate transparency [51] was introduced to fight fraudulent certificate issuance. Certificate
transparency provides a tamper proof data structure and monitors all certificate issuance pro-
cesses of participating CAs. While it cannot prevent fraudulent certificate issuance, it improves
the chances of detection. Clients can verify the correct operation of the certificate transparency
providers and should only connect to websites that use X.509 certificates that include a signed
certificate timestamp. Certificate transparency is supported by most major certificate authorities
and browser vendors.

KA Web & Mobile Security | July 2021 Page 16

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

2.7 Authentication

Authentication in the web and on mobile platforms is an important security mechanism
designed to enable human users to assert their identity to web applications, mobile devices
or mobile apps. Authentication goes hand in hand with authorisation which describes the
specification of access privileges to resources. The specified access privileges are later on
used to grant or deny access to resources for authenticated users. This section will not give
a detailed overview of authentication and authorisation concepts (cf. the Authentication,
Authorisation & Accountability CyBOK Knowledge Area [4]) but will focus on authentication
mechanisms and technologies relevant for web and mobile platforms.

2.7.1 HTTP Authentication

Figure 5: Basic HTTP Authentication exchange.

In the HTTP context, authentication generally refers to the concept of verifying the identity
of a client to a server, e. g., by requiring the client to provide some pre-established secrets
such as username and password with a request. This section highlights two widely used
authentication methods on the web, Basic HTTP authentication, and the more frequently used
Form-based HTTP authentication.

Basic HTTP authentication [52] is a mechanism whose results are used to enforce access
control to resources. It does not rely on session identifiers or cookie data. Nor does the
Basic HTTP authentication scheme require the setup of dedicated login pages, as all ma-
jor browsers provide an integrated login form. A server can trigger this authentication op-
tion by sending a response header containing the “HTTP 401 Unauthorised” status
code and a “WWW-Authenticate: Basic” field. Credentials entered into this form by
the client are combined with a “:” (“Username:Password”), Base64 encoded for transit
(“VXNlcm5hbWU6UGFzc3dvcmQK”), and added as Authorisation header to the next request
(“Authorization: Basic VXNlcm5hbWU6UGFzc3dvcmQK”). An example exchange be-
tween server and client is shown in Figure 5. The Basic authentication scheme is not secure,
as the credentials are transmitted after a simple Base64 encoding, which is trivial to reverse.
Hence, login credentials are transmitted in plain text across the network, which allows attack-
ers or network observers to easily steal the credentials. Therefore, Basic HTTP authentication
should not be used without additional enhancements that ensure confidentiality and integrity
such as HTTPS.

Form-based HTTP authentication in which websites use a form to collect login credentials is
a widely prevalent form of authentication in modern web and mobile applications. For this

KA Web & Mobile Security | July 2021 Page 17

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

scheme, an unauthenticated client trying to access restricted content is shown an HTML-
based web form that prompts for their credentials. The client then submits the entered
credentials to the sever (e. g., in a POST request). The server validates the form data and
authenticates the client on successful validation. Similar to Basic authentication, Form-based
authentication exposes user credentials in plain text if not protected by HTTPS.

2.7.2 Mobile Device Authentication

Mobile devices deploy a variety of authentication mechanisms to unlock devices, grant users
access, and protect their data from illegitimate access. The most common mechanisms for
mobile device authentication are passwords, PINs, patterns and biometric features.

Users can use common alphanumeric passwords, including special characters. However,
since mobile device authentication is a frequent task [53], many users tend to unlock their
mobile device using numerical PINs. Android devices also support unlock patterns (see
Figure 6). Instead of choosing a password or PIN, users can pick an unlock pattern from a
3x3 grid.

Modern mobile devices allow users to authenticate using biometric features, including finger-
print and facial recognition. These authentication features rely on hardware security primitives,
such as ARM’s TrustZone (cf. the Human Factors CyBOK Knowledge Area [20]).

(a) PIN (b) Pattern (c) Password (d) Fingerprint In-
dicator

(e) Facial Recogni-
tion Indicator

Figure 6: Android Device Unlocking

Android Unlock Patterns Similar to passwords (see Section 2.9) device unlock patterns suffer
from multiple weaknesses. Uellenbeck et al. [54] conducted a study to investigate users’ choices
of 3×3 unlock patterns. They found empirical evidence that users tend to choose biased patterns,
e. g., users typically started in the upper left corner and selected three-point long straight lines.
Hence, similar to regular passwords (cf. the Human Factors CyBOK Knowledge Area [20]) the
entropy of unlock patterns is rather low. In addition to users choosing weak unlock patterns, the
mechanism is vulnerable to shoulder surfing attacks (see Section 3.3). As a countermeasure, De
Luca et al. [55] propose to use the back of a device to authenticate users.

KA Web & Mobile Security | July 2021 Page 18

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

2.8 Cookies

Web servers can associate stateful information with particular clients by using HTTP cook-
ies [56]. Cookie information (e.g., IDs of items added to the shopping cart in an online shop)
is stored by the client. Cookies allow clients and servers to include their unique session
identifiers in each HTTP request-response, avoiding the need for repeated authentication.
Session cookies expire when the session is closed (e.g., by the client closing the browser) but
persistent cookies only expire after a specific time.

Cookie-based authentication allows clients to re-establish sessions every time they send
requests to the server with a valid cookie. Cookie-based session management is vulnerable to
the hijacking of session identifiers [57]. Hijackers who post valid session cookies can connect
to the attacked server with the privileges of the authenticated victim.

Cookies can also be used to track users across multiple sessions by providers. This behaviour
is generally jeopardising user privacy (cf. the Adversarial Behaviours CyBOK Knowledge
Area [58] and the Privacy & Online Rights CyBOK Knowledge Area [49]).

2.9 Passwords and Alternatives

Passwords are themost widely deployedmechanism to let users authenticate to websites and
mobile applications and protect their sensitive information against illegitimate access online.
They are the dominant method for user authentication due to their low cost, deployability,
convenience and good usability. However, the use of passwords for most online accounts
harms account security [18]. Since humans tend to struggle memorising many different
complicated passwords, they often choose weak passwords and re-use the same password
for multiple accounts. Weak passwords can easily be guessed by attackers offline or online.
Re-used passwords amplify the severity of all password attacks. One compromised online
account results in all other accounts protected with the same password as vulnerable. While
password guidelines in the past frequently recommended the use of complex passwords,
current guidelines state that requiring complex passwords actually weakens password security
and advise against policies that include password complexity [59, 60]. These aspects are
further discussed in the Human Factors CyBOK Knowledge Area [20].

Online service providers deploy various countermeasures to address security issues with
weak passwords and password re-use:

KA Web & Mobile Security | July 2021 Page 19

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

2.9.1 Password Policies

Password policies are rule sets to encourage users to choose stronger passwords. Some
password policies also address the memorability issue. To support stronger passwords,
most rules address password length and composition, blacklists and the validity period of a
password [61, 62].

2.9.2 Password Strength Meters

Password Strength Meters (PSMs) pursue the same goal as password policies and aim to
encourage the choice of stronger passwords. PSMs typically provide visual feedback or
assign passwords scores to express password strength (see Figure 7) [63].

Figure 7: A password strength meter

However, addressing weak passwords and password re-use by deploying restrictive policies
or PSMs has only a limited effect on overall password security [64]. Hence, service providers
can use extensions to simple passwords to increase authentication security.

2.9.3 Password Managers

Password managers can help users generate, store and retrieve strong passwords. Strong
passwords are generated and stored using secure random number generators and secure
encryption. They come as locally installable applications, online services or local hardware
devices. While they can help users use more diverse and stronger passwords, their effect on
overall password security is limited due to usability issues [65]. For a more detailed discussion
please refer to the Human Factors CyBOK Knowledge Area [20].

2.9.4 Multi-Factor Authentication

Instead of requiring only one factor (e. g., a password), multi-factor authentication systems
require users to present multiple factors during the authentication process [66]. Website
passwords are often complemented with a second factor for two-factor authentication (2FA).
Most commonly, the second factor typically makes use of a mobile device. So in addition to a
password, users need to have their device at hand to receive a one-time token to authenticate
successfully. The European Payment Services Directive 2 (PSD2) requires 2FA for all online
payment services in web and mobile environments (cf. the Authentication, Authorisation &
Accountability CyBOK Knowledge Area [4]).

KA Web & Mobile Security | July 2021 Page 20

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

2.9.5 WebAuthn

The WebAuthn (Web Authentication) [67] web standard is a core component of the FIDO2
project (cf. the Authentication, Authorisation & Accountability CyBOK Knowledge Area [4]) and
aims to provide a standardised interface for user authentication for web-based applications
using public-key cryptography. WebAuthn is supported by most modern web-browsers and
mobile operating systems. It can be used in single-factor or multi-factor authentication
mode. In multi-factor authentication mode PINs, passcodes, swipe-patterns or biometrics are
supported.

2.9.6 OAuth

While not an authentication mechanism itself (cf. the Authentication, Authorisation & Ac-
countability CyBOK Knowledge Area [4]), Open Authorisation (OAuth) [68] can be used for
privacy-friendly authentication and authorisation for users against third-party web applications.
OAuth uses secure tokens instead of requiring users to provide login credentials such as
usernames and passwords. On behalf of their users, OAuth service providers provide access
tokens that authorise specific account information to be shared with third-party applications.
More recent successors of the OAuth protocol including OAuth 2 [69] or OpenID Connect [70]
support federations (cf. the Authentication, Authorisation & Accountability CyBOK Knowledge
Area [4]). Large providers of online services such as Google or Facebook can act as identity
providers to authenticate users, thus helping users to reduce the number of login credentials
and accounts. While such protocols aim to provide improved security, the correct and secure
implementation of such complex protocols was shown to be error-prone and might allow
malicious users to run impersonation attacks [71].

2.10 Frequent Software Updates

Frequent software updates are a fundamental security measure and particularly crucial for
web and mobile platforms. This section discusses the different components in the web
and mobile ecosystems that require regular updates, the different update strategies, and
their pros and cons. Traditionally, browser and mobile device updates required their users to
install updates manually whenever new versions were available. Users had to keep an eye on
software updates and were responsible for downloading and installing new releases. This
approach was error-prone and resulted in many outdated and insecure deployed software
components.

Most of the critical components on modern web and mobile platforms have short release
cycles. Web browsers, including Google Chrome and Mozilla Firefox, implement auto-update
features and frequently push new versions and security patches to their users.

Mobile platforms also provide automatic application updates for third-party apps. While this
approach generally results in quicker updates and the timely distribution of security patches,
automatic mobile application updates are only enabled by default for devices connected to
WiFi. Devices connected to a cellular network (e. g., 3G/4G) do not benefit from automatic
application updates by default. This update behaviour ensures most third-party application
updates are installed on mobile devices within a week [72]. Automatic third-party application
updates work well on mobile devices. Mobile operating system update behaviour heavily
depends on the platform. In particular, many non-Google Android devices suffer from outdated
and insecure operating system versions.

KA Web & Mobile Security | July 2021 Page 21

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

Overall, modern web and mobile platforms recognised the disadvantages of non-automatic
software updates and now provide automatic or semi-automatic platform or application
updates in most cases.

Outdated Third Party Libraries While frequent software updates are crucial in general, up-
dates of third-party libraries is a particularly important security measure for software developers
who need to patch their own code and distribute updates, while also tracking vulnerabilities in li-
braries they use and updating them for better security. Derr et al. [73] conducted a measurement
study of third-party library update frequencies in Android applications and found that a significant
number of developers use outdated libraries, exposing their users to security issues in the affected
third party libraries. Lauinger et al. [74] conducted a similar study for JavaScript libraries in web
applications and also found many websites that include outdated and vulnerable libraries.

3 CLIENT SIDE VULNERABILITIES AND MITIGATIONS

[75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87]

This section covers attacks and their countermeasures with a focus on the client. It discusses
issues in both modern web browsers and mobile devices. The illustrated security issues
highlight aspects that have dominated security discussions in recent years. We focus on
attacks that exploit weaknesses in the interaction between users and web browsers and
mobile apps. We then discuss challenges resulting from the trend of storing more and more
information on the client instead of the server. Finally, we discuss physical attacks that do
not focus on exploiting software or human vulnerabilities, but exploit weak points in mobile
devices.

3.1 Phishing & Clickjacking

This section presents two prevalent issues that exploit user interface weaknesses of both
web and mobile clients. Phishing and clickjacking rely on issues humans have with properly
verifying URLs and the dynamic content of rendered HTML documents.

3.1.1 Phishing

Phishing attacks are fraudulent attacks that aim to steal sensitive information, including login
credentials and credit card numbers from victims [77]. Common types of phishing attacks
use email, websites or mobile devices to deceive victims. Attackers disguise themselves as
trustworthy parties and send fake emails, show fake websites or send fake SMS or instant
messages. Fake websites may look authentic. Attackers can use successfully stolen login
credentials or credit card numbers to impersonate victims and access important online
accounts. Successful phishing attacks may result in identity theft or loss of money.

Attackers commonly forge websites that appear legitimate to trick users into believing they are
interacting with the genuine website. To initiate a phishing attack, attackers plant manipulated
links on users via email, a website or any other electronic communication. Themanipulated link
leads to a forgedwebsite that appears to belong to the genuine organisation behind thewebsite
in question. Attackers often spoof online social media, online banking or electronic payment

KA Web & Mobile Security | July 2021 Page 22

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

provider websites. They trick victims into following manipulated links using misspelled URLs,
subdomains or homograph attacks.

Example: Phishing URL In the following example URL:
https://paymentorganization.secure.server.com,

it appears that the URL points to the secure.server section of the paymentorganizationwebsite. How-
ever, in fact the link leads to the paymentorganization.secure section of the server.com website.

To make forged websites look even more authentic, some phishers alter a browser’s address
bar by replacing the original address bar with a picture of the legitimate URL or by replacing
the original address bar with a new one. Address bar manipulation attacks require the use of
JavaScript commands. Additionally, phishers leverage Internationalised Domain Name (IDN)
homograph attacks [88]. Such attacks exploit that users cannot easily distinguish different
character encodings. For example, the letters ”l” and ”I” (capital i) are hard to distinguish, and
by replacing the Latin characters ”a” with the cyrilic character ”a” in the https://paypal.com url,
users can deceptively be redirected to a phished PayPal website. [89]. Attacks that involve
manipulated URLs and address bars are even harder to detect in mobile browsers since
the address bar is not visible during regular browsing. Website phishing is one of the most
frequent attacks. Most human users find it hard to to spot phishing URLs and websites [75].

Therefore, common countermeasures are anti-phishing training and public awareness cam-
paigns [76] that try to sensitise users and teach them how to spot phishing URLs. Modern
browsers deploy technical security measures, including blacklists and visual indicators that
highlight the top-level domain of a URL, e.g. Google Chrome shows URLs using an encoding
that exposes deceptive characters in IDN attacks 7.

Drive-by-download Attacks Drive-by-download attacks happen when users visit a website,
click on a link or on an attachment in a phishing email or on amalicious popupwindow. While being
a general problem in theweb, drive-by-downloads play a particular role in phishing attacks. Instead
of visiting a benign website, drive-by-download attacks download and install malware (cf. the
Malware & Attack Technologies CyBOK Knowledge Area [9]) on a user’s computer. Attackers need
to fingerprint victim clients and exploit vulnerable software components on the client’s computer
to plant the malware. Detecting such attacks is an active research area and includes approaches
such as anomaly or signature based malware detection [90].

3.1.2 Clickjacking

In a clickjacking attack, attackers manipulate the visual appearance of a website to trick users
into clicking on a fake link, button, or image. Clickjacking is also known as a user interface
redress attack and belongs to the class of confused deputy attacks [78]. Attackers fool their
victims using transparent or opaque layers over original websites. While victims believe they
have clicked on the overlay element, the original website element is clicked on. Attackers can
thus make their victims trigger arbitrary actions on the original website. The attack website
uses an iFrame to load the target website and can make use of the absolute positioning
features of iFrames for correct visual alignment. Thus, it is hard for victims to detect the
attack elements over the original website. Clickjacking attacks are particularly dangerous
when victims have already logged in to an online account and visit their account settings
website. In those cases, an attacker can trick the victim into performing actions on a trusted

7cf. https://www.chromium.org/developers/design-documents/idn-in-google-chrome

KA Web & Mobile Security | July 2021 Page 23

https://www.cybok.org
https://www.chromium.org/developers/design-documents/idn-in-google-chrome


The Cyber Security Body Of Knowledge
www.cybok.org

site when the victim is already logged in. One of the most prominent clickjacking attacks
hit the Adobe Flash plugin settings page [79]. Attackers used invisible iFrames to trick their
victims into changing the plugin’s security settings and permitting the attackers to access the
microphone and camera of their victims’ machines.

Clickjacking attacks can be used to launch other attacks against websites and their users,
including Cross-Site Request Forgery and Cross-Site Scripting attacks (see Section 4.1) [78].

A clickjacking attack is not a programming mistake but a conceptual problem with JavaScript.
Hence, detection and prevention are not trivial. Detecting and preventing clickjacking attacks
can be done both server- and client-side. Web browser users can disable JavaScript and
iFrames to prevent clickjacking attacks. However, since this would break many legitimate
websites, different browser plugins (e. g., NoScript [80]) allow the controlled execution of
JavaScript scripts on behalf of the user. In order to contain the impact of clickjacking attacks,
users should log out of online accounts when leaving a website, although this could be
impractical. In order to prevent clickjacking attacks on the server-side, website developers
need to make sure that a website is not frame-able, i. e. a website does not load if it is
inside an iFrame. Websites can include JavaScript code to detect whether a website has
been put into an iFrame and break out of the iFrame. This defence technique is called
FrameBusting [81]. However, since users might have disabled JavaScript, this method is not
reliable. The recommended server-side defence mechanism is to set a proper HTTP response
header. The X-FRAME-OPTIONS header can be set to DENY, which will prevent a website
being loaded inside an iFrame.

Clickjacking attacks affect both desktop and mobile web browsers.

Phishing and Clickjacking on Mobile Devices Phishing and Clickjacking are not limited to
browsers and the web. Mobile application users are susceptible to both attacks. Aonzo et al. [91]
find that it is possible to trick users into an end-to-end phishing attack that allows attackers to gain
full UI control by abusing Android’s Instant App feature and password managers to steal login
credentials. Fratantonio et al. [92] describe the Cloak & Dagger attack that allows a malicious
application with only two permissions (cf. Section 2.5) to take control over the entire UI loop. The
attack allows for advanced clickjacking, keylogging, stealthy phishing and silent phone unlocking.

3.2 Client Side Storage

Client-side storage refers to areas that a browser or operating system provides to websites or
mobile applications to read and write information. Storage is local to the client and does not
require server-side resources or an active Internet connection. At the same time, malicious
users may manipulate stored information. Hence, client-side storage areas need to be pro-
tected from malicious access. This section describes common client-side storage areas and
their protection mechanisms.

KA Web & Mobile Security | July 2021 Page 24

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

3.2.1 Client Side Storage in the Browser

Historically, client-side browser storage was only used to store cookie information (see Sec-
tion 2.8). However, due to their simple design and limited capacity, cookies cannot be used to
store large or complex amounts of information. With the rise of HTML5, more powerful and
feature-rich alternatives for client-side storage in the browser exist. These include WebStor-
age [82], which is similar to cookies and stores key-value pairs, and IndexedDB [83], which
serves as a database in the vein of noSQL databases and can be used to store documents,
other files and binary blobs.

Asmentioned, the primary security issuewith client-side storagemechanisms is thatmalicious
users can manipulate them. To guarantee integrity for sensitive information (e. g., session
information), developers are advised to cryptographically sign the data stored on the client
and verify it upon retrieval.

In addition to information integrity, a second important aspect of WebStorage and IndexedDB
storage is that stored information is not automatically cleared after users leave a website. To
store information in a session-like fashion, web application developers are advised to rely on
the sessionStorage object of the WebStorage API [85].

3.2.2 Client Side Storage in Mobile Applications

In mobile applications, handling client-side storage security also depends on the type of
information and storage mechanism, e. g., private storage of an application or public storage
such as an SD card. Most importantly, data should be digitally signed and verified (cf. the
Cryptography CyBOK Knowledge Area [93]) for both browser and mobile client storage pur-
poses. It is recommended that developers sign and encrypt sensitive information and apply
proper user input sanitisation. This is particularly relevant for shared storage such as SD-cards
that do not use secure access control mechanisms. Instead, proper access administration
mechanisms are provided for storage areas that are private to an application.

Sensitive Information Leaks in Android Applications Enck et al. [94] investigated the se-
curity of 1,100 popular Android applications. Amongst other things, they found that a significant
number of apps leaked sensitive user information to publicly readable storage locations such as
log files and the SD card. Reardon et al. [95] discovered that some sensitive information leaks are
made intentionally to pass sensitive information to another, collaborating and malicious app.

KA Web & Mobile Security | July 2021 Page 25

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

3.3 Physical Attacks

Instead of attacking web or mobile applications’ code, physical attacks aim to exploit bugs
and weak points that result from using a device. We focus on two representative examples
below.

3.3.1 Smudge attacks

In a smudge attack, an attacker tries to learn passwords, PINs or unlock patterns entered on
a touchscreen device. The main problem with entering sensitive unlock information through a
touchscreen is the oily smudges that users’ fingers leave behind when unlocking a device.
Using inexpensive cameras and image processing software, an attacker can recover the
grease trails and infer unlock patterns, passwords, and PINs [86]. To perform a smudge attack,
an attacker needs a clear view of the target display.

3.3.2 Shoulder Surfing

Shoulder surfing is a physical attack where an attacker tries to obtain sensitive information
such as passwords, PINs, unlock patterns, or credit card numbers [87]. For a shoulder surfing
attack, an attacker needs a clear view of the target display. The attacker can mount a shoulder
surfing attack either directly by looking over the victim’s shoulder or from a longer range by
using dedicated tools such as cameras or telescopes. Shoulder surfing attacks are particularly
dangerous for mobile device users when authenticating to the device or online services in
public spaces such as trains, railways, and airports.

4 SERVER SIDE VULNERABILITIES AND MITIGATIONS

[96, 97, 98, 99, 100, 101, 102, 103, 104, 105]

This section discusses server-side security. It provides details for common aspects of server
security, including well-known vulnerabilities and mitigations. The section discusses root
causes, illustrates examples, and explains mitigations. The aspects discussed below are
central for the web and mobile environments and dominated many of the security discussions
in this area in the past.

4.1 Injection Vulnerabilities

Injection attacks occur whenever applications suffer from insufficient user input validation
so that attackers can insert code into the control flow of the application (cf. the Software
Security CyBOK Knowledge Area [6]). Prevalent injection vulnerabilities for web and mobile
applications are SQL and Shell injections [22]. Due to inadequate sanitisation of user input,
requests to a database or shell commands can be manipulated by an attacker. Such attacks
can leak or modify information stored in the database or issue commands on a system
in ways developers or operators have not intended. The main goal of injection attacks is
to circumvent authentication and expose sensitive information such as login credentials,
personally identifiable information, or valuable intellectual property of enterprises.

KA Web & Mobile Security | July 2021 Page 26

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

Injection vulnerabilities can be addressed by adequately sanitising attacker-controlled infor-
mation and deploying proper access control policies. The goal of input sanitisation is to filter
invalid and dangerous input. Additionally, strict access control policies can be implemented
to prevent injected code from accessing or manipulating information [96].

4.1.1 SQL-Injection

SQL-injection attacks refer to code injections into database queries issued to relational
databases using the Structured Query Language (SQL). Many web and mobile applications
allow users to enter information through forms or URL parameters. SQL injection occurs if
such user input is not filtered correctly for escape characters and then used to build SQL
statements. Enabling attackers to modify SQL statements can result in malicious access or
manipulation of information stored in the database.

Example: SQL Injection attack The statement below illustrates the vulnerability.

1vuln_statement = " ’ SELECT * FROM cred i t ca rds WHERE number = ’ " +
user_ input + " ; ’ "

The intention of the statement is to retrieve credit card information for a given user input. An
example for an expected input 123456789.
However, the statement above allows malicious values for the user_input variable. An attacker
might provide ’ OR ’1’=’1 as input which would render the following SQL statement:

1vuln_statement = " ’ SELECT * FROM cred i t ca rds WHERE number = ’ ’
OR ’ 1 ’ = ’ 1 ’ ; "

Instead of retrieving detailed credit card information only for one specific credit card number, the
statement retrieves information for all credit cards stored in the database table. A potential web
application with the above SQL injection vulnerability could leak sensitive credit card information
for all users of the application.

The consequences of the above SQL injection vulnerability might be directly visible to the
attacker if all credit card details are listed on a results page. However, the impact of an SQL
injection can also be hidden and not visible to the attacker.

blind SQL injections [97], do not display the results of the vulnerability directly to the attacker
(e. g., because results are not listed on a website). However, the impact of an attack
might still be visible through observing information as part of a true-false response of
the database. Attackers might be able to determine the true-false response based on
the web application response and the way the web site is displayed.

second order In contrast to the previous types of SQL injection attacks, second order attacks
occur whenever user submitted input is stored in the database for later use. Other
parts of the application then rely on the stored user input without escaping or filtering it
properly.

One way to mitigate SQL injection attacks is with the use of prepared statements [98, 99].
Instead of embedding user input into raw SQL statements (see above), prepared statements
use placeholder 8 variables to process user input. Placeholder variables are limited to store
values of a given type and prohibit the input of arbitrary SQL code fragments. SQL injections
attacks would result in invalid parameter values in most cases and not work as intended by

8Also called bind variables.

KA Web & Mobile Security | July 2021 Page 27

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

an attacker. Also, prepared statements are supported by many web application development
frameworks at the coding level using Object Relational Mapping (ORM) interfaces. ORMs do
not require developers to write SQL queries themselves but generate database statements
from code. While prepared statements are an effective mitigation mechanism, a further
straightforward way is to escape characters in user input that have a special meaning in
SQL statements. However, this approach is error-prone, and many applications that apply
some form of SQL escaping are still vulnerable to SQL injection attacks. The reasons for the
mistakes are often incomplete lists of characters that require escaping. When escaping is used,
developers should rely on functions provided by web application development frameworks
(e. g. the mysqli_real_escape_string() function in PHP) instead of implementing their
own escaping functionality.

4.1.2 Command Injections

This type of injection attack affects vulnerable applications that can be exploited to execute
arbitrary commands on the host operating system of a web application [106]. Similar to
SQL injection attacks, command injections are mostly possible due to insufficient user input
validation. Vulnerable commands usually run with the same privileges as the host application.

An example of a command injection attack is a web application that converts user-provided
images using a vulnerable image command line program. Providing malicious input (e. g.,
a filename or a specially crafted support graphic that includes malicious code) might allow
attackers to exploit insufficient input validation and extend the original command or run
additional system commands.

A mitigation for command injection attacks is to construct the command strings, including all
parameters in a safe way that does not allow attackers to exploit malicious string input. In
addition to proper input validation due to escaping, following the principle of least-privilege and
restricting the privileges of system commands and the calling application is recommended.
The number of callable system commands should be limited by using string literals instead
of raw user-supplied strings. In order to further increase security, regular code reviews
are recommended, and vulnerability databases (e. g., the CVE [100] database) should be
monitored for new vulnerabilities. Finally, if possible, executing system commands should be
avoided altogether. Instead, the use of API calls in the respective development framework is
recommended.

4.1.3 User Uploaded Files

Files provided by users such as images or PDFs have to be handled with care. Malicious files
trigger unwanted command execution on the host operating system of the server, overload
the host system, trigger client-side attacks, or deface vulnerable applications [22].

Example: Online Social Network An example application could be an online social network
that allows users to upload their avatar picture. Without proper mitigation techniques in place, the
web application itself might be vulnerable. A malicious user could upload a .php file. Accessing
that file might prompt the server to process it as an executable PHP file. This vulnerability would
allow attackers to both execute code on the server with the permissions of the PHP process and
also control the content served to other users of the application.

To prevent attacks through user-uploaded files, both meta-data including file names and

KA Web & Mobile Security | July 2021 Page 28

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

the actual content of user-uploaded files need to be restricted and filtered, e.g. looking for
malware in uploaded files. Filenames and paths should be constructed using string literals
instead of raw strings and proper mime-types for HTTP responses used whenever possible.

Files that are only available for download and should not be displayed inline in the browser, can
be tagged with a Content-Disposition HTTP response header [101]. Another successful
mitigation for the above issue is to serve files from a different domain. If the domain is
not a subdomain of the original domain, the SOP 2.4.2 prevents cookies and other critical
information from being accessible to the malicious file. Additionally, JavaScript and HTML
files are protected by the SOP as well.

4.1.4 Local File Inclusion

This type of vulnerability is a particular form of the above command injection or user-uploaded
files vulnerabilities [22]. For example, attackers can exploit a command injection, use a
malformed path in a database or a manipulated filename. The file path resulting from one of
these vulnerabilities can be crafted to point to a local file on the server, e. g., a .htaccess or
the/etc/shadow file. A vulnerable web applicationmight then access themaliciously crafted
file path and instead of loading a benign file, read and send the content of the attacker-chosen
file and e. g. leak login credentials in the /etc/shadow file.

In addition to sanitisation of file path parameters such as leading / and .. in user input,
the application of the least privilege principle is recommended. A web application should be
executed with minimal privileges and so that it cannot access sensitive files.

4.1.5 Cross-Site Scripting (XSS)

Cross-Site Scripting (XSS) [102] attacks are injection vulnerabilities that allow attackers to
inject malicious scripts (e. g., JavaScript) into benign websites. They can occur whenever
malicious website users are able to submit client scripts to web applications that redistribute
the malicious code to other end-users. Common examples of websites that are vulnerable to
XSS attacks are message forums that receive user content and show it to other users. The
primary root cause for XSS vulnerabilities is web applications that do not deploy effective
input validation mechanisms. Untrusted and non-validated user-provided data might contain
client-side scripts. Without proper user input validation, a malicious JavaScript previously
provided by one user, might be distributed to other users and manipulate the website they are
visiting or steal sensitive information. In an XSS attack, the client browser cannot detect the
malicious code, since it is sent from the original remote host, i. e. same-origin-policy based
security measures are ineffective. We distinguish two types of XSS attacks:

stored In a stored XSS attack the malicious script is permanently stored on the target server
(e. g. in a database) and distributed to the victims whenever they request the stored
script for example as part of a comment in a message forum. Stored XSS attacks are
also called permanent or Type-I XSS.

reflected In a reflected XSS attack, themalicious script is not permanently stored on the target
server, but reflected by the server to the victims. Malicious scripts in reflected attacks
are distributed through different channels. A common way of delivering a malicious
script is to craft a link to the target website. The link contains the script and clicking the
link executes the malicious script in the website’s script execution context. Reflected
XSS attacks are also called non-permanent or Type-II XSS.

KA Web & Mobile Security | July 2021 Page 29

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

Preventing both types of XSS attacks requires rigorous user input validation and escaping by
the server. The most effective means of input validation is a whitelist approach, which denies
any input that is not explicitly allowed. For proper and secure entity encoding, the use of a
security encoding library is recommended, since writing encoders is very difficult and code
review in combination with the use of static code analysis tools is also valuable.

Since eliminating XSS vulnerabilities entirely due to user input sanitization is hard, different
approaches are discussed in the literature. A promising approach is the randomisation of
HTML tags and attributes. Web applications randomise their order so clients can distinguish
between benign and trusted content and potentially untrusted malicious content. As long as
an attacker does not know the randomisation mapping, clients can successfully distinguish
trusted from untrusted scripts [107].

4.1.6 Cross-Site Request Forgery

Cross Site Request Forgery (CSRF) [103] attacks mislead victims into submitting malicious
HTTP requests to remote servers. The malicious request is executed on behalf of the user and
inherits their identity and permissions. CSRF attacks are so dangerous becausemost requests
to remote servers include credentials and session information associated with a user’s identity,
including session cookies. Authenticated users are particularly attractive victims for attackers
since it can be hard for remote servers to distinguish between benign and malicious requests
as long as they are submitted from the victim’s machine. CSRF attacks do not easily allow
attackers to access the server response for the malicious request. Therefore, the main goal
of a CSRF attack is to trick victims into submitting state-changing requests to remote servers.
Attractive targets are requests that change the victim’s credentials or purchase something.

Example: Online Banking In the following online banking scenario Alice wishes to trans-
fer 50 EUR to Bob using an online banking website that is vulnerable to a CSRF attack. A be-
nign request for an authenticated user Alice for the mentioned scenario could be similar to GET
https://myonlinebank.net/transaction?to=bob&value=50. In a first step, an attacker
can craft a malicious URL such as https://myonlinebank.et/transaction?to=attacker&value=50 and re-
place the intended recipient of the transaction with the attacker’s account. The second step for
successful CSRF attack requires the attacker to trick Alice into sending themalicious request with
her web browser, e. g. by sending a SPAM email containing the request which Alice subsequently
clicks on. However, CSRF attacks are not limited to HTTP GET requests but also affect POST
requests, e. g. by crafting malicious <form> tags.

Manymisconceptions lead to ineffective countermeasures. CSRF attacks cannot be prevented
by using secret cookies because all cookies are sent from a victim to the remote server. Also,
the use of HTTPS is ineffective as long as the malicious request is sent from the victim,
because the protocol does not matter and the use of POST requests for sensitive information
is insufficient since attackers can craftmalicious HTML formswith hidden fields. To effectively
prevent CSRF attacks, it is recommended to include randomised tokens in sensitive requests,
e. g., by adding them to the request headers. The tokens must be unique per session and
generated with a secure random number generator to prevent attackers from predicting them.
Servers must not accept requests from authenticated clients that do not include a valid token.

KA Web & Mobile Security | July 2021 Page 30

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

4.2 Server Side Misconfigurations & Vulnerable Components

A web application stack consists of multiple components, including web servers, web applica-
tion frameworks, database servers, firewall systems, and load balancers and proxies. Overall,
web application security highly depends on the security of each of the involved components.

A single insecure component is often enough to allow an attacker access to theweb application
and further escalate their attack from the inside. This is why deploying and maintaining a
secure web application requires more than focusing on the code of the app itself. Every
component of the web application stack needs to be configured securely and kept up to date
(see Section 2.10).

The Heartbleed Vulnerability A famous example of a critical vulnerability that affected many
web application stacks in 2014 is Heartbleed [104]. Heartbleed was a vulnerability in the widely
used OpenSSL library and caused web servers to leak information stored in the webservers’ mem-
ory. This included TLS certificate information such as private keys, connection encryption details,
and any data the user and server communicated, including passwords, usernames, and credit card
information [105]. To fix affected systems, administrators had to update their OpenSSL libraries
as quickly as possible and ideally also revoke certificates and prompt users to change their pass-
words.

As previously discussed, the principle of least privilege can reduce a web application’s attack
surface tremendously. Proper firewall and load balancer configurations serve as examples:

4.2.1 Firewall

To protect a webserver, a firewall should be configured to only allow access from outside
where access is needed. Access should be limited to ports like 80 and 443 for HTTP requests
via the Internet and restricting system configuration ports for SSH and alike to the internal
network (cf. the Network Security CyBOK Knowledge Area [5]).

4.2.2 Load Balancers

A load balancer is a widely deployed component in many web applications. Load balancers
control HTTP traffic between servers and clients and provide additional access control for
web application resources. They can be used to direct requests and responses to different
web servers or ports, balance traffic load between multiple web servers and protect areas
of a website with additional access control mechanisms. The most common approach for
controlling access is the use of .htaccess files. They can restrict access to content on the
original web server and instruct load balancers to require additional authentication.

Load balancers can also serve for rate limiting purposes. They can limit request size, allowed
request methods and paths or define timeouts. The main use of rate-limiting is to reduce the
potentially negative impact of denial of service attacks on a web server and prevent users
from spamming systems, as well as restrict and prevent unexpected behavior.

Additionally, load balancers can be used to provide secure TLS connections for web appli-
cations. When managing TLS, load balancers serve as a network connection endpoint for
the TLS encryption and either establish new TLS connections to the application service or
connect to the web application server using plain HTTP. If the web application server is not
hosted on the same machine, using plain network connections might leak information to the

KA Web & Mobile Security | July 2021 Page 31

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

internal network. However, if the web application server does not provide HTTPS itself, using
a load balancer as a TLS endpoint increases security.

HTTPS Misconfigurations One cornerstone of web and mobile security is the correct and se-
cure configuration of HTTPS on web servers. However, Holz et al. [108] found that a significant
number of popular websites deploy invalid certificates with incomplete certificate chains, issued
for the wrong hostname or expired lifetime. In a similar study Fahl et al. [109] confirmed these
findings and also asked website operators for the reasons for deploying invalid certificates. Most
operators were not aware of using an invalid certificate or used one on purpose because they did
not trust the web PKI. Krombholz et al. [110, 111] conducted a set of studies and found that opera-
tors have difficulties with correctly configuring HTTPS, or they harbour misconceptions about the
security features of HTTPS.

4.2.3 Databases

Similar to load balancers and firewalls, many web applications include databases to store
user information permanently. Often, databases are operated as an additional service that is
hosted on another server. The application server interacts with the database through libraries
and APIs. It is important to prevent injection vulnerabilities on the server. Additionally, errors
in the implementation of database libraries or coarse permissions required by the application
can lead to vulnerabilities.

To reduce the attack vector, most database systems provide user management, to limit user
privileges to create, read, delete or modify entries in tables and across databases. In this way
one database per application can be created and particular users with read-only permissions
can be used by the application server.

An important aspect of increasing database security is the decision on how to store data.
Encrypting data before storage in the database can help. However, especially for passwords
or other information that only needs to be compared for equality, hashing before storage can
tremendously increase security. In the case of a data leak, the sensitive information remains
unreadable. To store passwords securely, web and mobile app developers are recommended
to use a secure hash function such as Argon2 [112] or PBKDF2 [113] in combination with a
cryptographically strong credential-specific salt. A salt is a cryptographically strong fixed-
length random value and needs to be newly generated for for each set of credentials [114].

Password Leaks Developers tend to store plain passwords, credit card information or other
sensitive information in databases instead of encrypting or hashing them (cf. the Human Factors
CyBOK Knowledge Area [20]). Hence, many leaks of password databases or credit card infor-
mation put users at risk [115]. Modern browsers and password managers help users to avoid
passwords that were part of a previous data breach [116].

KA Web & Mobile Security | July 2021 Page 32

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

5 CONCLUSION

As we have shown, web and mobile security is a diverse and broad topic covering many areas.
This Knowledge Area emphasised an intersectional approach by exploring security concepts
and mechanisms that can be found in both the web and the mobile worlds. It therefore
builds upon and extends the insights from other Knowledge Areas, in particular the Software
Security CyBOK Knowledge Area [6], Network Security CyBOK Knowledge Area [5], Human
Factors CyBOK Knowledge Area [20], Operating Systems & Virtualisation CyBOK Knowledge
Area [3], Privacy & Online Rights CyBOK Knowledge Area [49], Authentication, Authorisation &
Accountability CyBOK Knowledge Area [4] and the Physical Layer and Telecommunications
Security CyBOK Knowledge Area [7].

We showed that due to the ubiquitous availability and use of web and mobile applications
and devices, paying attention to their security issues is crucial for overall information security.
We discussed web technologies that build the core of both web and mobile security, outlined
their characteristics and illustrated how they are different from other ecosystems.

Later on, we split the discussion into client- and server-side aspects. In particular, this Knowl-
edge Area has focused on attacks and defences that were prevalent in web and mobile clients
and servers and that dominated discussions in recent years.

CROSS-REFERENCE OF TOPICS VS REFERENCE MATERIAL

Section References

2 Fundamental Concepts and Approaches
2.1 Appification [11, 21]
2.2 Webification [22, 14, 31]
2.3 Application Stores [32, 33, 36]
2.4 Sandboxing [37, 38, 39, 40]
2.5 Permission Dialog Based Access Control [15, 44]
2.6 Web PKI and HTTPS [16, 17, 45, 51]
2.7 Authentication [52, 54]
2.8 Cookies [56]
2.9 Passwords and Alternatives [61, 63, 65]
2.10 Frequent Software Updates [73, 74]
3 Client Side Vulnerabilities and Mitigations
3.1 Phishing & Clickjacking [77, 75, 76, 81]
3.2 Client Side Storage [82]
3.3 Physical Attacks [86, 87]
4 Server Side Vulnerabilities and Mitigations
4.1 Injection Vulnerabilities [96, 97, 98, 102, 103]
4.2 Server Side Misconfigurations & Vulnerable Components [108, 110, 111, 116]

FURTHER READING

The following resources provide a deeper insight into web and mobile security as well as
guidance and recommendations for preventing and handling the vulnerabilities presented and
discussed above.

KA Web & Mobile Security | July 2021 Page 33

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

The OWASP Project & Wiki

TheOpenWebApplication Security Project (OWASP) is an international not-for-profit charitable
organisation providing practical information about application and web security. It fundsmany
projects including surveys like the OWASP TOP 10, books, CTFs and a wiki containing in-depth
descriptions, recommendations and checklists for vulnerabilities and security measurements.
The core wiki can be found at https://www.owasp.org/.

Mozilla Developer Network

An all-encompassing resource provided by Mozilla covering open web standards, including
security advice and cross platform behaviour for Javascript APIs, as well as a HTML and CSS
specifications. It can be found at https://developer.mozilla.org

Android Developers

The official documentation for the Android development ecosystem, including security advice
for client side storage, webviews, permissions, Android databases and network connections.
It also includes information for outdated operating system versions and the Google Play
Update process. Available at https://developer.android.com

REFERENCES

[1] Google, “Manage flash in your users’ Chrome browsers,” 2019. [Online]. Available:
https://support.google.com/chrome/a/answer/7084871

[2] OWASP, “OWASP cheat sheet series,” 2019. [Online]. Available: https://www.owasp.org/
index.php/OWASP_Cheat_Sheet_Series

[3] H. Bos, The Cyber Security Body of Knowledge. University of Bristol, 2021, ch. Operating
Systems & Virtualisation, version 1.0.1. [Online]. Available: https://www.cybok.org/

[4] D. Gollmann, The Cyber Security Body of Knowledge. University of Bristol, 2021,
ch. Authentication, Authorisation & Accountability, version 1.0.2. [Online]. Available:
https://www.cybok.org/

[5] C. Rossow and S. Jha, The Cyber Security Body of Knowledge. University of Bristol,
2021, ch. Network Security, version 2.0. [Online]. Available: https://www.cybok.org/

[6] F. Piessens, The Cyber Security Body of Knowledge. University of Bristol, 2021, ch.
Software Security, version 1.0.1. [Online]. Available: https://www.cybok.org/

[7] S. Čapkun, The Cyber Security Body of Knowledge. University of Bristol, 2021, ch.
Physical Layer & Telecommunications Security, version 1.0.1. [Online]. Available:
https://www.cybok.org/

[8] I. Verbauwhede, The Cyber Security Body of Knowledge. University of Bristol, 2021, ch.
Hardware Security, version 1.0.1. [Online]. Available: https://www.cybok.org/

[9] W. Lee, The Cyber Security Body of Knowledge. University of Bristol, 2021, ch. Malware
& Attack Technology, version 1.0.1. [Online]. Available: https://www.cybok.org/

[10] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee,
“Hypertext Transfer Protocol – HTTP/1.1,” Internet Requests for Comments, Network
Working Group, RFC 2616, June 1999. [Online]. Available: https://www.ietf.org/rfc/
rfc2616.txt

KA Web & Mobile Security | July 2021 Page 34

https://www.cybok.org
https://www.owasp.org/
https://developer.mozilla.org
https://developer.android.com
https://support.google.com/chrome/a/answer/7084871
https://www.owasp.org/index.php/OWASP_Cheat_Sheet_Series
https://www.owasp.org/index.php/OWASP_Cheat_Sheet_Series
https://www.cybok.org/
https://www.cybok.org/
https://www.cybok.org/
https://www.cybok.org/
https://www.cybok.org/
https://www.cybok.org/
https://www.cybok.org/
https://www.ietf.org/rfc/rfc2616.txt
https://www.ietf.org/rfc/rfc2616.txt


The Cyber Security Body Of Knowledge
www.cybok.org

[11] Y. Acar, M. Backes, S. Bugiel, S. Fahl, P. McDaniel, and M. Smith, “SoK: Lessons learned
fromAndroid security research for appified software platforms,” in 2016 IEEE Symposium
on Security and Privacy (SP), May 2016, pp. 433–451.

[12] T. Berners-Lee, L. Masinter, and M. McCahill, “Uniform Resource Locators (URL),”
Internet Requests for Comments, Network Working Group, RFC 1738, December 1994.
[Online]. Available: https://www.ietf.org/rfc/rfc1738.txt

[13] W3C, “HTML 5.2,” Dec 2017. [Online]. Available: https://www.w3.org/TR/html52/
[14] “Ecmascript language specification,” August 2019. [Online]. Available: https:

//tc39.es/ecma262/
[15] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android permissions demystified,”

in Proceedings of the 18th ACM Conference on Computer and Communications Security,
ser. CCS ’11. New York, NY, USA: ACM, 2011, pp. 627–638. [Online]. Available:
http://doi.acm.org/10.1145/2046707.2046779

[16] E. Rescorla, “The transport layer security (tls) protocol version 1.3,” Internet Requests
for Comments, RFC Editor, RFC 8446, August 2018.

[17] ——, “HTTP over TLS,” Internet Requests for Comments, RFC Editor, RFC 2818, May
2000. [Online]. Available: http://www.rfc-editor.org/rfc/rfc2818.txt

[18] J. Bonneau, C. Herley, P. C. v. Oorschot, and F. Stajano, “The quest to
replace passwords: A framework for comparative evaluation of web authen-
tication schemes,” in IEEE Symposium on Security and Privacy. IEEE, May
2012. [Online]. Available: https://www.microsoft.com/en-us/research/publication/
the-quest-to-replace-passwords-a-framework-for-comparative-evaluation-of-web-authentication-schemes/

[19] E. Enge, “Mobile VS. Desktop Usage in 2019,” 2019. [Online]. Available: https:
//www.perficientdigital.com/insights/our-research/mobile-vs-desktop-usage-study

[20] M. A. Sasse and A. Rashid, The Cyber Security Body of Knowledge. University of Bristol,
2021, ch. Human Factors, version 1.0.1. [Online]. Available: https://www.cybok.org/

[21] M. Oltrogge, E. Derr, C. Stransky, Y. Acar, S. Fahl, C. Rossow, G. Pellegrino, S. Bugiel,
and M. Backes, “The rise of the citizen developer: Assessing the security impact
of online app generators,” in 2018 IEEE Symposium on Security and Privacy, SP 2018,
Proceedings, 21-23 May 2018, San Francisco, California, USA, May 2018, pp. 634–647.
[Online]. Available: https://doi.org/10.1109/SP.2018.00005

[22] M. Zalewski, The Tangled Web: A Guide to Securing Modern Web Applications, 1st ed.
San Francisco, CA, USA: No Starch Press, 2011.

[23] M. Belshe, R. Peon, and M. Thomson, “Hypertext Transfer Protocol Version 2 (HTTP/2),”
Internet Requests for Comments, Internet Engineering Task Force (IETF), RFC 7540,
May 2015. [Online]. Available: https://tools.ietf.org/html/rfc7540

[24] I. Fette and A. Melnikov, “The websocket protocol,” Internet Requests for Comments,
RFC Editor, RFC 6455, December 2011. [Online]. Available: http://www.rfc-editor.org/rfc/
rfc6455.txt

[25] E. Leung, “Learn to style HTML using CSS,” Aug 2019. [Online]. Available:
https://developer.mozilla.org/en-US/docs/Learn/CSS

[26] Node.js Foundation, “Node.js,” 2019. [Online]. Available: https://nodejs.org/en/
[27] “Webassembly 1.0,” 2019. [Online]. Available: https://webassembly.org/
[28] Google, “Android Developer Documentation - WebView,” 2019. [Online]. Available:

https://developer.android.com/reference/android/webkit/WebView
[29] P. Mutchler, A. Doupé, J. Mitchell, C. Kruegel, and G. Vigna, “A Large-Scale Study of

MobileWeb App Security,” inProceedings of theMobile Security TechnologiesWorkshop
(MoST), May 2015.

[30] M. Georgiev, S. Jana, and V. Shmatikov, “Breaking and fixing origin-based access control

KA Web & Mobile Security | July 2021 Page 35

https://www.cybok.org
https://www.ietf.org/rfc/rfc1738.txt
https://www.w3.org/TR/html52/
https://tc39.es/ecma262/
https://tc39.es/ecma262/
http://doi.acm.org/10.1145/2046707.2046779
http://www.rfc-editor.org/rfc/rfc2818.txt
https://www.microsoft.com/en-us/research/publication/the-quest-to-replace-passwords-a-framework-for-comparative-evaluation-of-web-authentication-schemes/
https://www.microsoft.com/en-us/research/publication/the-quest-to-replace-passwords-a-framework-for-comparative-evaluation-of-web-authentication-schemes/
https://www.perficientdigital.com/insights/our-research/mobile-vs-desktop-usage-study
https://www.perficientdigital.com/insights/our-research/mobile-vs-desktop-usage-study
https://www.cybok.org/
https://doi.org/10.1109/SP.2018.00005
https://tools.ietf.org/html/rfc7540
http://www.rfc-editor.org/rfc/rfc6455.txt
http://www.rfc-editor.org/rfc/rfc6455.txt
https://developer.mozilla.org/en-US/docs/Learn/CSS
https://nodejs.org/en/
https://webassembly.org/
https://developer.android.com/reference/android/webkit/WebView


The Cyber Security Body Of Knowledge
www.cybok.org

in hybrid web/mobile application frameworks,” NDSS symposium, vol. 2014, pp. 1–15,
2014.

[31] ——, “Rethinking security of web-based system applications,” in Proceedings of the 24th
International Conference on World Wide Web, ser. WWW ’15. Republic and Canton of
Geneva, Switzerland: International World Wide Web Conferences Steering Committee,
2015, pp. 366–376. [Online]. Available: https://doi.org/10.1145/2736277.2741663

[32] H. Lockheimer, “Android and security,” 2012. [Online]. Available: http://googlemobile.
blogspot.com/2012/02/android-and-security.html

[33] Apple Inc., “App store review guidelines,” 2019. [Online]. Available: https://developer.
apple.com/app-store/review/guidelines/

[34] S. Fahl, M. Harbach, T. Muders, L. Baumgärtner, B. Freisleben, and M. Smith,
“Why Eve and Mallory love Android: An analysis of Android SSL (in)security,” in
Proceedings of the 2012 ACM Conference on Computer and Communications Security,
ser. CCS ’12. New York, NY, USA: ACM, 2012, pp. 50–61. [Online]. Available:
http://doi.acm.org/10.1145/2382196.2382205

[35] Android Developers, “Sign your app | Android Developers,” 2019. [Online]. Available:
https://developer.android.com/studio/publish/app-signing

[36] D. C. Nguyen, E. Derr, M. Backes, and S. Bugiel, “Short text, large effect: Measuring
the impact of user reviews on Android app security & privacy,” in Proceedings of the
IEEE Symposium on Security & Privacy, May 2019. IEEE, May 2019. [Online]. Available:
https://publications.cispa.saarland/2815/

[37] A. Barth, C. Reis, C. Jackson, and Google Chrome Team, “The security architecture
of the chromium browser,” Jan. 2008. [Online]. Available: http://seclab.stanford.edu/
websec/chromium/chromium-security-architecture.pdf

[38] H. J. Wang, C. Grier, A. Moshchuk, S. T. King, P. Choudhury, and H. Venter,
“The multi-principal OS construction of the Gazelle web browser,” in Proceedings
of the 18th Conference on USENIX Security Symposium, ser. SSYM’09. Berkeley,
CA, USA: USENIX Association, 2009, pp. 417–432. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1855768.1855794

[39] Google, “Chrome sandbox,” 2019. [Online]. Available: https://chromium.googlesource.
com/chromium/src/+/master/docs/design/sandbox.md

[40] ——, “Android application sandbox,” 2019. [Online]. Available: https://source.android.
com/security/app-sandbox

[41] A. Barth, “The web origin concept,” Internet Requests for Comments, RFC Editor, RFC
6454, December 2011. [Online]. Available: http://www.rfc-editor.org/rfc/rfc6454.txt

[42] T. C. Projects, “Site Isolation Design Document.” [Online]. Available: https:
//www.chromium.org/developers/design-documents/site-isolation

[43] M. West, “Initial assignment for the content security policy directives registry,” Internet
Requests for Comments, Google, Inc., RFC 7762, January 2016.

[44] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner, “Android permissions:
User attention, comprehension, and behavior,” in Proceedings of the Eighth Symposium
on Usable Privacy and Security, ser. SOUPS ’12. New York, NY, USA: ACM, 2012, pp.
3:1–3:14. [Online]. Available: http://doi.acm.org/10.1145/2335356.2335360

[45] M. E. Acer, E. Stark, A. P. Felt, S. Fahl, R. Bhargava, B. Dev, M. Braithwaite, R. Sleevi,
and P. Tabriz, “Where the wild warnings are: Root causes of Chrome HTTPS
certificate errors,” in Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’17. New York, NY, USA: ACM, 2017, pp.
1407–1420. [Online]. Available: http://doi.acm.org/10.1145/3133956.3134007

[46] A. P. Felt, A. Ainslie, R. W. Reeder, S. Consolvo, S. Thyagaraja, A. Bettes, H. Harris, and

KA Web & Mobile Security | July 2021 Page 36

https://www.cybok.org
https://doi.org/10.1145/2736277.2741663
http://googlemobile.blogspot.com/2012/02/android-and-security.html
http://googlemobile.blogspot.com/2012/02/android-and-security.html
https://developer.apple.com/app-store/review/guidelines/
https://developer.apple.com/app-store/review/guidelines/
http://doi.acm.org/10.1145/2382196.2382205
https://developer.android.com/studio/publish/app-signing
https://publications.cispa.saarland/2815/
http://seclab.stanford.edu/websec/chromium/chromium-security-architecture.pdf
http://seclab.stanford.edu/websec/chromium/chromium-security-architecture.pdf
http://dl.acm.org/citation.cfm?id=1855768.1855794
http://dl.acm.org/citation.cfm?id=1855768.1855794
https://chromium.googlesource.com/chromium/src/+/master/docs/design/sandbox.md
https://chromium.googlesource.com/chromium/src/+/master/docs/design/sandbox.md
https://source.android.com/security/app-sandbox
https://source.android.com/security/app-sandbox
http://www.rfc-editor.org/rfc/rfc6454.txt
https://www.chromium.org/developers/design-documents/site-isolation
https://www.chromium.org/developers/design-documents/site-isolation
http://doi.acm.org/10.1145/2335356.2335360
http://doi.acm.org/10.1145/3133956.3134007


The Cyber Security Body Of Knowledge
www.cybok.org

J. Grimes, “Improving SSL Warnings: Comprehension and Adherence,” in Conference on
Human Factors and Computing Systems, 2015.

[47] J. Hodges, C. Jackson, and A. Barth, “HTTP Strict Transport Security (HSTS),” Internet
Requests for Comments, RFC Editor, RFC 6797, November 2012. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc6797.txt

[48] “HTTPS everywhere,” Mar 2018. [Online]. Available: https://www.eff.org/
https-everywhere

[49] C. Troncoso, The Cyber Security Body of Knowledge. University of Bristol, 2021, ch.
Privacy & Online Rights, version 1.0.2. [Online]. Available: https://www.cybok.org/

[50] Access, “The weakest link in the chain: Vulnerabilities in the SSL certificate authority
system and what should be done about them,” 2011. [Online]. Available: https://www.
accessnow.org/cms/assets/uploads/archive/docs/Weakest_Link_in_the_Chain.pdf

[51] Google - Certificate Transparency Team, “Certificate transparency,” 2019. [Online].
Available: https://www.certificate-transparency.org/

[52] J. Reschke, “The ‘Basic’ HTTP Authentication Scheme,” Internet Requests for Comments,
Internet Engineering Task Force (IETF), RFC 7617, September 2015. [Online]. Available:
https://tools.ietf.org/html/rfc7617

[53] M. Harbach, E. Von Zezschwitz, A. Fichtner, A. De Luca, and M. Smith, “It’s a hard
lock life: A field study of smartphone (un)locking behavior and risk perception,” in
Proceedings of the Tenth USENIX Conference on Usable Privacy and Security, ser.
SOUPS ’14. Berkeley, CA, USA: USENIX Association, 2014, pp. 213–230. [Online].
Available: http://dl.acm.org/citation.cfm?id=3235838.3235857

[54] S. Uellenbeck, M. Dürmuth, C. Wolf, and T. Holz, “Quantifying the security of
graphical passwords: The case of Android unlock patterns,” in Proceedings
of the 2013 ACM SIGSAC Conference on Computer & Communications Security,
ser. CCS ’13. New York, NY, USA: ACM, 2013, pp. 161–172. [Online]. Available:
http://doi.acm.org/10.1145/2508859.2516700

[55] A. De Luca, E. von Zezschwitz, N. D. H. Nguyen, M.-E. Maurer, E. Rubegni, M. P.
Scipioni, and M. Langheinrich, “Back-of-device authentication on smartphones,” in
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
ser. CHI ’13. New York, NY, USA: ACM, 2013, pp. 2389–2398. [Online]. Available:
http://doi.acm.org/10.1145/2470654.2481330

[56] A. Barth, “Http state management mechanism,” Internet Requests for Comments, RFC
Editor, RFC 6265, April 2011. [Online]. Available: http://www.rfc-editor.org/rfc/rfc6265.txt

[57] S. Calzavara, R. Focardi, M. Squarcina, and M. Tempesta, “Surviving the web: A journey
into web session security,” ACM Comput. Surv., vol. 50, no. 1, pp. 13:1–13:34, Mar. 2017.
[Online]. Available: http://doi.acm.org/10.1145/3038923

[58] G. Stringhini, The Cyber Security Body of Knowledge. University of Bristol, 2021, ch.
Adversarial Behaviours, version 1.0.1. [Online]. Available: https://www.cybok.org/

[59] National Institute of Standards and Technology (NIST), U.S., “NIST Special
Publication 800-63B – Digital Identity Guidelines,” 2019. [Online]. Available: https:
//pages.nist.gov/800-63-3/sp800-63b.html

[60] National Cyber Security Center (NCSC), UK, “Password administration for system
owners,” 2019. [Online]. Available: https://www.ncsc.gov.uk/collection/passwords/
updating-your-approach

[61] P. G. Inglesant and M. A. Sasse, “The true cost of unusable password policies:
Password use in the wild,” in Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, ser. CHI ’10. New York, NY, USA: ACM, 2010, pp. 383–392.
[Online]. Available: http://doi.acm.org/10.1145/1753326.1753384

KA Web & Mobile Security | July 2021 Page 37

https://www.cybok.org
http://www.rfc-editor.org/rfc/rfc6797.txt
https://www.eff.org/https-everywhere
https://www.eff.org/https-everywhere
https://www.cybok.org/
https://www.accessnow.org/cms/assets/uploads/archive/docs/Weakest_Link_in_the_Chain.pdf
https://www.accessnow.org/cms/assets/uploads/archive/docs/Weakest_Link_in_the_Chain.pdf
https://www.certificate-transparency.org/
https://tools.ietf.org/html/rfc7617
http://dl.acm.org/citation.cfm?id=3235838.3235857
http://doi.acm.org/10.1145/2508859.2516700
http://doi.acm.org/10.1145/2470654.2481330
http://www.rfc-editor.org/rfc/rfc6265.txt
http://doi.acm.org/10.1145/3038923
https://www.cybok.org/
https://pages.nist.gov/800-63-3/sp800-63b.html
https://pages.nist.gov/800-63-3/sp800-63b.html
https://www.ncsc.gov.uk/collection/passwords/updating-your-approach
https://www.ncsc.gov.uk/collection/passwords/updating-your-approach
http://doi.acm.org/10.1145/1753326.1753384


The Cyber Security Body Of Knowledge
www.cybok.org

[62] S. Komanduri, R. Shay, P. G. Kelley, M. L. Mazurek, L. Bauer, N. Christin, L. F. Cranor, and
S. Egelman, “Of passwords and people: Measuring the effect of password-composition
policies,” in Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, ser. CHI ’11. New York, NY, USA: ACM, 2011, pp. 2595–2604. [Online].
Available: http://doi.acm.org/10.1145/1978942.1979321

[63] B. Ur, F. Alfieri, M. Aung, L. Bauer, N. Christin, J. Colnago, L. F. Cranor, H. Dixon,
P. Emami Naeini, H. Habib, N. Johnson, and W. Melicher, “Design and evaluation of
a data-driven password meter,” in Proceedings of the 2017 CHI Conference on Human
Factors in Computing Systems, ser. CHI ’17. New York, NY, USA: ACM, 2017, pp.
3775–3786. [Online]. Available: http://doi.acm.org/10.1145/3025453.3026050

[64] S. Egelman, A. Sotirakopoulos, I. Muslukhov, K. Beznosov, and C. Herley, “Does my
password go up to eleven?: The impact of password meters on password selection,”
in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
ser. CHI ’13. New York, NY, USA: ACM, 2013, pp. 2379–2388. [Online]. Available:
http://doi.acm.org/10.1145/2470654.2481329

[65] S. G. Lyastani, M. Schilling, S. Fahl, M. Backes, and S. Bugiel, “Better managed
than memorized? Studying the impact of managers on password strength and
reuse,” in 27th USENIX Security Symposium (USENIX Security 18). Baltimore,
MD: USENIX Association, Aug. 2018, pp. 203–220. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity18/presentation/lyastani

[66] M. View, J. Rydell, M. Pei, and S. Machani, “TOTP: Time-Based One-Time Password
Algorithm,” RFC 6238, May 2011. [Online]. Available: https://rfc-editor.org/rfc/rfc6238.txt

[67] D. Balfanz, A. Czeskis, J. Hodges, J. J.C. Jones, M. B. Jones, A. Kumar, A. Liao, R. Linde-
mann, and E. Lundberg, “Web authentication: AnAPI for accessing public key credentials,”
https://www.w3.org/TR/webauthn-1/, 2019.

[68] D. Hardt, “The OAuth 2.0 Authorization Framework,” Internet Requests for Comments,
Internet Engineering Task Force (IETF), RFC 6749, October 2012. [Online]. Available:
https://tools.ietf.org/html/rfc6749

[69] ——, “The OAuth 2.0 authorization framework,” Internet Requests for Comments, RFC
Editor, RFC 6749, October 2012. [Online]. Available: http://www.rfc-editor.org/rfc/
rfc6749.txt

[70] N. Sakimura, J. Bradley, M. Jones, B. de Medeiros, and C. Mortimore, “Openid connect
core 1.0,” 2014. [Online]. Available: https://openid.net/specs/openid-connect-core-1_0.
html

[71] W. Li and C. J. Mitchell, “Analysing the security of Google’s implementation of
OpenID connect,” in Proceedings of the 13th International Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment - Volume 9721, ser. DIMVA
2016. Berlin, Heidelberg: Springer-Verlag, 2016, pp. 357–376. [Online]. Available:
https://doi.org/10.1007/978-3-319-40667-1_18

[72] S. Fahl, S. Dechand, H. Perl, F. Fischer, J. Smrcek, and M. Smith, “Hey, NSA:
Stay away from my market! Future proofing app markets against powerful
attackers.” in ACM Conference on Computer and Communications Security, G.-J.
Ahn, M. Yung, and N. Li, Eds. ACM, 2014, pp. 1143–1155. [Online]. Available:
http://dblp.uni-trier.de/db/conf/ccs/ccs2014.html#FahlDPFSS14

[73] E. Derr, S. Bugiel, S. Fahl, Y. Acar, and M. Backes, “Keep me updated: An
empirical study of third-party library updatability on Android,” in Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security, ser.
CCS ’17. New York, NY, USA: ACM, 2017, pp. 2187–2200. [Online]. Available:
http://doi.acm.org/10.1145/3133956.3134059

KA Web & Mobile Security | July 2021 Page 38

https://www.cybok.org
http://doi.acm.org/10.1145/1978942.1979321
http://doi.acm.org/10.1145/3025453.3026050
http://doi.acm.org/10.1145/2470654.2481329
https://www.usenix.org/conference/usenixsecurity18/presentation/lyastani
https://www.usenix.org/conference/usenixsecurity18/presentation/lyastani
https://rfc-editor.org/rfc/rfc6238.txt
https://tools.ietf.org/html/rfc6749
http://www.rfc-editor.org/rfc/rfc6749.txt
http://www.rfc-editor.org/rfc/rfc6749.txt
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html
https://doi.org/10.1007/978-3-319-40667-1_18
http://dblp.uni-trier.de/db/conf/ccs/ccs2014.html#FahlDPFSS14
http://doi.acm.org/10.1145/3133956.3134059


The Cyber Security Body Of Knowledge
www.cybok.org

[74] T. Lauinger, A. Chaabane, S. Arshad, W. Robertson, C. Wilson, and E. Kirda, “Thou
shalt not depend on me: Analysing the use of outdated JavaScript libraries
on the web,” in 24th Annual Network and Distributed System Security Symposium,
NDSS 2017, San Diego, California, USA, February 26 - March 1, 2017, 2017. [On-
line]. Available: https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/
thou-shalt-not-depend-me-analysing-use-outdated-javascript-libraries-web/

[75] P. Kumaraguru, S. Sheng, A. Acquisti, L. F. Cranor, and J. Hong, “Teaching Johnny not
to fall for phish,” ACM Trans. Internet Technol., vol. 10, no. 2, pp. 7:1–7:31, Jun. 2010.
[Online]. Available: http://doi.acm.org/10.1145/1754393.1754396

[76] P. Kumaraguru, J. Cranshaw, A. Acquisti, L. Cranor, J. Hong, M. A. Blair, and
T. Pham, “School of phish: A real-world evaluation of anti-phishing training,” in
Proceedings of the 5th Symposium on Usable Privacy and Security, ser. SOUPS
’09. New York, NY, USA: ACM, 2009, pp. 3:1–3:12. [Online]. Available: http:
//doi.acm.org/10.1145/1572532.1572536

[77] Z. Dou, I. Khalil, A. Khreishah, A. Al-Fuqaha, and M. Guizani, “SoK: A systematic review
of software-based web phishing detection,” IEEE Communications Surveys Tutorials,
vol. 19, no. 4, pp. 2797–2819, Fourthquarter 2017.

[78] F. Callegati and M. Ramilli, “Frightened by links,” IEEE Security Privacy, vol. 7, no. 6, pp.
72–76, Nov 2009.

[79] T. Espiner, “Adobe addresses flash player ‘clickjacking’ flaw,” Oct 2008. [Online]. Available:
https://www.cnet.com/news/adobe-addresses-flash-player-clickjacking-flaw/

[80] G. Maone, “NoScript - JavaScript/Java/Flash blocker for a safer Firefox experience! -
what is it? - InformAction,” 2019. [Online]. Available: https://noscript.net/

[81] S. Tang, N. Dautenhahn, and S. T. King, “Fortifying web-based applications automatically,”
in Proceedings of the 18th ACM Conference on Computer and Communications Security,
ser. CCS ’11. New York, NY, USA: ACM, 2011, pp. 615–626. [Online]. Available:
http://doi.acm.org/10.1145/2046707.2046777

[82] Mozilla and individual contributors, “Web Storage API,” 2019. [Online]. Available:
https://developer.mozilla.org/en-US/docs/Web/API/Web_Storage_API

[83] ——, “IndexedDB API,” 2019. [Online]. Available: https://developer.mozilla.org/en-US/
docs/Web/API/IndexedDB_API

[84] J. Manico, D. Righetto, and P. Ionescu, “JSON web token for Java. OWASP cheat sheet
series,” 2017. [Online]. Available: https://cheatsheetseries.owasp.org/cheatsheets/
JSON_Web_Token_Cheat_Sheet_for_Java.html

[85] Mozilla and individual contributors, “Window.sessionStorage,” 2019. [Online]. Available:
https://developer.mozilla.org/en-US/docs/Web/API/Window/sessionStorage

[86] A. J. Aviv, K. Gibson, E. Mossop, M. Blaze, and J. M. Smith, “Smudge attacks on
smartphone touch screens,” in Proceedings of the 4th USENIX Conference on Offensive
Technologies, ser. WOOT’10. Berkeley, CA, USA: USENIX Association, 2010, pp. 1–7.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1925004.1925009

[87] M. Eiband, M. Khamis, E. von Zezschwitz, H. Hussmann, and F. Alt, “Understanding
shoulder surfing in the wild: Stories from users and observers,” in Proceedings
of the 2017 CHI Conference on Human Factors in Computing Systems, ser. CHI
’17. New York, NY, USA: ACM, 2017, pp. 4254–4265. [Online]. Available: http:
//doi.acm.org/10.1145/3025453.3025636

[88] E. Gabrilovich and A. Gontmakher, “The homograph attack,” Communications
of the ACM, vol. 45, no. 2, pp. 128–, Feb. 2002. [Online]. Available: http:
//doi.acm.org/10.1145/503124.503156

[89] F. Quinkert, T. Lauinger, W. K. Robertson, E. Kirda, and T. Holz, “It’s not what it

KA Web & Mobile Security | July 2021 Page 39

https://www.cybok.org
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/thou-shalt-not-depend-me-analysing-use-outdated-javascript-libraries-web/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/thou-shalt-not-depend-me-analysing-use-outdated-javascript-libraries-web/
http://doi.acm.org/10.1145/1754393.1754396
http://doi.acm.org/10.1145/1572532.1572536
http://doi.acm.org/10.1145/1572532.1572536
https://www.cnet.com/news/adobe-addresses-flash-player-clickjacking-flaw/
https://noscript.net/
http://doi.acm.org/10.1145/2046707.2046777
https://developer.mozilla.org/en-US/docs/Web/API/Web_Storage_API
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API
https://cheatsheetseries.owasp.org/cheatsheets/JSON_Web_Token_Cheat_Sheet_for_Java.html
https://cheatsheetseries.owasp.org/cheatsheets/JSON_Web_Token_Cheat_Sheet_for_Java.html
https://developer.mozilla.org/en-US/docs/Web/API/Window/sessionStorage
http://dl.acm.org/citation.cfm?id=1925004.1925009
http://doi.acm.org/10.1145/3025453.3025636
http://doi.acm.org/10.1145/3025453.3025636
http://doi.acm.org/10.1145/503124.503156
http://doi.acm.org/10.1145/503124.503156


The Cyber Security Body Of Knowledge
www.cybok.org

looks like: Measuring attacks and defensive registrations of homograph domains,”
in 7th IEEE Conference on Communications and Network Security, CNS 2019,
Washington, DC, USA, June 10-12, 2019, 2019, pp. 259–267. [Online]. Available:
https://doi.org/10.1109/CNS.2019.8802671

[90] M. Cova, C. Kruegel, and G. Vigna, “Detection and analysis of drive-by-download attacks
and malicious JavaScript code,” in Proceedings of the 19th International Conference on
World Wide Web, ser. WWW ’10. New York, NY, USA: ACM, 2010, pp. 281–290. [Online].
Available: http://doi.acm.org/10.1145/1772690.1772720

[91] S. Aonzo, A. Merlo, G. Tavella, and Y. Fratantonio, “Phishing attacks on modern Android,”
in Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’18. New York, NY, USA: ACM, 2018, pp. 1788–1801. [Online].
Available: http://doi.acm.org/10.1145/3243734.3243778

[92] Y. Fratantonio, C. Qian, S. Chung, and W. Lee, “Cloak and dagger: From two permissions
to complete control of the UI feedback loop,” in Proceedings of the IEEE Symposium on
Security and Privacy (Oakland), San Jose, CA, May 2017.

[93] N. Smart, The Cyber Security Body of Knowledge. University of Bristol, 2021, ch.
Cryptography, version 1.0.1. [Online]. Available: https://www.cybok.org/

[94] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri, “A study of android application
security,” in Proceedings of the 20th USENIX Conference on Security, ser. SEC’11.
Berkeley, CA, USA: USENIX Association, 2011, pp. 21–21. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2028067.2028088

[95] J. Reardon, Á. Feal, P. Wijesekera, A. E. B. On, N. Vallina-Rodriguez, and S. Egelman,
“50 ways to leak your data: An exploration of apps’ circumvention of the Android
permissions system,” in 28th USENIX Security Symposium (USENIX Security 19).
Santa Clara, CA: USENIX Association, Aug. 2019, pp. 603–620. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity19/presentation/reardon

[96] OWASP, “Top 10-2017 A1-Injection,” 2017. [Online]. Available: https://www.owasp.org/
index.php/Top_10-2017_A1-Injection

[97] ——, “Blind SQL Injection,” 2013. [Online]. Available: https://www.owasp.org/index.php/
Blind_SQL_Injection

[98] Oracle Corporation, “Prepared SQL Statement Syntax,” 2019. [Online]. Available:
https://dev.mysql.com/doc/refman/8.0/en/sql-syntax-prepared-statements.html

[99] The PostgreSQL Global Development Group, “PostgreSQL: Documentation: 11: PRE-
PARE,” 2019. [Online]. Available: https://www.postgresql.org/docs/current/sql-prepare.
html

[100] DHS and CISA, “CVE - common vulnerabilities and exposures,” 2019. [Online]. Available:
https://cve.mitre.org/

[101] J. Reschke, “Use of the Content-Disposition Header Field in the Hypertext Transfer
Protocol (HTTP),” Internet Request for Comments, Internet Engineering Task Force
(IETF), RFC, June 2011. [Online]. Available: https://tools.ietf.org/html/rfc6266

[102] “Cross-site scripting,” April 2019. [Online]. Available: https://developer.mozilla.org/
en-US/docs/Glossary/Cross-site_scripting

[103] A. Barth, C. Jackson, and J. C. Mitchell, “Robust defenses for cross-site request
forgery,” in Proceedings of the 15th ACM Conference on Computer and Communications
Security, ser. CCS ’08. New York, NY, USA: ACM, 2008, pp. 75–88. [Online]. Available:
http://doi.acm.org/10.1145/1455770.1455782

[104] I. Synopsis, “The heartbleed bug,” http://heartbleed.com/, 2014.
[105] Z. Durumeric, F. Li, J. Kasten, J. Amann, J. Beekman, M. Payer, N. Weaver,

D. Adrian, V. Paxson, M. Bailey, and J. A. Halderman, “The matter of Heartbleed,”

KA Web & Mobile Security | July 2021 Page 40

https://www.cybok.org
https://doi.org/10.1109/CNS.2019.8802671
http://doi.acm.org/10.1145/1772690.1772720
http://doi.acm.org/10.1145/3243734.3243778
https://www.cybok.org/
http://dl.acm.org/citation.cfm?id=2028067.2028088
https://www.usenix.org/conference/usenixsecurity19/presentation/reardon
https://www.owasp.org/index.php/Top_10-2017_A1-Injection
https://www.owasp.org/index.php/Top_10-2017_A1-Injection
https://www.owasp.org/index.php/Blind_SQL_Injection
https://www.owasp.org/index.php/Blind_SQL_Injection
https://dev.mysql.com/doc/refman/8.0/en/sql-syntax-prepared-statements.html
https://www.postgresql.org/docs/current/sql-prepare.html
https://www.postgresql.org/docs/current/sql-prepare.html
https://cve.mitre.org/
https://tools.ietf.org/html/rfc6266
https://developer.mozilla.org/en-US/docs/Glossary/Cross-site_scripting
https://developer.mozilla.org/en-US/docs/Glossary/Cross-site_scripting
http://doi.acm.org/10.1145/1455770.1455782


The Cyber Security Body Of Knowledge
www.cybok.org

in Proceedings of the 2014 Conference on Internet Measurement Conference, ser.
IMC ’14. New York, NY, USA: ACM, 2014, pp. 475–488. [Online]. Available:
http://doi.acm.org/10.1145/2663716.2663755

[106] Z. Su and G. Wassermann, “The essence of command injection attacks in web
applications,” in Conference Record of the 33rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, ser. POPL ’06. New York, NY, USA: ACM, 2006,
pp. 372–382. [Online]. Available: http://doi.acm.org/10.1145/1111037.1111070

[107] M. Van Gundy and H. Chen, “Noncespaces: Using randomization to defeat cross-site
scripting attacks,” Comput. Secur., vol. 31, no. 4, pp. 612–628, Jun. 2012. [Online].
Available: http://dx.doi.org/10.1016/j.cose.2011.12.004

[108] R. Holz, L. Braun, N. Kammenhuber, and G. Carle, “The SSL landscape: A thorough
analysis of the X.509 PKI using active and passive measurements,” in Proceedings
of the 2011 ACM SIGCOMM Conference on Internet Measurement Conference, ser.
IMC ’11. New York, NY, USA: ACM, 2011, pp. 427–444. [Online]. Available:
http://doi.acm.org/10.1145/2068816.2068856

[109] S. Fahl, Y. Acar, H. Perl, and M. Smith, “Why Eve and Mallory (also) love webmasters:
A study on the root causes of SSL misconfigurations,” in Proceedings of the
9th ACM Symposium on Information, Computer and Communications Security, ser.
ASIA CCS ’14. New York, NY, USA: ACM, 2014, pp. 507–512. [Online]. Available:
http://doi.acm.org/10.1145/2590296.2590341

[110] K. Krombholz, W. Mayer, M. Schmiedecker, and E. Weippl, ““I have no idea
what I’m doing" - on the usability of deploying HTTPS,” in 26th USENIX Security
Symposium (USENIX Security 2017), August 2017, p. 1338. [Online]. Available:
https://publications.cispa.saarland/2654/

[111] K. Krombholz, K. Busse, K. Pfeffer, M. Smith, and E. von Zezschwitz, ““If HTTPS were
secure, i wouldn’t need 2FA" - end user and administrator mental models of HTTPS,” in
S&P 2019, May 2019. [Online]. Available: https://publications.cispa.saarland/2788/

[112] A. Biryukov, D. Dinu, D. Khovratovich, and S. Josefsson, “The memory-hard
Argon2 password hash and proof-of-work function,” Internet Engineering Task Force,
Internet-Draft draft-irtf-cfrg-argon2-08, Oct. 2019, work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-argon2-08

[113] S. Josefsson, “PKCS #5: Password-Based Key Derivation Function 2 (PBKDF2) Test
Vectors,” RFC 6070, Jan. 2011. [Online]. Available: https://rfc-editor.org/rfc/rfc6070.txt

[114] OWASP, “OWASP - password storage cheat sheet,” 2019. [Online]. Available: https:
//cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html

[115] Wikipedia contributors, “List of data breaches — Wikipedia, the free encyclopedia,” 2019.
[Online]. Available: https://en.wikipedia.org/wiki/List_of_data_breaches

[116] K. Thomas, J. Pullman, K. Yeo, A. Raghunathan, P. G. Kelley, L. Invernizzi, B. Benko,
T. Pietraszek, S. Patel, D. Boneh, and E. Bursztein, “Protecting accounts from credential
stuffing with password breach alerting,” in 28th USENIX Security Symposium (USENIX
Security 19). Santa Clara, CA: USENIX Association, Aug. 2019, pp. 1556–1571. [Online].
Available: https://www.usenix.org/conference/usenixsecurity19/presentation/thomas

KA Web & Mobile Security | July 2021 Page 41

https://www.cybok.org
http://doi.acm.org/10.1145/2663716.2663755
http://doi.acm.org/10.1145/1111037.1111070
http://dx.doi.org/10.1016/j.cose.2011.12.004
http://doi.acm.org/10.1145/2068816.2068856
http://doi.acm.org/10.1145/2590296.2590341
https://publications.cispa.saarland/2654/
https://publications.cispa.saarland/2788/
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-argon2-08
https://rfc-editor.org/rfc/rfc6070.txt
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
https://en.wikipedia.org/wiki/List_of_data_breaches
https://www.usenix.org/conference/usenixsecurity19/presentation/thomas


INDEX

absolute positioning, 23
absolute URL, 7
accept header, 7
access control, 3, 4, 12–14, 17, 25, 27, 31
access control policy, 13, 27
access permissions, 3, 9, 12–14, 24, 30, 32, 34
access privilege, 17
access request, 12
access token, 21
account settings, 23
accountability, 4, 12, 17, 20, 33
address bar, 7, 15, 23
administrator, 25, 31
Adobe, 3, 24
advertisement, 4, 10
alphanumeric, 18
Android, 3, 6, 10, 11, 13, 14, 18, 21, 22, 24, 25, 34
Android’s instant app feature, 24
anomaly detection, 23
anti-phishing, 23
app-to-web attack, 10
appification, 3, 4, 6, 10
Apple, 10
Apple AppStore, 10
application binaries, 10
application framework, 3, 16, 31
application isolation, 11
application programming interface, 6, 9, 10,

25, 28, 32, 34
application sandbox, 11
application security, 6, 11, 12, 31
application store, 4, 5, 10
application store key, 10
Argon2, 32
ARM, 18
ARM TrustZone, 18
attack surface, 3, 12, 31
attack vector, 32
authentication, 4, 5, 8, 12, 15, 17–21, 26, 30, 31,

33
authorisation, 4, 12, 17, 20, 21, 33
authorisation header, 17
auto-update, 21
autonomous, 9, 21, 22, 25
availability, 33

awareness, 23
awareness campaign, 23

back-end, 4–6, 15
bandwidth, 8, 10
base64, 17
basic HTTP authentication, 17, 18
bidirectional connection, 8
binary blob, 25
binary instruction format, 9
binary representation, 9
biometrics, 18, 21
blind SQL injection, 27
browser plugin, 3, 10, 16, 24

C, 6, 9
C++, 6
camera, 3, 13, 24, 26
case-insensitive, 7
cellular network, 21
censorship, 10
centralisation, 4, 5, 10
certificate authority, 15, 16
certificates, 10, 15, 16, 31, 32
character encoding, 23
Chrome web store, 10
citizen developer, 6
classless object model, 9
clickjacking, 5, 22–24
client-server models, 3, 15
client-side scripting, 4, 6, 9, 29
Cloak & Dagger attack, 24
code review, 28, 30
command injection, 5, 26, 28, 29
command-line, 28
Common Vulnerabilities and Exposures, 28
compartmentalisation, 13
compiler, 6
comprehension, 14
confidentiality, 15, 17
confused deputy, 23
content isolation, 11
content security policy, 12
content-length header, 7
Content-Security-Policy header, 12
control-flow, 26

42



The Cyber Security Body Of Knowledge
www.cybok.org

convenience, 19
cookie header, 7, 8
cookie-based authentication, 8, 19
cookies, 7, 8, 11, 12, 15, 17, 19, 25, 29, 30
countermeasures, 18, 19, 22, 23, 30
credentials, 17, 18, 21, 22, 24, 26, 29, 30, 32
credit card data, 22, 26, 27, 31, 32
cross-origin manipulation, 11
cross-site cookies, 12
cross-site request forgery, 5, 24, 30
cross-site scripting, 3, 5, 8, 9, 12, 24, 29, 30
cryptography, 15, 21, 25, 32

data exchange, 4, 7, 15, 17
data security, 32
data structure, 16
data transfer, 8
database, 5, 25–29, 31, 32, 34
database query, 5, 27
decentralised, 10
desktop application, 6
detection signature, 23
developers, 3, 4, 6, 10, 12–15, 22, 24–26, 28,

32, 34
development, 6, 28, 34
DigiNotar, 16
digital distribution platform, 10
digital signature, 25
directory, 7
diversity, 20, 33
DNS, 7, 11
domain object model, 8, 11
drive-by-downloads, 23
dynamic analysis, 10
dynamic typing, 9

eavesdropping, 15
email attachment, 23
encoding, 8, 17, 23, 30
encryption, 15, 20, 25, 31, 32
entity encoding scheme, 8, 30
escape character, 27, 28
execution context, 9, 11, 29
execution failure, 9
expired lifetime, 32
exploit, 5, 12, 22, 23, 26, 28, 29

face recognition, 18
Facebook, 21
federation, 21

FIDO2, 21
file system, 11, 13
filename, 28, 29
financial loss, 22
fingerprint, 18
fingerprinting, 23
firewall, 31, 32
Flash, 3, 24
flexibility, 14
form-based HTTP authentication, 17
framebusting, 24
fraud, 16, 22
fraudulent certificate, 16
function resolution, 9

garbage collection, 9
global function, 9
Gmail, 16
Google, 3, 10, 11, 16, 21, 23, 34
Google Chrome, 3, 10, 11, 21, 23
Google Play, 10, 34
GPS, 3
guest privileges, 13

habituation, 14
handshake, 8
hardware security, 5, 18
hash function, 32
Heartbleed, 31
hierarchical tree, 8
higher-order injection, 27
homograph attack, 23
host header, 7
hostname, 7, 15, 32
htaccess, 29, 31
HTML, 4, 6–10, 12, 18, 22, 29, 30, 34
HTML5, 25
HTTP, 4, 6–8, 11, 12, 15–17, 19, 24, 29–31
HTTP GET request, 30
HTTP headers, 7, 8, 12, 15, 17, 24, 29, 30
HTTP POST request, 18, 30
HTTP response, 7, 12, 17, 19, 24, 29
HTTP RFC, 8
HTTP server, 7, 15, 32
HTTP Strict Transport Security, 16
HTTP/1.1, 7
HTTP/2.0, 7
HTTPS, 4, 15–18, 30, 32
human behaviour, 19
human bias, 18

KA Web & Mobile Security | July 2021 Page 43

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

human error, 5
human factors, 6, 14, 18–20, 32, 33
human interaction, 3, 6, 13, 22
human vulnerabilities, 22
human-readable, 7

I/O, 9
identity provider, 21
identity theft, 22
iframe, 23, 24
image processing, 26
impersonation, 21
IndexedDB, 25
information leakage, 25–27, 29, 31, 32
information security, 3, 33
infrastructure, 3, 6, 10, 15
injection attack, 3, 5, 6, 12, 26–28
input validation, 26, 28–30
installation time, 13
instant messaging, 22
integrity, 15, 17, 25
intellectual property, 26
inter-context communication, 9
inter-process communication, 13
intermediate representation, 9
internationalised domain name, 23
internet, 3, 6, 8, 13, 24, 31
internet connection, 6, 24
invalid certificate, 15, 32
iOS, 3, 6, 10
IP address, 7, 11, 15
IPv4, 7
IPv6, 7
isolation, 4, 9, 11

Java, 3, 6
JavaScript, 3, 4, 6, 9–11, 15, 22–24, 29, 34
JSON, 4

kernel, 11
key-logging, 24
key-value pair, 25
Kotlin, 6

latency, 8
load balancer, 31, 32
local storage, 5, 24, 25
log file, 25
log-in, 17, 21, 22, 24, 26, 29
log-in form, 17
log-out, 24

malformed path, 29
malicious script, 12, 29
malware, 5, 23, 29
man-in-the-middle attack, 15, 16
management, 10, 32
manipulation, 11, 23, 27
media files, 12
memory safety, 9
metadata, 16, 28
microphone, 13, 24
mime-type, 29
misconfiguration, 5, 15, 31, 32
misconfigured clock, 15
misspelled URL, 23
mobile app, 3, 4, 6, 10, 15–17, 19, 21, 22, 24–27,

33
mobile devices, 3, 6, 17, 18, 21, 22, 24
mobile games, 3
mobile malware, 5
mobile network, 5
mobile security, 3, 5, 6, 32, 33
Mozilla Developer Network, 34
Mozilla Firefox, 21
multi-factor authentication, 20, 21
multi-user system, 13

native application, 6
network connectivity, 8, 15, 31, 34
network error, 15
network port, 7, 11, 15, 31
network protocol, 15, 16
network request, 11
network security, 5, 15, 31, 33
network stack, 13
Node.js, 9
NoScript, 24
NoSQL, 25

OAuth, 21
object relational mapping, 28
object-oriented programming, 9
Objective-C, 6
one-time token, 20
online application generators, 6
online banking, 3, 22, 30
online forum, 29
online shop, 19
Open Web Application Security Project, 34
OpenID Connect, 21
OpenSSL, 31

KA Web & Mobile Security | July 2021 Page 44

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

OpenSSL library, 31
Operating System, 3–5, 11, 13, 15, 21, 24, 28,

34
outsourced data, 6

parsing, 5, 8, 9
passcode, 21
password, 7, 17–20, 24, 32
password blacklist, 20
password complexity, 19
password guidelines, 32
password length, 20
password manager, 20, 24, 32
password meter, 20
password policies, 20
password score, 20
password strength, 20
patching, 22
payment service, 20
PBKDF2, 32
PDF file, 28
Perl, 3
permission, 3, 4, 12–14
permission dialogue, 4, 12–14
personally identifiable information, 26
phishing, 5, 22–24
PHP, 3, 28
physical attack, 5, 22, 26
PIN, 18, 21, 26
plaintext, 17, 18
policies, 9–13, 19, 20, 27, 29
popup window, 23
port number, 7, 11, 15
prepared statement, 27
principle of least privilege, 28
privacy, 11–13, 19, 21
private browsing, 16
private key, 31
privilege escalation, 10, 31
privilege level, 13
privilege separation, 13
processes, 10, 11, 13, 28
programming language, 4, 6
PSD2, 20
public key cryptography, 21
public key infrastructure, 4, 15, 16, 32
public spaces, 26
Python, 6

random number generators, 20, 30

rate-limiting, 31
reference monitor, 12, 13
reflected XSS attack, 29
relational database, 27
reliability, 10
remote address, 7
remote server, 8, 30
rendered document, 7
rendering engine, 3, 7, 12, 22
request for comments, 8
request success, 8
request-response, 8, 19
reserved character, 8
resource identifier, 7, 11
Ruby, 6
rule set, 20
runtime, 9

salting passwords, 32
same origin policy, 9, 11, 12, 29
sandboxing, 9, 11, 12
sanitisation, 25–27, 29, 30
saved passwords, 12
scripting language, 3, 9
SD card, 25
security breaches, 32
security bug, 5, 12, 26
security context, 11
security indicator, 15
security mechanism, 3, 4, 17
security vetting, 10
self-signed certificate, 10
sensitive information, 3, 10, 19, 22, 25–27, 29,

30, 32
sensors, 3, 10
server-side, 3, 5–7, 9, 24, 26, 31, 33
service provider, 19–21
session cookie, 19, 30
session identifier, 17, 19
set-cookie header, 8
shell command, 26
shopping cart, 19
shoulder surfing, 5, 18, 26
side channel attack, 5
side-load software, 10
site isolation, 11
smartphone, 3
SMS, 3, 22
SMS security, 3
smudge attack, 5, 26

KA Web & Mobile Security | July 2021 Page 45

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

social media, 22
social network, 3, 28
software development, 6, 28, 34
software distribution, 4, 10, 21
software library, 22, 30–32
software patches, 11, 21, 22
software publication, 10
software security, 5, 26, 33
software update, 4, 5, 10, 11, 21, 22
software vendor, 3, 8, 9, 16
spam, 30, 31
special character, 18
spoofing, 22
SQL escaping, 28
SQL injection, 5, 26–28
SSH, 31
standardisation, 21
state-changing request, 30
stateful information, 19
static analysis, 10, 30
static website, 3
status code, 7, 17
status message, 8
stored XSS attack, 29
string literal, 28, 29
subdomain, 23, 29
superuser, 13
Swift, 6
swipe-pattern, 21
syntax, 7–9
system service, 13

tablet, 3
tamper-proof, 16
tampering, 15
TCP/IP, 7
telescope, 26
text node, 8
textual format, 7, 9
third-party software, 13, 21, 22
timeout, 31
timestamp, 16
top-level domain, 15, 23
Tor, 16
Tor network, 16
touchscreen, 26
Transport Layer Security, 4, 15, 31
true-false response, 27
trusted origin, 12
two-factor authentication, 20

Type-I XSS, 29
Type-II XSS, 29

ubiquitous, 6, 33
UI loop, 24
UNIX, 7
unlock device, 18, 24
unlock pattern, 18, 26
update frequencies, 4, 22
URL, 5–7, 15, 16, 22, 23, 27, 30
URL parameters, 27
usability, 19, 20
user identities, 11, 17, 30
user interface, 7, 22–24
user interface redress attack, 23
user management, 32
user rating, 10
user reviews, 10, 11
user-agent header, 7
user-uploaded file, 28, 29
username, 7, 17, 21, 31

virtual machine, 9
virtualisation, 4, 5, 11, 33
visual alignment, 23
visual feedback, 20
vulnerabilities, 3, 5, 6, 9, 10, 22, 26–30, 32–34

warnings, 15
web applications, 3–6, 9, 12, 16, 17, 21, 22, 25–

34
web browser, 3, 5–7, 32
web form data, 7, 17, 18
web games, 3
web security, 3, 5, 6, 8, 9, 32–34
web server, 5, 12, 15, 19, 31, 32
web-to-app attack, 10
WebAssembly, 9
WebAuthn, 21
webification, 3, 4, 6, 10
website, 3–5, 8–12, 15–17, 19, 20, 22–25, 27,

29–32
website forgery, 22, 23
WebSocket protocol, 8
WebStorage, 25
WebView, 10, 34
WiFi, 21

x-frame-options header, 24
X.509 certificate, 15, 16
XML, 4, 11

KA Web & Mobile Security | July 2021 Page 46

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

XMLHttpRequest, 11

KA Web & Mobile Security | July 2021 Page 47

https://www.cybok.org

	1 Introduction
	2 Fundamental Concepts and Approaches
	2.1 Appification
	2.2 Webification
	2.2.1 Uniform Resource Locators
	2.2.2 Hypertext Transfer Protocol
	2.2.3 Hypertext Markup Language
	2.2.4 Cascading Style Sheets
	2.2.5 JavaScript
	2.2.6 WebAssembly
	2.2.7 WebViews

	2.3 Application Stores
	2.4 Sandboxing
	2.4.1 Application Isolation
	2.4.2 Content Isolation

	2.5 Permission Dialog Based Access Control
	2.5.1 The Security Principals
	2.5.2 The Reference Monitor
	2.5.3 The Security Policy
	2.5.4 Different Permission Approaches

	2.6 Web PKI and HTTPS
	2.7 Authentication
	2.7.1 HTTP Authentication
	2.7.2 Mobile Device Authentication

	2.8 Cookies
	2.9 Passwords and Alternatives
	2.9.1 Password Policies
	2.9.2 Password Strength Meters
	2.9.3 Password Managers
	2.9.4 Multi-Factor Authentication
	2.9.5 WebAuthn
	2.9.6 OAuth

	2.10 Frequent Software Updates

	3 Client Side Vulnerabilities and Mitigations
	3.1 Phishing & Clickjacking
	3.1.1 Phishing
	3.1.2 Clickjacking

	3.2 Client Side Storage
	3.2.1 Client Side Storage in the Browser
	3.2.2 Client Side Storage in Mobile Applications

	3.3 Physical Attacks
	3.3.1 Smudge attacks
	3.3.2 Shoulder Surfing


	4 Server Side Vulnerabilities and Mitigations
	4.1 Injection Vulnerabilities
	4.1.1 SQL-Injection
	4.1.2 Command Injections
	4.1.3 User Uploaded Files
	4.1.4 Local File Inclusion
	4.1.5 Cross-Site Scripting (XSS)
	4.1.6 Cross-Site Request Forgery

	4.2 Server Side Misconfigurations & Vulnerable Components
	4.2.1 Firewall
	4.2.2 Load Balancers
	4.2.3 Databases


	5 Conclusion

